1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
|
<html><body>
<style>
body, h1, h2, h3, div, span, p, pre, a {
margin: 0;
padding: 0;
border: 0;
font-weight: inherit;
font-style: inherit;
font-size: 100%;
font-family: inherit;
vertical-align: baseline;
}
body {
font-size: 13px;
padding: 1em;
}
h1 {
font-size: 26px;
margin-bottom: 1em;
}
h2 {
font-size: 24px;
margin-bottom: 1em;
}
h3 {
font-size: 20px;
margin-bottom: 1em;
margin-top: 1em;
}
pre, code {
line-height: 1.5;
font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}
pre {
margin-top: 0.5em;
}
h1, h2, h3, p {
font-family: Arial, sans serif;
}
h1, h2, h3 {
border-bottom: solid #CCC 1px;
}
.toc_element {
margin-top: 0.5em;
}
.firstline {
margin-left: 2 em;
}
.method {
margin-top: 1em;
border: solid 1px #CCC;
padding: 1em;
background: #EEE;
}
.details {
font-weight: bold;
font-size: 14px;
}
</style>
<h1><a href="dialogflow_v2.html">Dialogflow API</a> . <a href="dialogflow_v2.projects.html">projects</a> . <a href="dialogflow_v2.projects.locations.html">locations</a> . <a href="dialogflow_v2.projects.locations.generators.html">generators</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
<code><a href="#close">close()</a></code></p>
<p class="firstline">Close httplib2 connections.</p>
<p class="toc_element">
<code><a href="#create">create(parent, body=None, generatorId=None, x__xgafv=None)</a></code></p>
<p class="firstline">Creates a generator.</p>
<p class="toc_element">
<code><a href="#delete">delete(name, x__xgafv=None)</a></code></p>
<p class="firstline">Deletes a generator.</p>
<p class="toc_element">
<code><a href="#get">get(name, x__xgafv=None)</a></code></p>
<p class="firstline">Retrieves a generator.</p>
<p class="toc_element">
<code><a href="#list">list(parent, pageSize=None, pageToken=None, x__xgafv=None)</a></code></p>
<p class="firstline">Lists generators.</p>
<p class="toc_element">
<code><a href="#list_next">list_next()</a></code></p>
<p class="firstline">Retrieves the next page of results.</p>
<p class="toc_element">
<code><a href="#patch">patch(name, body=None, updateMask=None, x__xgafv=None)</a></code></p>
<p class="firstline">Updates a generator.</p>
<h3>Method Details</h3>
<div class="method">
<code class="details" id="close">close()</code>
<pre>Close httplib2 connections.</pre>
</div>
<div class="method">
<code class="details" id="create">create(parent, body=None, generatorId=None, x__xgafv=None)</code>
<pre>Creates a generator.
Args:
parent: string, Required. The project/location to create generator for. Format: `projects//locations/` (required)
body: object, The request body.
The object takes the form of:
{ # LLM generator.
"createTime": "A String", # Output only. Creation time of this generator.
"description": "A String", # Optional. Human readable description of the generator.
"freeFormContext": { # Free form generator context that customer can configure. # Input of free from generator to LLM.
"text": "A String", # Optional. Free form text input to LLM.
},
"inferenceParameter": { # The parameters of inference. # Optional. Inference parameters for this generator.
"maxOutputTokens": 42, # Optional. Maximum number of the output tokens for the generator.
"temperature": 3.14, # Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.
"topK": 42, # Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.
"topP": 3.14, # Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.
},
"name": "A String", # Output only. Identifier. The resource name of the generator. Format: `projects//locations//generators/`
"publishedModel": "A String", # Optional. The published Large Language Model name. * To use the latest model version, specify the model name without version number. Example: `text-bison` * To use a stable model version, specify the version number as well. Example: `text-bison@002`.
"summarizationContext": { # Summarization context that customer can configure. # Input of prebuilt Summarization feature.
"fewShotExamples": [ # Optional. List of few shot examples.
{ # Providing examples in the generator (i.e. building a few-shot generator) helps convey the desired format of the LLM response.
"conversationContext": { # Context of the conversation, including transcripts. # Optional. Conversation transcripts.
"messageEntries": [ # Optional. List of message transcripts in the conversation.
{ # Represents a message entry of a conversation.
"createTime": "A String", # Optional. Create time of the message entry.
"languageCode": "A String", # Optional. The language of the text. See [Language Support](https://cloud.google.com/dialogflow/docs/reference/language) for a list of the currently supported language codes.
