1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
|
<html><body>
<style>
body, h1, h2, h3, div, span, p, pre, a {
margin: 0;
padding: 0;
border: 0;
font-weight: inherit;
font-style: inherit;
font-size: 100%;
font-family: inherit;
vertical-align: baseline;
}
body {
font-size: 13px;
padding: 1em;
}
h1 {
font-size: 26px;
margin-bottom: 1em;
}
h2 {
font-size: 24px;
margin-bottom: 1em;
}
h3 {
font-size: 20px;
margin-bottom: 1em;
margin-top: 1em;
}
pre, code {
line-height: 1.5;
font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}
pre {
margin-top: 0.5em;
}
h1, h2, h3, p {
font-family: Arial, sans serif;
}
h1, h2, h3 {
border-bottom: solid #CCC 1px;
}
.toc_element {
margin-top: 0.5em;
}
.firstline {
margin-left: 2 em;
}
.method {
margin-top: 1em;
border: solid 1px #CCC;
padding: 1em;
background: #EEE;
}
.details {
font-weight: bold;
font-size: 14px;
}
</style>
<h1><a href="aiplatform_v1.html">Vertex AI API</a> . <a href="aiplatform_v1.projects.html">projects</a> . <a href="aiplatform_v1.projects.locations.html">locations</a> . <a href="aiplatform_v1.projects.locations.cachedContents.html">cachedContents</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
<code><a href="#close">close()</a></code></p>
<p class="firstline">Close httplib2 connections.</p>
<p class="toc_element">
<code><a href="#create">create(parent, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Creates cached content, this call will initialize the cached content in the data storage, and users need to pay for the cache data storage.</p>
<p class="toc_element">
<code><a href="#delete">delete(name, x__xgafv=None)</a></code></p>
<p class="firstline">Deletes cached content</p>
<p class="toc_element">
<code><a href="#get">get(name, x__xgafv=None)</a></code></p>
<p class="firstline">Gets cached content configurations</p>
<p class="toc_element">
<code><a href="#list">list(parent, pageSize=None, pageToken=None, x__xgafv=None)</a></code></p>
<p class="firstline">Lists cached contents in a project</p>
<p class="toc_element">
<code><a href="#list_next">list_next()</a></code></p>
<p class="firstline">Retrieves the next page of results.</p>
<p class="toc_element">
<code><a href="#patch">patch(name, body=None, updateMask=None, x__xgafv=None)</a></code></p>
<p class="firstline">Updates cached content configurations</p>
<h3>Method Details</h3>
<div class="method">
<code class="details" id="close">close()</code>
<pre>Close httplib2 connections.</pre>
</div>
<div class="method">
<code class="details" id="create">create(parent, body=None, x__xgafv=None)</code>
<pre>Creates cached content, this call will initialize the cached content in the data storage, and users need to pay for the cache data storage.
Args:
parent: string, Required. The parent resource where the cached content will be created (required)
body: object, The request body.
The object takes the form of:
{ # A resource used in LLM queries for users to explicitly specify what to cache and how to cache.
"contents": [ # Optional. Input only. Immutable. The content to cache
{ # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
"parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
{ # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
"codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
"outcome": "A String", # Required. Outcome of the code execution.
"output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
},
"executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
"code": "A String", # Required. The code to be executed.
"language": "A String", # Required. Programming language of the `code`.
},
"fileData": { # URI based data. # Optional. URI based data.
"displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"fileUri": "A String", # Required. URI.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
"args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
"a_key": "", # Properties of the object.
},
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
},
"functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
"response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
"a_key": "", # Properties of the object.
},
},
"inlineData": { # Content blob. # Optional. Inlined bytes data.
"data": "A String", # Required. Raw bytes.
"displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"text": "A String", # Optional. Text part (can be code).
"thought": True or False, # Optional. Indicates if the part is thought from the model.
"thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
"videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
"endOffset": "A String", # Optional. The end offset of the video.
"fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
"startOffset": "A String", # Optional. The start offset of the video.
},
},
],
"role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
},
],
"createTime": "A String", # Output only. Creation time of the cache entry.
"displayName": "A String", # Optional. Immutable. The user-generated meaningful display name of the cached content.
"encryptionSpec": { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Input only. Immutable. Customer-managed encryption key spec for a `CachedContent`. If set, this `CachedContent` and all its sub-resources will be secured by this key.
"kmsKeyName": "A String", # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
},
"expireTime": "A String", # Timestamp of when this resource is considered expired. This is *always* provided on output, regardless of what was sent on input.
"model": "A String", # Immutable. The name of the `Model` to use for cached content. Currently, only the published Gemini base models are supported, in form of projects/{PROJECT}/locations/{LOCATION}/publishers/google/models/{MODEL}
"name": "A String", # Immutable. Identifier. The server-generated resource name of the cached content Format: projects/{project}/locations/{location}/cachedContents/{cached_content}
"systemInstruction": { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Optional. Input only. Immutable. Developer set system instruction. Currently, text only
"parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
{ # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
"codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
"outcome": "A String", # Required. Outcome of the code execution.
"output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
},
"executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
"code": "A String", # Required. The code to be executed.
"language": "A String", # Required. Programming language of the `code`.
},
"fileData": { # URI based data. # Optional. URI based data.
"displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"fileUri": "A String", # Required. URI.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
"args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
"a_key": "", # Properties of the object.
},
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
},
"functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
"response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
"a_key": "", # Properties of the object.
},
},
"inlineData": { # Content blob. # Optional. Inlined bytes data.
"data": "A String", # Required. Raw bytes.
"displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"text": "A String", # Optional. Text part (can be code).
"thought": True or False, # Optional. Indicates if the part is thought from the model.
"thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
"videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
"endOffset": "A String", # Optional. The end offset of the video.
"fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
"startOffset": "A String", # Optional. The start offset of the video.
},
},
],
"role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
},
"toolConfig": { # Tool config. This config is shared for all tools provided in the request. # Optional. Input only. Immutable. Tool config. This config is shared for all tools
"functionCallingConfig": { # Function calling config. # Optional. Function calling config.
"allowedFunctionNames": [ # Optional. Function names to call. Only set when the Mode is ANY. Function names should match [FunctionDeclaration.name]. With mode set to ANY, model will predict a function call from the set of function names provided.
"A String",
],
"mode": "A String", # Optional. Function calling mode.
},
"retrievalConfig": { # Retrieval config. # Optional. Retrieval config.
"languageCode": "A String", # The language code of the user.
