File: documentai_v1beta3.projects.locations.processors.processorVersions.evaluations.html

package info (click to toggle)
python-googleapi 2.180.0-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 527,124 kB
  • sloc: python: 11,076; javascript: 249; sh: 114; makefile: 59
file content (348 lines) | stat: -rw-r--r-- 21,526 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
<html><body>
<style>

body, h1, h2, h3, div, span, p, pre, a {
  margin: 0;
  padding: 0;
  border: 0;
  font-weight: inherit;
  font-style: inherit;
  font-size: 100%;
  font-family: inherit;
  vertical-align: baseline;
}

body {
  font-size: 13px;
  padding: 1em;
}

h1 {
  font-size: 26px;
  margin-bottom: 1em;
}

h2 {
  font-size: 24px;
  margin-bottom: 1em;
}

h3 {
  font-size: 20px;
  margin-bottom: 1em;
  margin-top: 1em;
}

pre, code {
  line-height: 1.5;
  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}

pre {
  margin-top: 0.5em;
}

h1, h2, h3, p {
  font-family: Arial, sans serif;
}

h1, h2, h3 {
  border-bottom: solid #CCC 1px;
}

.toc_element {
  margin-top: 0.5em;
}

.firstline {
  margin-left: 2 em;
}

.method  {
  margin-top: 1em;
  border: solid 1px #CCC;
  padding: 1em;
  background: #EEE;
}

.details {
  font-weight: bold;
  font-size: 14px;
}

</style>

<h1><a href="documentai_v1beta3.html">Cloud Document AI API</a> . <a href="documentai_v1beta3.projects.html">projects</a> . <a href="documentai_v1beta3.projects.locations.html">locations</a> . <a href="documentai_v1beta3.projects.locations.processors.html">processors</a> . <a href="documentai_v1beta3.projects.locations.processors.processorVersions.html">processorVersions</a> . <a href="documentai_v1beta3.projects.locations.processors.processorVersions.evaluations.html">evaluations</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
  <code><a href="#close">close()</a></code></p>
<p class="firstline">Close httplib2 connections.</p>
<p class="toc_element">
  <code><a href="#get">get(name, x__xgafv=None)</a></code></p>
<p class="firstline">Retrieves a specific evaluation.</p>
<p class="toc_element">
  <code><a href="#list">list(parent, pageSize=None, pageToken=None, x__xgafv=None)</a></code></p>
<p class="firstline">Retrieves a set of evaluations for a given processor version.</p>
<p class="toc_element">
  <code><a href="#list_next">list_next()</a></code></p>
<p class="firstline">Retrieves the next page of results.</p>
<h3>Method Details</h3>
<div class="method">
    <code class="details" id="close">close()</code>
  <pre>Close httplib2 connections.</pre>
</div>

<div class="method">
    <code class="details" id="get">get(name, x__xgafv=None)</code>
  <pre>Retrieves a specific evaluation.