"role": "A String", # Optional. Participant role of the message.
"text": "A String", # Optional. Transcript content of the message.
},
],
},
"extraInfo": { # Optional. Key is the placeholder field name in input, value is the value of the placeholder. E.g. instruction contains "@price", and ingested data has <"price", "10">
"a_key": "A String",
},
"output": { # Suggestion generated using a Generator. # Required. Example output of the model.
"freeFormSuggestion": { # Suggestion generated using free form generator. # Optional. Free form suggestion.
"response": "A String", # Required. Free form suggestion.
},
"summarySuggestion": { # Suggested summary of the conversation. # Optional. Suggested summary.
"summarySections": [ # Required. All the parts of generated summary.
{ # A component of the generated summary.
"section": "A String", # Required. Name of the section.
"summary": "A String", # Required. Summary text for the section.
},
],
},
"toolCallInfo": [ # Optional. List of request and response for tool calls executed.
{ # Request and response for a tool call.
"toolCall": { # Represents a call of a specific tool's action with the specified inputs. # Required. Request for a tool call.
"action": "A String", # Optional. The name of the tool's action associated with this call.
"createTime": "A String", # Output only. Create time of the tool call.
"inputParameters": { # Optional. The action's input parameters.
"a_key": "", # Properties of the object.
},
"tool": "A String", # Optional. The tool associated with this call. Format: `projects//locations//tools/`.
},
"toolCallResult": { # The result of calling a tool's action. # Required. Response for a tool call.
"action": "A String", # Optional. The name of the tool's action associated with this call.
"content": "A String", # Only populated if the response content is utf-8 encoded.
"createTime": "A String", # Output only. Create time of the tool call result.
"error": { # An error produced by the tool call. # The tool call's error.
"message": "A String", # Optional. The error message of the function.
},
"rawContent": "A String", # Only populated if the response content is not utf-8 encoded. (by definition byte fields are base64 encoded).
"tool": "A String", # Optional. The tool associated with this call. Format: `projects//locations//tools/`.
},
},
],
},
"summarizationSectionList": { # List of summarization sections. # Summarization sections.
"summarizationSections": [ # Optional. Summarization sections.
{ # Represents the section of summarization.
"definition": "A String", # Optional. Definition of the section, for example, "what the customer needs help with or has question about."
"key": "A String", # Optional. Name of the section, for example, "situation".
"type": "A String", # Optional. Type of the summarization section.
},
],
},
},
],
"outputLanguageCode": "A String", # Optional. The target language of the generated summary. The language code for conversation will be used if this field is empty. Supported 2.0 and later versions.
"summarizationSections": [ # Optional. List of sections. Note it contains both predefined section sand customer defined sections.
{ # Represents the section of summarization.
"definition": "A String", # Optional. Definition of the section, for example, "what the customer needs help with or has question about."
"key": "A String", # Optional. Name of the section, for example, "situation".
"type": "A String", # Optional. Type of the summarization section.
},
],
"version": "A String", # Optional. Version of the feature. If not set, default to latest version. Current candidates are ["1.0"].
},
"tools": [ # Optional. Resource names of the tools that the generator can choose from. Format: `projects//locations//tools/`.
"A String",
],
"triggerEvent": "A String", # Optional. The trigger event of the generator. It defines when the generator is triggered in a conversation.
"updateTime": "A String", # Output only. Update time of this generator.
}
generatorId: string, Optional. The ID to use for the generator, which will become the final component of the generator's resource name. The generator ID must be compliant with the regression formula `a-zA-Z*` with the characters length in range of [3,64]. If the field is not provided, an Id will be auto-generated. If the field is provided, the caller is responsible for 1. the uniqueness of the ID, otherwise the request will be rejected. 2. the consistency for whether to use custom ID or not under a project to better ensure uniqueness.
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # LLM generator.
"createTime": "A String", # Output only. Creation time of this generator.
"description": "A String", # Optional. Human readable description of the generator.
"freeFormContext": { # Free form generator context that customer can configure. # Input of free from generator to LLM.
"text": "A String", # Optional. Free form text input to LLM.
},
"inferenceParameter": { # The parameters of inference. # Optional. Inference parameters for this generator.
"maxOutputTokens": 42, # Optional. Maximum number of the output tokens for the generator.
"temperature": 3.14, # Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.
"topK": 42, # Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.
"topP": 3.14, # Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.