"latLng": { # An object that represents a latitude/longitude pair. This is expressed as a pair of doubles to represent degrees latitude and degrees longitude. Unless specified otherwise, this object must conform to the WGS84 standard. Values must be within normalized ranges. # The location of the user.
"latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
"longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
},
},
},
"tools": [ # Optional. Input only. Immutable. A list of `Tools` the model may use to generate the next response
{ # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
"codeExecution": { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
},
"enterpriseWebSearch": { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
"excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
"A String",
],
},
"functionDeclarations": [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
{ # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
"description": "A String", # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
"name": "A String", # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
"parameters": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
"additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
"anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
# Object with schema name: GoogleCloudAiplatformV1Schema
],
"default": "", # Optional. Default value of the data.
"defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"description": "A String", # Optional. The description of the data.
"enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
"A String",
],
"example": "", # Optional. Example of the object. Will only populated when the object is the root.
"format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
"items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
"maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
"maxLength": "A String", # Optional. Maximum length of the Type.STRING
"maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
"maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
"minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
"minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
"minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
"minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
"nullable": True or False, # Optional. Indicates if the value may be null.
"pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
"properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
"A String",
],
"ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
"required": [ # Optional. Required properties of Type.OBJECT.
"A String",
],
"title": "A String", # Optional. The title of the Schema.
"type": "A String", # Optional. The type of the data.
},
"parametersJsonSchema": "", # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { "type": "object", "properties": { "name": { "type": "string" }, "age": { "type": "integer" } }, "additionalProperties": false, "required": ["name", "age"], "propertyOrdering": ["name", "age"] } ``` This field is mutually exclusive with `parameters`.
"response": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
"additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
"anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
# Object with schema name: GoogleCloudAiplatformV1Schema
],
"default": "", # Optional. Default value of the data.
"defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"description": "A String", # Optional. The description of the data.
"enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
"A String",
],
"example": "", # Optional. Example of the object. Will only populated when the object is the root.
"format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
"items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
"maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
"maxLength": "A String", # Optional. Maximum length of the Type.STRING
"maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
"maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
"minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
"minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
"minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
"minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
"nullable": True or False, # Optional. Indicates if the value may be null.
"pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
"properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
"A String",
],
"ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
"required": [ # Optional. Required properties of Type.OBJECT.
"A String",
],
"title": "A String", # Optional. The title of the Schema.
"type": "A String", # Optional. The type of the data.
},
"responseJsonSchema": "", # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
},
],
"googleMaps": { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
},
"googleSearch": { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
"excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: ["amazon.com", "facebook.com"].
"A String",
],
},
"googleSearchRetrieval": { # Tool to retrieve public web data for grounding, powered by Google. # Optional. GoogleSearchRetrieval tool type. Specialized retrieval tool that is powered by Google search.
"dynamicRetrievalConfig": { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
"dynamicThreshold": 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
"mode": "A String", # The mode of the predictor to be used in dynamic retrieval.
},
},
"retrieval": { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
"disableAttribution": True or False, # Optional. Deprecated. This option is no longer supported.
"externalApi": { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
"apiAuth": { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
"apiKeyConfig": { # The API secret. # The API secret.
"apiKeySecretVersion": "A String", # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
"apiKeyString": "A String", # The API key string. Either this or `api_key_secret_version` must be set.
},
},
"apiSpec": "A String", # The API spec that the external API implements.
"authConfig": { # Auth configuration to run the extension. # The authentication config to access the API.
"apiKeyConfig": { # Config for authentication with API key. # Config for API key auth.
"apiKeySecret": "A String", # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
"apiKeyString": "A String", # Optional. The API key to be used in the request directly.
"httpElementLocation": "A String", # Optional. The location of the API key.
"name": "A String", # Optional. The parameter name of the API key. E.g. If the API request is "https://example.com/act?api_key=", "api_key" would be the parameter name.
},
"authType": "A String", # Type of auth scheme.
"googleServiceAccountConfig": { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
"serviceAccount": "A String", # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
},
"httpBasicAuthConfig": { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
"credentialSecret": "A String", # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
},
"oauthConfig": { # Config for user oauth. # Config for user oauth.
"accessToken": "A String", # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
"serviceAccount": "A String", # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
},
"oidcConfig": { # Config for user OIDC auth. # Config for user OIDC auth.
"idToken": "A String", # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
"serviceAccount": "A String", # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
},
},
"elasticSearchParams": { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
"index": "A String", # The ElasticSearch index to use.
"numHits": 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
"searchTemplate": "A String", # The ElasticSearch search template to use.
},
"endpoint": "A String", # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
"simpleSearchParams": { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
},
},
"vertexAiSearch": { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
"dataStoreSpecs": [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
{ # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
"dataStore": "A String", # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
"filter": "A String", # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
},
],
"datastore": "A String", # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
"engine": "A String", # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
"filter": "A String", # Optional. Filter strings to be passed to the search API.
"maxResults": 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
},
"vertexRagStore": { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
"ragResources": [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
{ # The definition of the Rag resource.
"ragCorpus": "A String", # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
"ragFileIds": [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
"A String",
],
},
],
"ragRetrievalConfig": { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
"filter": { # Config for filters. # Optional. Config for filters.
"metadataFilter": "A String", # Optional. String for metadata filtering.
"vectorDistanceThreshold": 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
"vectorSimilarityThreshold": 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
},
"ranking": { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
"llmRanker": { # Config for LlmRanker. # Optional. Config for LlmRanker.
"modelName": "A String", # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
},
"rankService": { # Config for Rank Service. # Optional. Config for Rank Service.
"modelName": "A String", # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
},
},
"topK": 42, # Optional. The number of contexts to retrieve.
},
"similarityTopK": 42, # Optional. Number of top k results to return from the selected corpora.
"vectorDistanceThreshold": 3.14, # Optional. Only return results with vector distance smaller than the threshold.
},
},
"urlContext": { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
},
},
],
"ttl": "A String", # Input only. The TTL for this resource. The expiration time is computed: now + TTL.
"updateTime": "A String", # Output only. When the cache entry was last updated in UTC time.
"usageMetadata": { # Metadata on the usage of the cached content. # Output only. Metadata on the usage of the cached content.
"audioDurationSeconds": 42, # Duration of audio in seconds.
"imageCount": 42, # Number of images.
"textCount": 42, # Number of text characters.
"totalTokenCount": 42, # Total number of tokens that the cached content consumes.
"videoDurationSeconds": 42, # Duration of video in seconds.
},
}
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # A resource used in LLM queries for users to explicitly specify what to cache and how to cache.