Args:
  name: string, Required. The resource name of the Evaluation to get. `projects/{project}/locations/{location}/processors/{processor}/processorVersions/{processorVersion}/evaluations/{evaluation}` (required)
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # An evaluation of a ProcessorVersion&#x27;s performance.
  &quot;allEntitiesMetrics&quot;: { # Metrics across multiple confidence levels. # Metrics for all the entities in aggregate.
    &quot;auprc&quot;: 3.14, # The calculated area under the precision recall curve (AUPRC), computed by integrating over all confidence thresholds.
    &quot;auprcExact&quot;: 3.14, # The AUPRC for metrics with fuzzy matching disabled, i.e., exact matching only.
    &quot;confidenceLevelMetrics&quot;: [ # Metrics across confidence levels with fuzzy matching enabled.
      { # Evaluations metrics, at a specific confidence level.
        &quot;confidenceLevel&quot;: 3.14, # The confidence level.
        &quot;metrics&quot;: { # Evaluation metrics, either in aggregate or about a specific entity. # The metrics at the specific confidence level.
          &quot;f1Score&quot;: 3.14, # The calculated f1 score.
          &quot;falseNegativesCount&quot;: 42, # The amount of false negatives.
          &quot;falsePositivesCount&quot;: 42, # The amount of false positives.
          &quot;groundTruthDocumentCount&quot;: 42, # The amount of documents with a ground truth occurrence.
          &quot;groundTruthOccurrencesCount&quot;: 42, # The amount of occurrences in ground truth documents.
          &quot;precision&quot;: 3.14, # The calculated precision.
          &quot;predictedDocumentCount&quot;: 42, # The amount of documents with a predicted occurrence.
          &quot;predictedOccurrencesCount&quot;: 42, # The amount of occurrences in predicted documents.
          &quot;recall&quot;: 3.14, # The calculated recall.
          &quot;totalDocumentsCount&quot;: 42, # The amount of documents that had an occurrence of this label.
          &quot;truePositivesCount&quot;: 42, # The amount of true positives.
        },
      },
    ],
    &quot;confidenceLevelMetricsExact&quot;: [ # Metrics across confidence levels with only exact matching.
      { # Evaluations metrics, at a specific confidence level.
        &quot;confidenceLevel&quot;: 3.14, # The confidence level.
        &quot;metrics&quot;: { # Evaluation metrics, either in aggregate or about a specific entity. # The metrics at the specific confidence level.
          &quot;f1Score&quot;: 3.14, # The calculated f1 score.
          &quot;falseNegativesCount&quot;: 42, # The amount of false negatives.
          &quot;falsePositivesCount&quot;: 42, # The amount of false positives.
          &quot;groundTruthDocumentCount&quot;: 42, # The amount of documents with a ground truth occurrence.
          &quot;groundTruthOccurrencesCount&quot;: 42, # The amount of occurrences in ground truth documents.
          &quot;precision&quot;: 3.14, # The calculated precision.
          &quot;predictedDocumentCount&quot;: 42, # The amount of documents with a predicted occurrence.
          &quot;predictedOccurrencesCount&quot;: 42, # The amount of occurrences in predicted documents.
          &quot;recall&quot;: 3.14, # The calculated recall.
          &quot;totalDocumentsCount&quot;: 42, # The amount of documents that had an occurrence of this label.
          &quot;truePositivesCount&quot;: 42, # The amount of true positives.
        },
      },
    ],
    &quot;estimatedCalibrationError&quot;: 3.14, # The Estimated Calibration Error (ECE) of the confidence of the predicted entities.
    &quot;estimatedCalibrationErrorExact&quot;: 3.14, # The ECE for the predicted entities with fuzzy matching disabled, i.e., exact matching only.
    &quot;metricsType&quot;: &quot;A String&quot;, # The metrics type for the label.
  },
  &quot;createTime&quot;: &quot;A String&quot;, # The time that the evaluation was created.
  &quot;documentCounters&quot;: { # Evaluation counters for the documents that were used. # Counters for the documents used in the evaluation.
    &quot;evaluatedDocumentsCount&quot;: 42, # How many documents were used in the evaluation.
    &quot;failedDocumentsCount&quot;: 42, # How many documents were not included in the evaluation as Document AI failed to process them.