},
"name": "A String", # Output only. Identifier. The resource name of the generator. Format: `projects//locations//generators/`
"publishedModel": "A String", # Optional. The published Large Language Model name. * To use the latest model version, specify the model name without version number. Example: `text-bison` * To use a stable model version, specify the version number as well. Example: `text-bison@002`.
"summarizationContext": { # Summarization context that customer can configure. # Input of prebuilt Summarization feature.
"fewShotExamples": [ # Optional. List of few shot examples.
{ # Providing examples in the generator (i.e. building a few-shot generator) helps convey the desired format of the LLM response.
"conversationContext": { # Context of the conversation, including transcripts. # Optional. Conversation transcripts.
"messageEntries": [ # Optional. List of message transcripts in the conversation.
{ # Represents a message entry of a conversation.
"createTime": "A String", # Optional. Create time of the message entry.
"languageCode": "A String", # Optional. The language of the text. See [Language Support](https://cloud.google.com/dialogflow/docs/reference/language) for a list of the currently supported language codes.
"role": "A String", # Optional. Participant role of the message.
"text": "A String", # Optional. Transcript content of the message.
},
],
},
"extraInfo": { # Optional. Key is the placeholder field name in input, value is the value of the placeholder. E.g. instruction contains "@price", and ingested data has <"price", "10">
"a_key": "A String",
},
"output": { # Suggestion generated using a Generator. # Required. Example output of the model.
"freeFormSuggestion": { # Suggestion generated using free form generator. # Optional. Free form suggestion.
"response": "A String", # Required. Free form suggestion.
},
"summarySuggestion": { # Suggested summary of the conversation. # Optional. Suggested summary.
"summarySections": [ # Required. All the parts of generated summary.
{ # A component of the generated summary.
"section": "A String", # Required. Name of the section.
"summary": "A String", # Required. Summary text for the section.
},
],
},
"toolCallInfo": [ # Optional. List of request and response for tool calls executed.
{ # Request and response for a tool call.
"toolCall": { # Represents a call of a specific tool's action with the specified inputs. # Required. Request for a tool call.
"action": "A String", # Optional. The name of the tool's action associated with this call.
"createTime": "A String", # Output only. Create time of the tool call.
"inputParameters": { # Optional. The action's input parameters.
"a_key": "", # Properties of the object.
},
"tool": "A String", # Optional. The tool associated with this call. Format: `projects//locations//tools/`.
},
"toolCallResult": { # The result of calling a tool's action. # Required. Response for a tool call.
"action": "A String", # Optional. The name of the tool's action associated with this call.
"content": "A String", # Only populated if the response content is utf-8 encoded.
"createTime": "A String", # Output only. Create time of the tool call result.
"error": { # An error produced by the tool call. # The tool call's error.
"message": "A String", # Optional. The error message of the function.
},
"rawContent": "A String", # Only populated if the response content is not utf-8 encoded. (by definition byte fields are base64 encoded).
"tool": "A String", # Optional. The tool associated with this call. Format: `projects//locations//tools/`.
},
},
],
},
"summarizationSectionList": { # List of summarization sections. # Summarization sections.
"summarizationSections": [ # Optional. Summarization sections.
{ # Represents the section of summarization.
"definition": "A String", # Optional. Definition of the section, for example, "what the customer needs help with or has question about."
"key": "A String", # Optional. Name of the section, for example, "situation".
"type": "A String", # Optional. Type of the summarization section.
},
],
},
},
],
"outputLanguageCode": "A String", # Optional. The target language of the generated summary. The language code for conversation will be used if this field is empty. Supported 2.0 and later versions.
"summarizationSections": [ # Optional. List of sections. Note it contains both predefined section sand customer defined sections.
{ # Represents the section of summarization.
"definition": "A String", # Optional. Definition of the section, for example, "what the customer needs help with or has question about."
"key": "A String", # Optional. Name of the section, for example, "situation".
"type": "A String", # Optional. Type of the summarization section.
},
],
"version": "A String", # Optional. Version of the feature. If not set, default to latest version. Current candidates are ["1.0"].
},
"tools": [ # Optional. Resource names of the tools that the generator can choose from. Format: `projects//locations//tools/`.
"A String",
],
"triggerEvent": "A String", # Optional. The trigger event of the generator. It defines when the generator is triggered in a conversation.
"updateTime": "A String", # Output only. Update time of this generator.
}</pre>
</div>
<div class="method">
<code class="details" id="delete">delete(name, x__xgafv=None)</code>
<pre>Deletes a generator.