"contents": [ # Optional. Input only. Immutable. The content to cache
{ # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
"parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
{ # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
"codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
"outcome": "A String", # Required. Outcome of the code execution.
"output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
},
"executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
"code": "A String", # Required. The code to be executed.
"language": "A String", # Required. Programming language of the `code`.
},
"fileData": { # URI based data. # Optional. URI based data.
"displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"fileUri": "A String", # Required. URI.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
"args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
"a_key": "", # Properties of the object.
},
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
},
"functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
"response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
"a_key": "", # Properties of the object.
},
},
"inlineData": { # Content blob. # Optional. Inlined bytes data.
"data": "A String", # Required. Raw bytes.
"displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"text": "A String", # Optional. Text part (can be code).
"thought": True or False, # Optional. Indicates if the part is thought from the model.
"thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
"videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
"endOffset": "A String", # Optional. The end offset of the video.
"fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
"startOffset": "A String", # Optional. The start offset of the video.
},
},
],
"role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
},
],
"createTime": "A String", # Output only. Creation time of the cache entry.
"displayName": "A String", # Optional. Immutable. The user-generated meaningful display name of the cached content.
"encryptionSpec": { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Input only. Immutable. Customer-managed encryption key spec for a `CachedContent`. If set, this `CachedContent` and all its sub-resources will be secured by this key.
"kmsKeyName": "A String", # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
},
"expireTime": "A String", # Timestamp of when this resource is considered expired. This is *always* provided on output, regardless of what was sent on input.
"model": "A String", # Immutable. The name of the `Model` to use for cached content. Currently, only the published Gemini base models are supported, in form of projects/{PROJECT}/locations/{LOCATION}/publishers/google/models/{MODEL}
"name": "A String", # Immutable. Identifier. The server-generated resource name of the cached content Format: projects/{project}/locations/{location}/cachedContents/{cached_content}
"systemInstruction": { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Optional. Input only. Immutable. Developer set system instruction. Currently, text only
"parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
{ # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
"codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
"outcome": "A String", # Required. Outcome of the code execution.
"output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
},
"executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
"code": "A String", # Required. The code to be executed.
"language": "A String", # Required. Programming language of the `code`.
},
"fileData": { # URI based data. # Optional. URI based data.
"displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"fileUri": "A String", # Required. URI.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
"args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
"a_key": "", # Properties of the object.
},
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
},
"functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
"response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
"a_key": "", # Properties of the object.
},
},
"inlineData": { # Content blob. # Optional. Inlined bytes data.
"data": "A String", # Required. Raw bytes.
"displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"text": "A String", # Optional. Text part (can be code).
"thought": True or False, # Optional. Indicates if the part is thought from the model.
"thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
"videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
"endOffset": "A String", # Optional. The end offset of the video.
"fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
"startOffset": "A String", # Optional. The start offset of the video.
},
},
],
"role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
},
"toolConfig": { # Tool config. This config is shared for all tools provided in the request. # Optional. Input only. Immutable. Tool config. This config is shared for all tools
"functionCallingConfig": { # Function calling config. # Optional. Function calling config.
"allowedFunctionNames": [ # Optional. Function names to call. Only set when the Mode is ANY. Function names should match [FunctionDeclaration.name]. With mode set to ANY, model will predict a function call from the set of function names provided.
"A String",
],
"mode": "A String", # Optional. Function calling mode.
},
"retrievalConfig": { # Retrieval config. # Optional. Retrieval config.
"languageCode": "A String", # The language code of the user.
"latLng": { # An object that represents a latitude/longitude pair. This is expressed as a pair of doubles to represent degrees latitude and degrees longitude. Unless specified otherwise, this object must conform to the WGS84 standard. Values must be within normalized ranges. # The location of the user.
"latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
"longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
},
},
},
"tools": [ # Optional. Input only. Immutable. A list of `Tools` the model may use to generate the next response
{ # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
"codeExecution": { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
},
"enterpriseWebSearch": { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
"excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
"A String",
],
},
"functionDeclarations": [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
{ # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
"description": "A String", # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
"name": "A String", # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
"parameters": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
"additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
"anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
# Object with schema name: GoogleCloudAiplatformV1Schema
],
"default": "", # Optional. Default value of the data.
"defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"description": "A String", # Optional. The description of the data.
"enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
"A String",
],
"example": "", # Optional. Example of the object. Will only populated when the object is the root.
"format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
"items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
"maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
"maxLength": "A String", # Optional. Maximum length of the Type.STRING
"maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
"maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
"minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
"minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
"minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
"minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
"nullable": True or False, # Optional. Indicates if the value may be null.
"pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
"properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
"A String",
],
"ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
"required": [ # Optional. Required properties of Type.OBJECT.
"A String",
],
"title": "A String", # Optional. The title of the Schema.
"type": "A String", # Optional. The type of the data.
},
"parametersJsonSchema": "", # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { "type": "object", "properties": { "name": { "type": "string" }, "age": { "type": "integer" } }, "additionalProperties": false, "required": ["name", "age"], "propertyOrdering": ["name", "age"] } ``` This field is mutually exclusive with `parameters`.
"response": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
"additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
"anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
# Object with schema name: GoogleCloudAiplatformV1Schema
],
"default": "", # Optional. Default value of the data.
"defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"description": "A String", # Optional. The description of the data.
"enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
"A String",
],
"example": "", # Optional. Example of the object. Will only populated when the object is the root.
"format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
"items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
"maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
"maxLength": "A String", # Optional. Maximum length of the Type.STRING
"maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
"maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
"minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
"minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
"minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
"minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
"nullable": True or False, # Optional. Indicates if the value may be null.
"pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
"properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
"A String",
],
"ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
"required": [ # Optional. Required properties of Type.OBJECT.
"A String",
],
"title": "A String", # Optional. The title of the Schema.
"type": "A String", # Optional. The type of the data.
},
"responseJsonSchema": "", # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
},
],
"googleMaps": { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
},
"googleSearch": { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
"excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: ["amazon.com", "facebook.com"].
"A String",
],
},
"googleSearchRetrieval": { # Tool to retrieve public web data for grounding, powered by Google. # Optional. GoogleSearchRetrieval tool type. Specialized retrieval tool that is powered by Google search.
"dynamicRetrievalConfig": { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
"dynamicThreshold": 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
"mode": "A String", # The mode of the predictor to be used in dynamic retrieval.
},
},
"retrieval": { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
"disableAttribution": True or False, # Optional. Deprecated. This option is no longer supported.
"externalApi": { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
"apiAuth": { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
"apiKeyConfig": { # The API secret. # The API secret.