    &quot;inputDocumentsCount&quot;: 42, # How many documents were sent for evaluation.
    &quot;invalidDocumentsCount&quot;: 42, # How many documents were not included in the evaluation as they didn&#x27;t pass validation.
  },
  &quot;entityMetrics&quot;: { # Metrics across confidence levels, for different entities.
    &quot;a_key&quot;: { # Metrics across multiple confidence levels.
      &quot;auprc&quot;: 3.14, # The calculated area under the precision recall curve (AUPRC), computed by integrating over all confidence thresholds.
      &quot;auprcExact&quot;: 3.14, # The AUPRC for metrics with fuzzy matching disabled, i.e., exact matching only.
      &quot;confidenceLevelMetrics&quot;: [ # Metrics across confidence levels with fuzzy matching enabled.
        { # Evaluations metrics, at a specific confidence level.
          &quot;confidenceLevel&quot;: 3.14, # The confidence level.
          &quot;metrics&quot;: { # Evaluation metrics, either in aggregate or about a specific entity. # The metrics at the specific confidence level.
            &quot;f1Score&quot;: 3.14, # The calculated f1 score.
            &quot;falseNegativesCount&quot;: 42, # The amount of false negatives.
            &quot;falsePositivesCount&quot;: 42, # The amount of false positives.
            &quot;groundTruthDocumentCount&quot;: 42, # The amount of documents with a ground truth occurrence.
            &quot;groundTruthOccurrencesCount&quot;: 42, # The amount of occurrences in ground truth documents.
            &quot;precision&quot;: 3.14, # The calculated precision.
            &quot;predictedDocumentCount&quot;: 42, # The amount of documents with a predicted occurrence.
            &quot;predictedOccurrencesCount&quot;: 42, # The amount of occurrences in predicted documents.
            &quot;recall&quot;: 3.14, # The calculated recall.
            &quot;totalDocumentsCount&quot;: 42, # The amount of documents that had an occurrence of this label.
            &quot;truePositivesCount&quot;: 42, # The amount of true positives.
          },
        },
      ],
      &quot;confidenceLevelMetricsExact&quot;: [ # Metrics across confidence levels with only exact matching.
        { # Evaluations metrics, at a specific confidence level.
          &quot;confidenceLevel&quot;: 3.14, # The confidence level.
          &quot;metrics&quot;: { # Evaluation metrics, either in aggregate or about a specific entity. # The metrics at the specific confidence level.
            &quot;f1Score&quot;: 3.14, # The calculated f1 score.
            &quot;falseNegativesCount&quot;: 42, # The amount of false negatives.
            &quot;falsePositivesCount&quot;: 42, # The amount of false positives.
            &quot;groundTruthDocumentCount&quot;: 42, # The amount of documents with a ground truth occurrence.
            &quot;groundTruthOccurrencesCount&quot;: 42, # The amount of occurrences in ground truth documents.
            &quot;precision&quot;: 3.14, # The calculated precision.
            &quot;predictedDocumentCount&quot;: 42, # The amount of documents with a predicted occurrence.
            &quot;predictedOccurrencesCount&quot;: 42, # The amount of occurrences in predicted documents.
            &quot;recall&quot;: 3.14, # The calculated recall.
            &quot;totalDocumentsCount&quot;: 42, # The amount of documents that had an occurrence of this label.
            &quot;truePositivesCount&quot;: 42, # The amount of true positives.
          },
        },
      ],
      &quot;estimatedCalibrationError&quot;: 3.14, # The Estimated Calibration Error (ECE) of the confidence of the predicted entities.
      &quot;estimatedCalibrationErrorExact&quot;: 3.14, # The ECE for the predicted entities with fuzzy matching disabled, i.e., exact matching only.
      &quot;metricsType&quot;: &quot;A String&quot;, # The metrics type for the label.
    },
  },
  &quot;kmsKeyName&quot;: &quot;A String&quot;, # The KMS key name used for encryption.
  &quot;kmsKeyVersionName&quot;: &quot;A String&quot;, # The KMS key version with which data is encrypted.
  &quot;name&quot;: &quot;A String&quot;, # The resource name of the evaluation. Format: `projects/{project}/locations/{location}/processors/{processor}/processorVersions/{processor_version}/evaluations/{evaluation}`
}</pre>
</div>