Args:
name: string, Required. The generator resource name to delete. Format: `projects//locations//generators/` (required)
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); }
}</pre>
</div>
<div class="method">
<code class="details" id="get">get(name, x__xgafv=None)</code>
<pre>Retrieves a generator.
Args:
name: string, Required. The generator resource name to retrieve. Format: `projects//locations//generators/` (required)
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # LLM generator.
"createTime": "A String", # Output only. Creation time of this generator.
"description": "A String", # Optional. Human readable description of the generator.
"freeFormContext": { # Free form generator context that customer can configure. # Input of free from generator to LLM.
"text": "A String", # Optional. Free form text input to LLM.
},
"inferenceParameter": { # The parameters of inference. # Optional. Inference parameters for this generator.
"maxOutputTokens": 42, # Optional. Maximum number of the output tokens for the generator.
"temperature": 3.14, # Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.
"topK": 42, # Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.
"topP": 3.14, # Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.
},
"name": "A String", # Output only. Identifier. The resource name of the generator. Format: `projects//locations//generators/`
"publishedModel": "A String", # Optional. The published Large Language Model name. * To use the latest model version, specify the model name without version number. Example: `text-bison` * To use a stable model version, specify the version number as well. Example: `text-bison@002`.
"summarizationContext": { # Summarization context that customer can configure. # Input of prebuilt Summarization feature.
"fewShotExamples": [ # Optional. List of few shot examples.
{ # Providing examples in the generator (i.e. building a few-shot generator) helps convey the desired format of the LLM response.
"conversationContext": { # Context of the conversation, including transcripts. # Optional. Conversation transcripts.
"messageEntries": [ # Optional. List of message transcripts in the conversation.
{ # Represents a message entry of a conversation.
"createTime": "A String", # Optional. Create time of the message entry.
"languageCode": "A String", # Optional. The language of the text. See [Language Support](https://cloud.google.com/dialogflow/docs/reference/language) for a list of the currently supported language codes.
"role": "A String", # Optional. Participant role of the message.
"text": "A String", # Optional. Transcript content of the message.
},
],
},
"extraInfo": { # Optional. Key is the placeholder field name in input, value is the value of the placeholder. E.g. instruction contains "@price", and ingested data has <"price", "10">
"a_key": "A String",
},
"output": { # Suggestion generated using a Generator. # Required. Example output of the model.
"freeFormSuggestion": { # Suggestion generated using free form generator. # Optional. Free form suggestion.
"response": "A String", # Required. Free form suggestion.
},
"summarySuggestion": { # Suggested summary of the conversation. # Optional. Suggested summary.
"summarySections": [ # Required. All the parts of generated summary.
{ # A component of the generated summary.
"section": "A String", # Required. Name of the section.
"summary": "A String", # Required. Summary text for the section.
},
],
},
"toolCallInfo": [ # Optional. List of request and response for tool calls executed.
{ # Request and response for a tool call.
"toolCall": { # Represents a call of a specific tool's action with the specified inputs. # Required. Request for a tool call.
"action": "A String", # Optional. The name of the tool's action associated with this call.
"createTime": "A String", # Output only. Create time of the tool call.
"inputParameters": { # Optional. The action's input parameters.
"a_key": "", # Properties of the object.
},
"tool": "A String", # Optional. The tool associated with this call. Format: `projects//locations//tools/`.
},
"toolCallResult": { # The result of calling a tool's action. # Required. Response for a tool call.
"action": "A String", # Optional. The name of the tool's action associated with this call.
"content": "A String", # Only populated if the response content is utf-8 encoded.
"createTime": "A String", # Output only. Create time of the tool call result.
"error": { # An error produced by the tool call. # The tool call's error.
"message": "A String", # Optional. The error message of the function.
},
"rawContent": "A String", # Only populated if the response content is not utf-8 encoded. (by definition byte fields are base64 encoded).
"tool": "A String", # Optional. The tool associated with this call. Format: `projects//locations//tools/`.
},
},
],
},
"summarizationSectionList": { # List of summarization sections. # Summarization sections.
"summarizationSections": [ # Optional. Summarization sections.
{ # Represents the section of summarization.
"definition": "A String", # Optional. Definition of the section, for example, "what the customer needs help with or has question about."
"key": "A String", # Optional. Name of the section, for example, "situation".
"type": "A String", # Optional. Type of the summarization section.
},
],
},
},
],
"outputLanguageCode": "A String", # Optional. The target language of the generated summary. The language code for conversation will be used if this field is empty. Supported 2.0 and later versions.