"apiKeySecretVersion": "A String", # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
"apiKeyString": "A String", # The API key string. Either this or `api_key_secret_version` must be set.
},
},
"apiSpec": "A String", # The API spec that the external API implements.
"authConfig": { # Auth configuration to run the extension. # The authentication config to access the API.
"apiKeyConfig": { # Config for authentication with API key. # Config for API key auth.
"apiKeySecret": "A String", # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
"apiKeyString": "A String", # Optional. The API key to be used in the request directly.
"httpElementLocation": "A String", # Optional. The location of the API key.
"name": "A String", # Optional. The parameter name of the API key. E.g. If the API request is "https://example.com/act?api_key=", "api_key" would be the parameter name.
},
"authType": "A String", # Type of auth scheme.
"googleServiceAccountConfig": { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
"serviceAccount": "A String", # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
},
"httpBasicAuthConfig": { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
"credentialSecret": "A String", # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
},
"oauthConfig": { # Config for user oauth. # Config for user oauth.
"accessToken": "A String", # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
"serviceAccount": "A String", # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
},
"oidcConfig": { # Config for user OIDC auth. # Config for user OIDC auth.
"idToken": "A String", # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
"serviceAccount": "A String", # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
},
},
"elasticSearchParams": { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
"index": "A String", # The ElasticSearch index to use.
"numHits": 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
"searchTemplate": "A String", # The ElasticSearch search template to use.
},
"endpoint": "A String", # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
"simpleSearchParams": { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
},
},
"vertexAiSearch": { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
"dataStoreSpecs": [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
{ # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
"dataStore": "A String", # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
"filter": "A String", # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
},
],
"datastore": "A String", # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
"engine": "A String", # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
"filter": "A String", # Optional. Filter strings to be passed to the search API.
"maxResults": 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
},
"vertexRagStore": { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
"ragResources": [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
{ # The definition of the Rag resource.
"ragCorpus": "A String", # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
"ragFileIds": [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
"A String",
],
},
],
"ragRetrievalConfig": { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
"filter": { # Config for filters. # Optional. Config for filters.
"metadataFilter": "A String", # Optional. String for metadata filtering.
"vectorDistanceThreshold": 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
"vectorSimilarityThreshold": 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
},
"ranking": { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
"llmRanker": { # Config for LlmRanker. # Optional. Config for LlmRanker.
"modelName": "A String", # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
},
"rankService": { # Config for Rank Service. # Optional. Config for Rank Service.
"modelName": "A String", # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
},
},
"topK": 42, # Optional. The number of contexts to retrieve.
},
"similarityTopK": 42, # Optional. Number of top k results to return from the selected corpora.
"vectorDistanceThreshold": 3.14, # Optional. Only return results with vector distance smaller than the threshold.
},
},
"urlContext": { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
},
},
],
"ttl": "A String", # Input only. The TTL for this resource. The expiration time is computed: now + TTL.
"updateTime": "A String", # Output only. When the cache entry was last updated in UTC time.
"usageMetadata": { # Metadata on the usage of the cached content. # Output only. Metadata on the usage of the cached content.
"audioDurationSeconds": 42, # Duration of audio in seconds.
"imageCount": 42, # Number of images.
"textCount": 42, # Number of text characters.
"totalTokenCount": 42, # Total number of tokens that the cached content consumes.
"videoDurationSeconds": 42, # Duration of video in seconds.
},
}</pre>
</div>
<div class="method">
<code class="details" id="delete">delete(name, x__xgafv=None)</code>
<pre>Deletes cached content
Args:
name: string, Required. The resource name referring to the cached content (required)
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); }
}</pre>
</div>
<div class="method">
<code class="details" id="get">get(name, x__xgafv=None)</code>
<pre>Gets cached content configurations
Args:
name: string, Required. The resource name referring to the cached content (required)
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # A resource used in LLM queries for users to explicitly specify what to cache and how to cache.
"contents": [ # Optional. Input only. Immutable. The content to cache
{ # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
"parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
{ # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
"codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
"outcome": "A String", # Required. Outcome of the code execution.
"output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
},
"executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
"code": "A String", # Required. The code to be executed.
"language": "A String", # Required. Programming language of the `code`.
},
"fileData": { # URI based data. # Optional. URI based data.
"displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"fileUri": "A String", # Required. URI.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
"args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
"a_key": "", # Properties of the object.
},
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
},
"functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
"response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
"a_key": "", # Properties of the object.
},
},
"inlineData": { # Content blob. # Optional. Inlined bytes data.
"data": "A String", # Required. Raw bytes.
"displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"text": "A String", # Optional. Text part (can be code).
"thought": True or False, # Optional. Indicates if the part is thought from the model.
"thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
"videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
"endOffset": "A String", # Optional. The end offset of the video.
"fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
"startOffset": "A String", # Optional. The start offset of the video.
},
},
],
"role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
},
],
"createTime": "A String", # Output only. Creation time of the cache entry.
"displayName": "A String", # Optional. Immutable. The user-generated meaningful display name of the cached content.
"encryptionSpec": { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Input only. Immutable. Customer-managed encryption key spec for a `CachedContent`. If set, this `CachedContent` and all its sub-resources will be secured by this key.
"kmsKeyName": "A String", # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
},
"expireTime": "A String", # Timestamp of when this resource is considered expired. This is *always* provided on output, regardless of what was sent on input.
"model": "A String", # Immutable. The name of the `Model` to use for cached content. Currently, only the published Gemini base models are supported, in form of projects/{PROJECT}/locations/{LOCATION}/publishers/google/models/{MODEL}
"name": "A String", # Immutable. Identifier. The server-generated resource name of the cached content Format: projects/{project}/locations/{location}/cachedContents/{cached_content}
"systemInstruction": { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Optional. Input only. Immutable. Developer set system instruction. Currently, text only
"parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
{ # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
"codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
"outcome": "A String", # Required. Outcome of the code execution.
"output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
},
"executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
"code": "A String", # Required. The code to be executed.
"language": "A String", # Required. Programming language of the `code`.
},
"fileData": { # URI based data. # Optional. URI based data.
"displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"fileUri": "A String", # Required. URI.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
"args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
"a_key": "", # Properties of the object.
},
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
},
"functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
"response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
"a_key": "", # Properties of the object.
},
},
"inlineData": { # Content blob. # Optional. Inlined bytes data.
"data": "A String", # Required. Raw bytes.
"displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"text": "A String", # Optional. Text part (can be code).
"thought": True or False, # Optional. Indicates if the part is thought from the model.
"thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
"videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
"endOffset": "A String", # Optional. The end offset of the video.
"fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
"startOffset": "A String", # Optional. The start offset of the video.
},
},
],
"role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
},
"toolConfig": { # Tool config. This config is shared for all tools provided in the request. # Optional. Input only. Immutable. Tool config. This config is shared for all tools
"functionCallingConfig": { # Function calling config. # Optional. Function calling config.
"allowedFunctionNames": [ # Optional. Function names to call. Only set when the Mode is ANY. Function names should match [FunctionDeclaration.name]. With mode set to ANY, model will predict a function call from the set of function names provided.
"A String",
],
"mode": "A String", # Optional. Function calling mode.
},
"retrievalConfig": { # Retrieval config. # Optional. Retrieval config.
"languageCode": "A String", # The language code of the user.
"latLng": { # An object that represents a latitude/longitude pair. This is expressed as a pair of doubles to represent degrees latitude and degrees longitude. Unless specified otherwise, this object must conform to the WGS84 standard. Values must be within normalized ranges. # The location of the user.
"latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
"longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
},
},
},
"tools": [ # Optional. Input only. Immutable. A list of `Tools` the model may use to generate the next response
{ # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
"codeExecution": { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
},
"enterpriseWebSearch": { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
"excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
"A String",
],
},
"functionDeclarations": [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
{ # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
"description": "A String", # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
"name": "A String", # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
"parameters": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
"additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
"anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
# Object with schema name: GoogleCloudAiplatformV1Schema
],
"default": "", # Optional. Default value of the data.
"defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"description": "A String", # Optional. The description of the data.
"enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
"A String",
],
"example": "", # Optional. Example of the object. Will only populated when the object is the root.
"format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
"items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
"maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
"maxLength": "A String", # Optional. Maximum length of the Type.STRING
"maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
"maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
"minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
"minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
"minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
"minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
"nullable": True or False, # Optional. Indicates if the value may be null.
"pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
"properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
"A String",
],
"ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
"required": [ # Optional. Required properties of Type.OBJECT.
"A String",
],
"title": "A String", # Optional. The title of the Schema.
"type": "A String", # Optional. The type of the data.
},
"parametersJsonSchema": "", # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { "type": "object", "properties": { "name": { "type": "string" }, "age": { "type": "integer" } }, "additionalProperties": false, "required": ["name", "age"], "propertyOrdering": ["name", "age"] } ``` This field is mutually exclusive with `parameters`.
"response": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
"additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
"anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
# Object with schema name: GoogleCloudAiplatformV1Schema
],
"default": "", # Optional. Default value of the data.
"defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"description": "A String", # Optional. The description of the data.
"enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
"A String",
],
"example": "", # Optional. Example of the object. Will only populated when the object is the root.
"format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
"items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
"maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
"maxLength": "A String", # Optional. Maximum length of the Type.STRING
"maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
"maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
"minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
"minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
"minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
"minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
"nullable": True or False, # Optional. Indicates if the value may be null.
"pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
"properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
"A String",
],
"ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
"required": [ # Optional. Required properties of Type.OBJECT.
"A String",
],
"title": "A String", # Optional. The title of the Schema.
"type": "A String", # Optional. The type of the data.
},
"responseJsonSchema": "", # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
},
],
"googleMaps": { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
},
"googleSearch": { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
"excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: ["amazon.com", "facebook.com"].
"A String",
],
},
"googleSearchRetrieval": { # Tool to retrieve public web data for grounding, powered by Google. # Optional. GoogleSearchRetrieval tool type. Specialized retrieval tool that is powered by Google search.
"dynamicRetrievalConfig": { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
"dynamicThreshold": 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
"mode": "A String", # The mode of the predictor to be used in dynamic retrieval.
},
},
"retrieval": { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
"disableAttribution": True or False, # Optional. Deprecated. This option is no longer supported.
"externalApi": { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
"apiAuth": { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
"apiKeyConfig": { # The API secret. # The API secret.
"apiKeySecretVersion": "A String", # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
"apiKeyString": "A String", # The API key string. Either this or `api_key_secret_version` must be set.
},
},
"apiSpec": "A String", # The API spec that the external API implements.
"authConfig": { # Auth configuration to run the extension. # The authentication config to access the API.
"apiKeyConfig": { # Config for authentication with API key. # Config for API key auth.
"apiKeySecret": "A String", # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
"apiKeyString": "A String", # Optional. The API key to be used in the request directly.
"httpElementLocation": "A String", # Optional. The location of the API key.
"name": "A String", # Optional. The parameter name of the API key. E.g. If the API request is "https://example.com/act?api_key=", "api_key" would be the parameter name.
},
"authType": "A String", # Type of auth scheme.
"googleServiceAccountConfig": { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
"serviceAccount": "A String", # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
},
"httpBasicAuthConfig": { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
"credentialSecret": "A String", # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
},
"oauthConfig": { # Config for user oauth. # Config for user oauth.
"accessToken": "A String", # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
"serviceAccount": "A String", # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
},
"oidcConfig": { # Config for user OIDC auth. # Config for user OIDC auth.
"idToken": "A String", # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
"serviceAccount": "A String", # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
},
},
"elasticSearchParams": { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
"index": "A String", # The ElasticSearch index to use.
"numHits": 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
"searchTemplate": "A String", # The ElasticSearch search template to use.
},
"endpoint": "A String", # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
"simpleSearchParams": { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
},
},
"vertexAiSearch": { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
"dataStoreSpecs": [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
{ # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
"dataStore": "A String", # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
"filter": "A String", # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
},
],
"datastore": "A String", # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
"engine": "A String", # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
"filter": "A String", # Optional. Filter strings to be passed to the search API.
"maxResults": 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
},
"vertexRagStore": { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
"ragResources": [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
{ # The definition of the Rag resource.
"ragCorpus": "A String", # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
"ragFileIds": [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
"A String",
],
},
],
"ragRetrievalConfig": { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
"filter": { # Config for filters. # Optional. Config for filters.
"metadataFilter": "A String", # Optional. String for metadata filtering.
"vectorDistanceThreshold": 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
"vectorSimilarityThreshold": 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
},
"ranking": { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
"llmRanker": { # Config for LlmRanker. # Optional. Config for LlmRanker.
"modelName": "A String", # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
},
"rankService": { # Config for Rank Service. # Optional. Config for Rank Service.
"modelName": "A String", # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
},
},
"topK": 42, # Optional. The number of contexts to retrieve.
},
"similarityTopK": 42, # Optional. Number of top k results to return from the selected corpora.
"vectorDistanceThreshold": 3.14, # Optional. Only return results with vector distance smaller than the threshold.