<div class="method">
    <code class="details" id="list">list(parent, pageSize=None, pageToken=None, x__xgafv=None)</code>
  <pre>Retrieves a set of evaluations for a given processor version.

Args:
  parent: string, Required. The resource name of the ProcessorVersion to list evaluations for. `projects/{project}/locations/{location}/processors/{processor}/processorVersions/{processorVersion}` (required)
  pageSize: integer, The standard list page size. If unspecified, at most `5` evaluations are returned. The maximum value is `100`. Values above `100` are coerced to `100`.
  pageToken: string, A page token, received from a previous `ListEvaluations` call. Provide this to retrieve the subsequent page.
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # The response from `ListEvaluations`.
  &quot;evaluations&quot;: [ # The evaluations requested.
    { # An evaluation of a ProcessorVersion&#x27;s performance.
      &quot;allEntitiesMetrics&quot;: { # Metrics across multiple confidence levels. # Metrics for all the entities in aggregate.
        &quot;auprc&quot;: 3.14, # The calculated area under the precision recall curve (AUPRC), computed by integrating over all confidence thresholds.
        &quot;auprcExact&quot;: 3.14, # The AUPRC for metrics with fuzzy matching disabled, i.e., exact matching only.
        &quot;confidenceLevelMetrics&quot;: [ # Metrics across confidence levels with fuzzy matching enabled.
          { # Evaluations metrics, at a specific confidence level.
            &quot;confidenceLevel&quot;: 3.14, # The confidence level.
            &quot;metrics&quot;: { # Evaluation metrics, either in aggregate or about a specific entity. # The metrics at the specific confidence level.
              &quot;f1Score&quot;: 3.14, # The calculated f1 score.
              &quot;falseNegativesCount&quot;: 42, # The amount of false negatives.
              &quot;falsePositivesCount&quot;: 42, # The amount of false positives.
              &quot;groundTruthDocumentCount&quot;: 42, # The amount of documents with a ground truth occurrence.
              &quot;groundTruthOccurrencesCount&quot;: 42, # The amount of occurrences in ground truth documents.
              &quot;precision&quot;: 3.14, # The calculated precision.
              &quot;predictedDocumentCount&quot;: 42, # The amount of documents with a predicted occurrence.
              &quot;predictedOccurrencesCount&quot;: 42, # The amount of occurrences in predicted documents.
              &quot;recall&quot;: 3.14, # The calculated recall.
              &quot;totalDocumentsCount&quot;: 42, # The amount of documents that had an occurrence of this label.
              &quot;truePositivesCount&quot;: 42, # The amount of true positives.
            },
          },
        ],
        &quot;confidenceLevelMetricsExact&quot;: [ # Metrics across confidence levels with only exact matching.
          { # Evaluations metrics, at a specific confidence level.
            &quot;confidenceLevel&quot;: 3.14, # The confidence level.
            &quot;metrics&quot;: { # Evaluation metrics, either in aggregate or about a specific entity. # The metrics at the specific confidence level.
              &quot;f1Score&quot;: 3.14, # The calculated f1 score.
              &quot;falseNegativesCount&quot;: 42, # The amount of false negatives.
              &quot;falsePositivesCount&quot;: 42, # The amount of false positives.
              &quot;groundTruthDocumentCount&quot;: 42, # The amount of documents with a ground truth occurrence.
              &quot;groundTruthOccurrencesCount&quot;: 42, # The amount of occurrences in ground truth documents.
              &quot;precision&quot;: 3.14, # The calculated precision.
              &quot;predictedDocumentCount&quot;: 42, # The amount of documents with a predicted occurrence.
              &quot;predictedOccurrencesCount&quot;: 42, # The amount of occurrences in predicted documents.
              &quot;recall&quot;: 3.14, # The calculated recall.
              &quot;totalDocumentsCount&quot;: 42, # The amount of documents that had an occurrence of this label.
              &quot;truePositivesCount&quot;: 42, # The amount of true positives.
            },
          },
        ],
        &quot;estimatedCalibrationError&quot;: 3.14, # The Estimated Calibration Error (ECE) of the confidence of the predicted entities.
        &quot;estimatedCalibrationErrorExact&quot;: 3.14, # The ECE for the predicted entities with fuzzy matching disabled, i.e., exact matching only.
        &quot;metricsType&quot;: &quot;A String&quot;, # The metrics type for the label.
      },
      &quot;createTime&quot;: &quot;A String&quot;, # The time that the evaluation was created.
      &quot;documentCounters&quot;: { # Evaluation counters for the documents that were used. # Counters for the documents used in the evaluation.
        &quot;evaluatedDocumentsCount&quot;: 42, # How many documents were used in the evaluation.
        &quot;failedDocumentsCount&quot;: 42, # How many documents were not included in the evaluation as Document AI failed to process them.
        &quot;inputDocumentsCount&quot;: 42, # How many documents were sent for evaluation.