"summarizationSections": [ # Optional. List of sections. Note it contains both predefined section sand customer defined sections.
{ # Represents the section of summarization.
"definition": "A String", # Optional. Definition of the section, for example, "what the customer needs help with or has question about."
"key": "A String", # Optional. Name of the section, for example, "situation".
"type": "A String", # Optional. Type of the summarization section.
},
],
"version": "A String", # Optional. Version of the feature. If not set, default to latest version. Current candidates are ["1.0"].
},
"tools": [ # Optional. Resource names of the tools that the generator can choose from. Format: `projects//locations//tools/`.
"A String",
],
"triggerEvent": "A String", # Optional. The trigger event of the generator. It defines when the generator is triggered in a conversation.
"updateTime": "A String", # Output only. Update time of this generator.
}</pre>
</div>
<div class="method">
<code class="details" id="list">list(parent, pageSize=None, pageToken=None, x__xgafv=None)</code>
<pre>Lists generators.
Args:
parent: string, Required. The project/location to list generators for. Format: `projects//locations/` (required)
pageSize: integer, Optional. Maximum number of conversation models to return in a single page. Default to 10.
pageToken: string, Optional. The next_page_token value returned from a previous list request.
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # Response of ListGenerators.
"generators": [ # List of generators retrieved.
{ # LLM generator.
"createTime": "A String", # Output only. Creation time of this generator.
"description": "A String", # Optional. Human readable description of the generator.
"freeFormContext": { # Free form generator context that customer can configure. # Input of free from generator to LLM.
"text": "A String", # Optional. Free form text input to LLM.
},
"inferenceParameter": { # The parameters of inference. # Optional. Inference parameters for this generator.
"maxOutputTokens": 42, # Optional. Maximum number of the output tokens for the generator.
"temperature": 3.14, # Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.
"topK": 42, # Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.
"topP": 3.14, # Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.
},
"name": "A String", # Output only. Identifier. The resource name of the generator. Format: `projects//locations//generators/`
"publishedModel": "A String", # Optional. The published Large Language Model name. * To use the latest model version, specify the model name without version number. Example: `text-bison` * To use a stable model version, specify the version number as well. Example: `text-bison@002`.
"summarizationContext": { # Summarization context that customer can configure. # Input of prebuilt Summarization feature.
"fewShotExamples": [ # Optional. List of few shot examples.
{ # Providing examples in the generator (i.e. building a few-shot generator) helps convey the desired format of the LLM response.
"conversationContext": { # Context of the conversation, including transcripts. # Optional. Conversation transcripts.
"messageEntries": [ # Optional. List of message transcripts in the conversation.
{ # Represents a message entry of a conversation.
"createTime": "A String", # Optional. Create time of the message entry.
"languageCode": "A String", # Optional. The language of the text. See [Language Support](https://cloud.google.com/dialogflow/docs/reference/language) for a list of the currently supported language codes.
"role": "A String", # Optional. Participant role of the message.
"text": "A String", # Optional. Transcript content of the message.
},
],
},
"extraInfo": { # Optional. Key is the placeholder field name in input, value is the value of the placeholder. E.g. instruction contains "@price", and ingested data has <"price", "10">
"a_key": "A String",
},
"output": { # Suggestion generated using a Generator. # Required. Example output of the model.
"freeFormSuggestion": { # Suggestion generated using free form generator. # Optional. Free form suggestion.
"response": "A String", # Required. Free form suggestion.
},
"summarySuggestion": { # Suggested summary of the conversation. # Optional. Suggested summary.
"summarySections": [ # Required. All the parts of generated summary.
{ # A component of the generated summary.
"section": "A String", # Required. Name of the section.
"summary": "A String", # Required. Summary text for the section.
},
],
},
"toolCallInfo": [ # Optional. List of request and response for tool calls executed.
{ # Request and response for a tool call.
"toolCall": { # Represents a call of a specific tool's action with the specified inputs. # Required. Request for a tool call.
"action": "A String", # Optional. The name of the tool's action associated with this call.
"createTime": "A String", # Output only. Create time of the tool call.
"inputParameters": { # Optional. The action's input parameters.
"a_key": "", # Properties of the object.
},
"tool": "A String", # Optional. The tool associated with this call. Format: `projects//locations//tools/`.
},
"toolCallResult": { # The result of calling a tool's action. # Required. Response for a tool call.
"action": "A String", # Optional. The name of the tool's action associated with this call.
"content": "A String", # Only populated if the response content is utf-8 encoded.