},
},
"urlContext": { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
},
},
],
"ttl": "A String", # Input only. The TTL for this resource. The expiration time is computed: now + TTL.
"updateTime": "A String", # Output only. When the cache entry was last updated in UTC time.
"usageMetadata": { # Metadata on the usage of the cached content. # Output only. Metadata on the usage of the cached content.
"audioDurationSeconds": 42, # Duration of audio in seconds.
"imageCount": 42, # Number of images.
"textCount": 42, # Number of text characters.
"totalTokenCount": 42, # Total number of tokens that the cached content consumes.
"videoDurationSeconds": 42, # Duration of video in seconds.
},
}</pre>
</div>
<div class="method">
<code class="details" id="list">list(parent, pageSize=None, pageToken=None, x__xgafv=None)</code>
<pre>Lists cached contents in a project
Args:
parent: string, Required. The parent, which owns this collection of cached contents. (required)
pageSize: integer, Optional. The maximum number of cached contents to return. The service may return fewer than this value. If unspecified, some default (under maximum) number of items will be returned. The maximum value is 1000; values above 1000 will be coerced to 1000.
pageToken: string, Optional. A page token, received from a previous `ListCachedContents` call. Provide this to retrieve the subsequent page. When paginating, all other parameters provided to `ListCachedContents` must match the call that provided the page token.
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # Response with a list of CachedContents.
"cachedContents": [ # List of cached contents.
{ # A resource used in LLM queries for users to explicitly specify what to cache and how to cache.
"contents": [ # Optional. Input only. Immutable. The content to cache
{ # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
"parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
{ # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
"codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
"outcome": "A String", # Required. Outcome of the code execution.
"output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
},
"executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
"code": "A String", # Required. The code to be executed.
"language": "A String", # Required. Programming language of the `code`.
},
"fileData": { # URI based data. # Optional. URI based data.
"displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"fileUri": "A String", # Required. URI.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
"args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
"a_key": "", # Properties of the object.
},
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
},
"functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
"response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
"a_key": "", # Properties of the object.
},
},
"inlineData": { # Content blob. # Optional. Inlined bytes data.
"data": "A String", # Required. Raw bytes.
"displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"text": "A String", # Optional. Text part (can be code).
"thought": True or False, # Optional. Indicates if the part is thought from the model.
"thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
"videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
"endOffset": "A String", # Optional. The end offset of the video.
"fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
"startOffset": "A String", # Optional. The start offset of the video.
},
},
],
"role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
},
],
"createTime": "A String", # Output only. Creation time of the cache entry.
"displayName": "A String", # Optional. Immutable. The user-generated meaningful display name of the cached content.
"encryptionSpec": { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Input only. Immutable. Customer-managed encryption key spec for a `CachedContent`. If set, this `CachedContent` and all its sub-resources will be secured by this key.
"kmsKeyName": "A String", # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
},
"expireTime": "A String", # Timestamp of when this resource is considered expired. This is *always* provided on output, regardless of what was sent on input.
"model": "A String", # Immutable. The name of the `Model` to use for cached content. Currently, only the published Gemini base models are supported, in form of projects/{PROJECT}/locations/{LOCATION}/publishers/google/models/{MODEL}
"name": "A String", # Immutable. Identifier. The server-generated resource name of the cached content Format: projects/{project}/locations/{location}/cachedContents/{cached_content}
"systemInstruction": { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Optional. Input only. Immutable. Developer set system instruction. Currently, text only
"parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
{ # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
"codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
"outcome": "A String", # Required. Outcome of the code execution.
"output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
},
"executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
"code": "A String", # Required. The code to be executed.
"language": "A String", # Required. Programming language of the `code`.
},
"fileData": { # URI based data. # Optional. URI based data.
"displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"fileUri": "A String", # Required. URI.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
"args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
"a_key": "", # Properties of the object.
},
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
},
"functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
"response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
"a_key": "", # Properties of the object.
},
},
"inlineData": { # Content blob. # Optional. Inlined bytes data.
"data": "A String", # Required. Raw bytes.
"displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"text": "A String", # Optional. Text part (can be code).
"thought": True or False, # Optional. Indicates if the part is thought from the model.
"thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
"videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
"endOffset": "A String", # Optional. The end offset of the video.
"fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
"startOffset": "A String", # Optional. The start offset of the video.
},
},
],
"role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
},
"toolConfig": { # Tool config. This config is shared for all tools provided in the request. # Optional. Input only. Immutable. Tool config. This config is shared for all tools
"functionCallingConfig": { # Function calling config. # Optional. Function calling config.
"allowedFunctionNames": [ # Optional. Function names to call. Only set when the Mode is ANY. Function names should match [FunctionDeclaration.name]. With mode set to ANY, model will predict a function call from the set of function names provided.
"A String",
],
"mode": "A String", # Optional. Function calling mode.
},
"retrievalConfig": { # Retrieval config. # Optional. Retrieval config.
"languageCode": "A String", # The language code of the user.
"latLng": { # An object that represents a latitude/longitude pair. This is expressed as a pair of doubles to represent degrees latitude and degrees longitude. Unless specified otherwise, this object must conform to the WGS84 standard. Values must be within normalized ranges. # The location of the user.
"latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
"longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
},
},
},
"tools": [ # Optional. Input only. Immutable. A list of `Tools` the model may use to generate the next response
{ # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
"codeExecution": { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
},
"enterpriseWebSearch": { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
"excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
"A String",
],
},
"functionDeclarations": [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
{ # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
"description": "A String", # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
"name": "A String", # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
"parameters": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
"additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
"anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
# Object with schema name: GoogleCloudAiplatformV1Schema
],
"default": "", # Optional. Default value of the data.
"defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"description": "A String", # Optional. The description of the data.
"enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
"A String",
],
"example": "", # Optional. Example of the object. Will only populated when the object is the root.
"format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
"items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
"maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
"maxLength": "A String", # Optional. Maximum length of the Type.STRING
"maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
"maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
"minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
"minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
"minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
"minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
"nullable": True or False, # Optional. Indicates if the value may be null.
"pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
"properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
"A String",
],
"ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
"required": [ # Optional. Required properties of Type.OBJECT.
"A String",
],
"title": "A String", # Optional. The title of the Schema.
"type": "A String", # Optional. The type of the data.
},
"parametersJsonSchema": "", # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { "type": "object", "properties": { "name": { "type": "string" }, "age": { "type": "integer" } }, "additionalProperties": false, "required": ["name", "age"], "propertyOrdering": ["name", "age"] } ``` This field is mutually exclusive with `parameters`.