        &quot;invalidDocumentsCount&quot;: 42, # How many documents were not included in the evaluation as they didn&#x27;t pass validation.
      },
      &quot;entityMetrics&quot;: { # Metrics across confidence levels, for different entities.
        &quot;a_key&quot;: { # Metrics across multiple confidence levels.
          &quot;auprc&quot;: 3.14, # The calculated area under the precision recall curve (AUPRC), computed by integrating over all confidence thresholds.
          &quot;auprcExact&quot;: 3.14, # The AUPRC for metrics with fuzzy matching disabled, i.e., exact matching only.
          &quot;confidenceLevelMetrics&quot;: [ # Metrics across confidence levels with fuzzy matching enabled.
            { # Evaluations metrics, at a specific confidence level.
              &quot;confidenceLevel&quot;: 3.14, # The confidence level.
              &quot;metrics&quot;: { # Evaluation metrics, either in aggregate or about a specific entity. # The metrics at the specific confidence level.
                &quot;f1Score&quot;: 3.14, # The calculated f1 score.
                &quot;falseNegativesCount&quot;: 42, # The amount of false negatives.
                &quot;falsePositivesCount&quot;: 42, # The amount of false positives.
                &quot;groundTruthDocumentCount&quot;: 42, # The amount of documents with a ground truth occurrence.
                &quot;groundTruthOccurrencesCount&quot;: 42, # The amount of occurrences in ground truth documents.
                &quot;precision&quot;: 3.14, # The calculated precision.
                &quot;predictedDocumentCount&quot;: 42, # The amount of documents with a predicted occurrence.
                &quot;predictedOccurrencesCount&quot;: 42, # The amount of occurrences in predicted documents.
                &quot;recall&quot;: 3.14, # The calculated recall.
                &quot;totalDocumentsCount&quot;: 42, # The amount of documents that had an occurrence of this label.
                &quot;truePositivesCount&quot;: 42, # The amount of true positives.
              },
            },
          ],
          &quot;confidenceLevelMetricsExact&quot;: [ # Metrics across confidence levels with only exact matching.
            { # Evaluations metrics, at a specific confidence level.
              &quot;confidenceLevel&quot;: 3.14, # The confidence level.
              &quot;metrics&quot;: { # Evaluation metrics, either in aggregate or about a specific entity. # The metrics at the specific confidence level.
                &quot;f1Score&quot;: 3.14, # The calculated f1 score.
                &quot;falseNegativesCount&quot;: 42, # The amount of false negatives.
                &quot;falsePositivesCount&quot;: 42, # The amount of false positives.
                &quot;groundTruthDocumentCount&quot;: 42, # The amount of documents with a ground truth occurrence.
                &quot;groundTruthOccurrencesCount&quot;: 42, # The amount of occurrences in ground truth documents.
                &quot;precision&quot;: 3.14, # The calculated precision.
                &quot;predictedDocumentCount&quot;: 42, # The amount of documents with a predicted occurrence.
                &quot;predictedOccurrencesCount&quot;: 42, # The amount of occurrences in predicted documents.
                &quot;recall&quot;: 3.14, # The calculated recall.
                &quot;totalDocumentsCount&quot;: 42, # The amount of documents that had an occurrence of this label.
                &quot;truePositivesCount&quot;: 42, # The amount of true positives.
              },
            },
          ],
          &quot;estimatedCalibrationError&quot;: 3.14, # The Estimated Calibration Error (ECE) of the confidence of the predicted entities.
          &quot;estimatedCalibrationErrorExact&quot;: 3.14, # The ECE for the predicted entities with fuzzy matching disabled, i.e., exact matching only.
          &quot;metricsType&quot;: &quot;A String&quot;, # The metrics type for the label.
        },
      },
      &quot;kmsKeyName&quot;: &quot;A String&quot;, # The KMS key name used for encryption.
      &quot;kmsKeyVersionName&quot;: &quot;A String&quot;, # The KMS key version with which data is encrypted.
      &quot;name&quot;: &quot;A String&quot;, # The resource name of the evaluation. Format: `projects/{project}/locations/{location}/processors/{processor}/processorVersions/{processor_version}/evaluations/{evaluation}`
    },
  ],
  &quot;nextPageToken&quot;: &quot;A String&quot;, # A token, which can be sent as `page_token` to retrieve the next page. If this field is omitted, there are no subsequent pages.
}</pre>
</div>

<div class="method">
    <code class="details" id="list_next">list_next()</code>
  <pre>Retrieves the next page of results.

        Args:
          previous_request: The request for the previous page. (required)
          previous_response: The response from the request for the previous page. (required)

        Returns:
          A request object that you can call &#x27;execute()&#x27; on to request the next
          page. Returns None if there are no more items in the collection.
        </pre>
</div>

</body></html>