"createTime": "A String", # Output only. Create time of the tool call result.
"error": { # An error produced by the tool call. # The tool call's error.
"message": "A String", # Optional. The error message of the function.
},
"rawContent": "A String", # Only populated if the response content is not utf-8 encoded. (by definition byte fields are base64 encoded).
"tool": "A String", # Optional. The tool associated with this call. Format: `projects//locations//tools/`.
},
},
],
},
"summarizationSectionList": { # List of summarization sections. # Summarization sections.
"summarizationSections": [ # Optional. Summarization sections.
{ # Represents the section of summarization.
"definition": "A String", # Optional. Definition of the section, for example, "what the customer needs help with or has question about."
"key": "A String", # Optional. Name of the section, for example, "situation".
"type": "A String", # Optional. Type of the summarization section.
},
],
},
},
],
"outputLanguageCode": "A String", # Optional. The target language of the generated summary. The language code for conversation will be used if this field is empty. Supported 2.0 and later versions.
"summarizationSections": [ # Optional. List of sections. Note it contains both predefined section sand customer defined sections.
{ # Represents the section of summarization.
"definition": "A String", # Optional. Definition of the section, for example, "what the customer needs help with or has question about."
"key": "A String", # Optional. Name of the section, for example, "situation".
"type": "A String", # Optional. Type of the summarization section.
},
],
"version": "A String", # Optional. Version of the feature. If not set, default to latest version. Current candidates are ["1.0"].
},
"tools": [ # Optional. Resource names of the tools that the generator can choose from. Format: `projects//locations//tools/`.
"A String",
],
"triggerEvent": "A String", # Optional. The trigger event of the generator. It defines when the generator is triggered in a conversation.
"updateTime": "A String", # Output only. Update time of this generator.
},
],
"nextPageToken": "A String", # Token to retrieve the next page of results, or empty if there are no more results in the list.
}</pre>
</div>
<div class="method">
<code class="details" id="list_next">list_next()</code>
<pre>Retrieves the next page of results.
Args:
previous_request: The request for the previous page. (required)
previous_response: The response from the request for the previous page. (required)
Returns:
A request object that you can call 'execute()' on to request the next
page. Returns None if there are no more items in the collection.
</pre>
</div>
<div class="method">
<code class="details" id="patch">patch(name, body=None, updateMask=None, x__xgafv=None)</code>
<pre>Updates a generator.
Args:
name: string, Output only. Identifier. The resource name of the generator. Format: `projects//locations//generators/` (required)
body: object, The request body.
The object takes the form of:
{ # LLM generator.
"createTime": "A String", # Output only. Creation time of this generator.
"description": "A String", # Optional. Human readable description of the generator.
"freeFormContext": { # Free form generator context that customer can configure. # Input of free from generator to LLM.
"text": "A String", # Optional. Free form text input to LLM.
},
"inferenceParameter": { # The parameters of inference. # Optional. Inference parameters for this generator.
"maxOutputTokens": 42, # Optional. Maximum number of the output tokens for the generator.
"temperature": 3.14, # Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.
"topK": 42, # Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.
"topP": 3.14, # Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.
},
"name": "A String", # Output only. Identifier. The resource name of the generator. Format: `projects//locations//generators/`
"publishedModel": "A String", # Optional. The published Large Language Model name. * To use the latest model version, specify the model name without version number. Example: `text-bison` * To use a stable model version, specify the version number as well. Example: `text-bison@002`.
"summarizationContext": { # Summarization context that customer can configure. # Input of prebuilt Summarization feature.
"fewShotExamples": [ # Optional. List of few shot examples.
{ # Providing examples in the generator (i.e. building a few-shot generator) helps convey the desired format of the LLM response.
"conversationContext": { # Context of the conversation, including transcripts. # Optional. Conversation transcripts.
"messageEntries": [ # Optional. List of message transcripts in the conversation.
{ # Represents a message entry of a conversation.
"createTime": "A String", # Optional. Create time of the message entry.
"languageCode": "A String", # Optional. The language of the text. See [Language Support](https://cloud.google.com/dialogflow/docs/reference/language) for a list of the currently supported language codes.
"role": "A String", # Optional. Participant role of the message.
"text": "A String", # Optional. Transcript content of the message.
},
],
},
"extraInfo": { # Optional. Key is the placeholder field name in input, value is the value of the placeholder. E.g. instruction contains "@price", and ingested data has <"price", "10">
"a_key": "A String",
},
"output": { # Suggestion generated using a Generator. # Required. Example output of the model.
"freeFormSuggestion": { # Suggestion generated using free form generator. # Optional. Free form suggestion.
"response": "A String", # Required. Free form suggestion.
},
"summarySuggestion": { # Suggested summary of the conversation. # Optional. Suggested summary.
"summarySections": [ # Required. All the parts of generated summary.
{ # A component of the generated summary.
"section": "A String", # Required. Name of the section.
"summary": "A String", # Required. Summary text for the section.
},
],
},
"toolCallInfo": [ # Optional. List of request and response for tool calls executed.
{ # Request and response for a tool call.
"toolCall": { # Represents a call of a specific tool's action with the specified inputs. # Required. Request for a tool call.
"action": "A String", # Optional. The name of the tool's action associated with this call.
"createTime": "A String", # Output only. Create time of the tool call.
"inputParameters": { # Optional. The action's input parameters.
"a_key": "", # Properties of the object.
},
"tool": "A String", # Optional. The tool associated with this call. Format: `projects//locations//tools/`.
},
"toolCallResult": { # The result of calling a tool's action. # Required. Response for a tool call.
"action": "A String", # Optional. The name of the tool's action associated with this call.
"content": "A String", # Only populated if the response content is utf-8 encoded.
"createTime": "A String", # Output only. Create time of the tool call result.
"error": { # An error produced by the tool call. # The tool call's error.
"message": "A String", # Optional. The error message of the function.
},
"rawContent": "A String", # Only populated if the response content is not utf-8 encoded. (by definition byte fields are base64 encoded).
"tool": "A String", # Optional. The tool associated with this call. Format: `projects//locations//tools/`.
},
},
],
},
"summarizationSectionList": { # List of summarization sections. # Summarization sections.
"summarizationSections": [ # Optional. Summarization sections.
{ # Represents the section of summarization.
"definition": "A String", # Optional. Definition of the section, for example, "what the customer needs help with or has question about."
"key": "A String", # Optional. Name of the section, for example, "situation".
"type": "A String", # Optional. Type of the summarization section.
},
],
},
},
],
"outputLanguageCode": "A String", # Optional. The target language of the generated summary. The language code for conversation will be used if this field is empty. Supported 2.0 and later versions.
"summarizationSections": [ # Optional. List of sections. Note it contains both predefined section sand customer defined sections.
{ # Represents the section of summarization.
"definition": "A String", # Optional. Definition of the section, for example, "what the customer needs help with or has question about."
"key": "A String", # Optional. Name of the section, for example, "situation".
"type": "A String", # Optional. Type of the summarization section.
},
],
"version": "A String", # Optional. Version of the feature. If not set, default to latest version. Current candidates are ["1.0"].
},
"tools": [ # Optional. Resource names of the tools that the generator can choose from. Format: `projects//locations//tools/`.
"A String",
],
"triggerEvent": "A String", # Optional. The trigger event of the generator. It defines when the generator is triggered in a conversation.
"updateTime": "A String", # Output only. Update time of this generator.
}
updateMask: string, Optional. The list of fields to update.
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # LLM generator.
"createTime": "A String", # Output only. Creation time of this generator.
"description": "A String", # Optional. Human readable description of the generator.
"freeFormContext": { # Free form generator context that customer can configure. # Input of free from generator to LLM.
"text": "A String", # Optional. Free form text input to LLM.
},
"inferenceParameter": { # The parameters of inference. # Optional. Inference parameters for this generator.
"maxOutputTokens": 42, # Optional. Maximum number of the output tokens for the generator.
"temperature": 3.14, # Optional. Controls the randomness of LLM predictions. Low temperature = less random. High temperature = more random. If unset (or 0), uses a default value of 0.
"topK": 42, # Optional. Top-k changes how the model selects tokens for output. A top-k of 1 means the selected token is the most probable among all tokens in the model's vocabulary (also called greedy decoding), while a top-k of 3 means that the next token is selected from among the 3 most probable tokens (using temperature). For each token selection step, the top K tokens with the highest probabilities are sampled. Then tokens are further filtered based on topP with the final token selected using temperature sampling. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [1, 40], default to 40.
"topP": 3.14, # Optional. Top-p changes how the model selects tokens for output. Tokens are selected from most K (see topK parameter) probable to least until the sum of their probabilities equals the top-p value. For example, if tokens A, B, and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5, then the model will select either A or B as the next token (using temperature) and doesn't consider C. The default top-p value is 0.95. Specify a lower value for less random responses and a higher value for more random responses. Acceptable value is [0.0, 1.0], default to 0.95.
},
"name": "A String", # Output only. Identifier. The resource name of the generator. Format: `projects//locations//generators/`
"publishedModel": "A String", # Optional. The published Large Language Model name. * To use the latest model version, specify the model name without version number. Example: `text-bison` * To use a stable model version, specify the version number as well. Example: `text-bison@002`.
"summarizationContext": { # Summarization context that customer can configure. # Input of prebuilt Summarization feature.
"fewShotExamples": [ # Optional. List of few shot examples.
{ # Providing examples in the generator (i.e. building a few-shot generator) helps convey the desired format of the LLM response.
"conversationContext": { # Context of the conversation, including transcripts. # Optional. Conversation transcripts.
"messageEntries": [ # Optional. List of message transcripts in the conversation.
{ # Represents a message entry of a conversation.
"createTime": "A String", # Optional. Create time of the message entry.
"languageCode": "A String", # Optional. The language of the text. See [Language Support](https://cloud.google.com/dialogflow/docs/reference/language) for a list of the currently supported language codes.
"role": "A String", # Optional. Participant role of the message.
"text": "A String", # Optional. Transcript content of the message.
},
],
},
"extraInfo": { # Optional. Key is the placeholder field name in input, value is the value of the placeholder. E.g. instruction contains "@price", and ingested data has <"price", "10">
"a_key": "A String",
},
"output": { # Suggestion generated using a Generator. # Required. Example output of the model.
"freeFormSuggestion": { # Suggestion generated using free form generator. # Optional. Free form suggestion.
"response": "A String", # Required. Free form suggestion.
},
"summarySuggestion": { # Suggested summary of the conversation. # Optional. Suggested summary.
"summarySections": [ # Required. All the parts of generated summary.
{ # A component of the generated summary.
"section": "A String", # Required. Name of the section.
"summary": "A String", # Required. Summary text for the section.
},
],
},
"toolCallInfo": [ # Optional. List of request and response for tool calls executed.
{ # Request and response for a tool call.
"toolCall": { # Represents a call of a specific tool's action with the specified inputs. # Required. Request for a tool call.
"action": "A String", # Optional. The name of the tool's action associated with this call.
"createTime": "A String", # Output only. Create time of the tool call.
"inputParameters": { # Optional. The action's input parameters.
"a_key": "", # Properties of the object.
},
"tool": "A String", # Optional. The tool associated with this call. Format: `projects//locations//tools/`.
},
"toolCallResult": { # The result of calling a tool's action. # Required. Response for a tool call.
"action": "A String", # Optional. The name of the tool's action associated with this call.
"content": "A String", # Only populated if the response content is utf-8 encoded.
"createTime": "A String", # Output only. Create time of the tool call result.
"error": { # An error produced by the tool call. # The tool call's error.
"message": "A String", # Optional. The error message of the function.
},
"rawContent": "A String", # Only populated if the response content is not utf-8 encoded. (by definition byte fields are base64 encoded).
"tool": "A String", # Optional. The tool associated with this call. Format: `projects//locations//tools/`.
},
},
],
},
"summarizationSectionList": { # List of summarization sections. # Summarization sections.
"summarizationSections": [ # Optional. Summarization sections.
{ # Represents the section of summarization.
"definition": "A String", # Optional. Definition of the section, for example, "what the customer needs help with or has question about."
"key": "A String", # Optional. Name of the section, for example, "situation".
"type": "A String", # Optional. Type of the summarization section.
},
],
},
},
],
"outputLanguageCode": "A String", # Optional. The target language of the generated summary. The language code for conversation will be used if this field is empty. Supported 2.0 and later versions.
"summarizationSections": [ # Optional. List of sections. Note it contains both predefined section sand customer defined sections.
{ # Represents the section of summarization.
"definition": "A String", # Optional. Definition of the section, for example, "what the customer needs help with or has question about."
"key": "A String", # Optional. Name of the section, for example, "situation".
"type": "A String", # Optional. Type of the summarization section.
},
],
"version": "A String", # Optional. Version of the feature. If not set, default to latest version. Current candidates are ["1.0"].
},
"tools": [ # Optional. Resource names of the tools that the generator can choose from. Format: `projects//locations//tools/`.
"A String",
],
"triggerEvent": "A String", # Optional. The trigger event of the generator. It defines when the generator is triggered in a conversation.
"updateTime": "A String", # Output only. Update time of this generator.
}</pre>
</div>
</body></html>
|