"response": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
"additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
"anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
# Object with schema name: GoogleCloudAiplatformV1Schema
],
"default": "", # Optional. Default value of the data.
"defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"description": "A String", # Optional. The description of the data.
"enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
"A String",
],
"example": "", # Optional. Example of the object. Will only populated when the object is the root.
"format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
"items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
"maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
"maxLength": "A String", # Optional. Maximum length of the Type.STRING
"maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
"maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
"minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
"minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
"minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
"minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
"nullable": True or False, # Optional. Indicates if the value may be null.
"pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
"properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
"A String",
],
"ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
"required": [ # Optional. Required properties of Type.OBJECT.
"A String",
],
"title": "A String", # Optional. The title of the Schema.
"type": "A String", # Optional. The type of the data.
},
"responseJsonSchema": "", # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
},
],
"googleMaps": { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
},
"googleSearch": { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
"excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: ["amazon.com", "facebook.com"].
"A String",
],
},
"googleSearchRetrieval": { # Tool to retrieve public web data for grounding, powered by Google. # Optional. GoogleSearchRetrieval tool type. Specialized retrieval tool that is powered by Google search.
"dynamicRetrievalConfig": { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
"dynamicThreshold": 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
"mode": "A String", # The mode of the predictor to be used in dynamic retrieval.
},
},
"retrieval": { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
"disableAttribution": True or False, # Optional. Deprecated. This option is no longer supported.
"externalApi": { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
"apiAuth": { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
"apiKeyConfig": { # The API secret. # The API secret.
"apiKeySecretVersion": "A String", # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
"apiKeyString": "A String", # The API key string. Either this or `api_key_secret_version` must be set.
},
},
"apiSpec": "A String", # The API spec that the external API implements.
"authConfig": { # Auth configuration to run the extension. # The authentication config to access the API.
"apiKeyConfig": { # Config for authentication with API key. # Config for API key auth.
"apiKeySecret": "A String", # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
"apiKeyString": "A String", # Optional. The API key to be used in the request directly.
"httpElementLocation": "A String", # Optional. The location of the API key.
"name": "A String", # Optional. The parameter name of the API key. E.g. If the API request is "https://example.com/act?api_key=", "api_key" would be the parameter name.
},
"authType": "A String", # Type of auth scheme.
"googleServiceAccountConfig": { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
"serviceAccount": "A String", # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
},
"httpBasicAuthConfig": { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
"credentialSecret": "A String", # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
},
"oauthConfig": { # Config for user oauth. # Config for user oauth.
"accessToken": "A String", # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
"serviceAccount": "A String", # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
},
"oidcConfig": { # Config for user OIDC auth. # Config for user OIDC auth.
"idToken": "A String", # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
"serviceAccount": "A String", # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
},
},
"elasticSearchParams": { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
"index": "A String", # The ElasticSearch index to use.
"numHits": 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
"searchTemplate": "A String", # The ElasticSearch search template to use.
},
"endpoint": "A String", # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
"simpleSearchParams": { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
},
},
"vertexAiSearch": { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
"dataStoreSpecs": [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
{ # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
"dataStore": "A String", # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
"filter": "A String", # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
},
],
"datastore": "A String", # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
"engine": "A String", # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
"filter": "A String", # Optional. Filter strings to be passed to the search API.
"maxResults": 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
},
"vertexRagStore": { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
"ragResources": [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
{ # The definition of the Rag resource.
"ragCorpus": "A String", # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
"ragFileIds": [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
"A String",
],
},
],
"ragRetrievalConfig": { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
"filter": { # Config for filters. # Optional. Config for filters.
"metadataFilter": "A String", # Optional. String for metadata filtering.
"vectorDistanceThreshold": 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
"vectorSimilarityThreshold": 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
},
"ranking": { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
"llmRanker": { # Config for LlmRanker. # Optional. Config for LlmRanker.
"modelName": "A String", # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
},
"rankService": { # Config for Rank Service. # Optional. Config for Rank Service.
"modelName": "A String", # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
},
},
"topK": 42, # Optional. The number of contexts to retrieve.
},
"similarityTopK": 42, # Optional. Number of top k results to return from the selected corpora.
"vectorDistanceThreshold": 3.14, # Optional. Only return results with vector distance smaller than the threshold.
},
},
"urlContext": { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
},
},
],
"ttl": "A String", # Input only. The TTL for this resource. The expiration time is computed: now + TTL.
"updateTime": "A String", # Output only. When the cache entry was last updated in UTC time.
"usageMetadata": { # Metadata on the usage of the cached content. # Output only. Metadata on the usage of the cached content.
"audioDurationSeconds": 42, # Duration of audio in seconds.
"imageCount": 42, # Number of images.
"textCount": 42, # Number of text characters.
"totalTokenCount": 42, # Total number of tokens that the cached content consumes.
"videoDurationSeconds": 42, # Duration of video in seconds.
},
},
],
"nextPageToken": "A String", # A token, which can be sent as `page_token` to retrieve the next page. If this field is omitted, there are no subsequent pages.
}</pre>
</div>
<div class="method">
<code class="details" id="list_next">list_next()</code>
<pre>Retrieves the next page of results.
Args:
previous_request: The request for the previous page. (required)
previous_response: The response from the request for the previous page. (required)
Returns:
A request object that you can call 'execute()' on to request the next
page. Returns None if there are no more items in the collection.
</pre>
</div>
<div class="method">
<code class="details" id="patch">patch(name, body=None, updateMask=None, x__xgafv=None)</code>
<pre>Updates cached content configurations
Args:
name: string, Immutable. Identifier. The server-generated resource name of the cached content Format: projects/{project}/locations/{location}/cachedContents/{cached_content} (required)
body: object, The request body.
The object takes the form of:
{ # A resource used in LLM queries for users to explicitly specify what to cache and how to cache.
"contents": [ # Optional. Input only. Immutable. The content to cache
{ # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
"parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
{ # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
"codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
"outcome": "A String", # Required. Outcome of the code execution.
"output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
},
"executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
"code": "A String", # Required. The code to be executed.
"language": "A String", # Required. Programming language of the `code`.
},
"fileData": { # URI based data. # Optional. URI based data.
"displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"fileUri": "A String", # Required. URI.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
"args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
"a_key": "", # Properties of the object.
},
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
},
"functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
"response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
"a_key": "", # Properties of the object.
},
},
"inlineData": { # Content blob. # Optional. Inlined bytes data.
"data": "A String", # Required. Raw bytes.
"displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"text": "A String", # Optional. Text part (can be code).
"thought": True or False, # Optional. Indicates if the part is thought from the model.
"thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
"videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
"endOffset": "A String", # Optional. The end offset of the video.
"fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
"startOffset": "A String", # Optional. The start offset of the video.
},
},
],
"role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
},
],
"createTime": "A String", # Output only. Creation time of the cache entry.
"displayName": "A String", # Optional. Immutable. The user-generated meaningful display name of the cached content.
"encryptionSpec": { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Input only. Immutable. Customer-managed encryption key spec for a `CachedContent`. If set, this `CachedContent` and all its sub-resources will be secured by this key.
"kmsKeyName": "A String", # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
},
"expireTime": "A String", # Timestamp of when this resource is considered expired. This is *always* provided on output, regardless of what was sent on input.
"model": "A String", # Immutable. The name of the `Model` to use for cached content. Currently, only the published Gemini base models are supported, in form of projects/{PROJECT}/locations/{LOCATION}/publishers/google/models/{MODEL}
"name": "A String", # Immutable. Identifier. The server-generated resource name of the cached content Format: projects/{project}/locations/{location}/cachedContents/{cached_content}
"systemInstruction": { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Optional. Input only. Immutable. Developer set system instruction. Currently, text only
"parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
{ # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
"codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
"outcome": "A String", # Required. Outcome of the code execution.
"output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
},
"executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
"code": "A String", # Required. The code to be executed.
"language": "A String", # Required. Programming language of the `code`.
},
"fileData": { # URI based data. # Optional. URI based data.
"displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"fileUri": "A String", # Required. URI.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
"args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
"a_key": "", # Properties of the object.
},
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
},
"functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
"response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
"a_key": "", # Properties of the object.
},
},
"inlineData": { # Content blob. # Optional. Inlined bytes data.
"data": "A String", # Required. Raw bytes.
"displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"text": "A String", # Optional. Text part (can be code).
"thought": True or False, # Optional. Indicates if the part is thought from the model.
"thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
"videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
"endOffset": "A String", # Optional. The end offset of the video.
"fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
"startOffset": "A String", # Optional. The start offset of the video.
},
},
],
"role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
},
"toolConfig": { # Tool config. This config is shared for all tools provided in the request. # Optional. Input only. Immutable. Tool config. This config is shared for all tools
"functionCallingConfig": { # Function calling config. # Optional. Function calling config.
"allowedFunctionNames": [ # Optional. Function names to call. Only set when the Mode is ANY. Function names should match [FunctionDeclaration.name]. With mode set to ANY, model will predict a function call from the set of function names provided.
"A String",
],
"mode": "A String", # Optional. Function calling mode.
},
"retrievalConfig": { # Retrieval config. # Optional. Retrieval config.
"languageCode": "A String", # The language code of the user.
"latLng": { # An object that represents a latitude/longitude pair. This is expressed as a pair of doubles to represent degrees latitude and degrees longitude. Unless specified otherwise, this object must conform to the WGS84 standard. Values must be within normalized ranges. # The location of the user.
"latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
"longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
},
},
},
"tools": [ # Optional. Input only. Immutable. A list of `Tools` the model may use to generate the next response
{ # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
"codeExecution": { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
},
"enterpriseWebSearch": { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
"excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
"A String",
],
},
"functionDeclarations": [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
{ # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
"description": "A String", # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
"name": "A String", # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
"parameters": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
"additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
"anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
# Object with schema name: GoogleCloudAiplatformV1Schema
],
"default": "", # Optional. Default value of the data.
"defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"description": "A String", # Optional. The description of the data.
"enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
"A String",
],
"example": "", # Optional. Example of the object. Will only populated when the object is the root.
"format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
"items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
"maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
"maxLength": "A String", # Optional. Maximum length of the Type.STRING
"maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
"maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
"minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
"minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
"minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
"minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
"nullable": True or False, # Optional. Indicates if the value may be null.
"pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
"properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
"A String",
],
"ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
"required": [ # Optional. Required properties of Type.OBJECT.
"A String",
],
"title": "A String", # Optional. The title of the Schema.
"type": "A String", # Optional. The type of the data.
},
"parametersJsonSchema": "", # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { "type": "object", "properties": { "name": { "type": "string" }, "age": { "type": "integer" } }, "additionalProperties": false, "required": ["name", "age"], "propertyOrdering": ["name", "age"] } ``` This field is mutually exclusive with `parameters`.
"response": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
"additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
"anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
# Object with schema name: GoogleCloudAiplatformV1Schema
],
"default": "", # Optional. Default value of the data.
"defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"description": "A String", # Optional. The description of the data.
"enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
"A String",
],
"example": "", # Optional. Example of the object. Will only populated when the object is the root.
"format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
"items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
"maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
"maxLength": "A String", # Optional. Maximum length of the Type.STRING
"maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
"maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
"minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
"minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
"minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
"minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
"nullable": True or False, # Optional. Indicates if the value may be null.
"pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
"properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
"A String",
],
"ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
"required": [ # Optional. Required properties of Type.OBJECT.
"A String",
],
"title": "A String", # Optional. The title of the Schema.
"type": "A String", # Optional. The type of the data.
},
"responseJsonSchema": "", # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
},
],
"googleMaps": { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
},
"googleSearch": { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
"excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: ["amazon.com", "facebook.com"].
"A String",
],
},
"googleSearchRetrieval": { # Tool to retrieve public web data for grounding, powered by Google. # Optional. GoogleSearchRetrieval tool type. Specialized retrieval tool that is powered by Google search.
"dynamicRetrievalConfig": { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
"dynamicThreshold": 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
"mode": "A String", # The mode of the predictor to be used in dynamic retrieval.
},
},
"retrieval": { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
"disableAttribution": True or False, # Optional. Deprecated. This option is no longer supported.
"externalApi": { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
"apiAuth": { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
"apiKeyConfig": { # The API secret. # The API secret.
"apiKeySecretVersion": "A String", # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
"apiKeyString": "A String", # The API key string. Either this or `api_key_secret_version` must be set.
},
},
"apiSpec": "A String", # The API spec that the external API implements.
"authConfig": { # Auth configuration to run the extension. # The authentication config to access the API.
"apiKeyConfig": { # Config for authentication with API key. # Config for API key auth.
"apiKeySecret": "A String", # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
"apiKeyString": "A String", # Optional. The API key to be used in the request directly.
"httpElementLocation": "A String", # Optional. The location of the API key.
"name": "A String", # Optional. The parameter name of the API key. E.g. If the API request is "https://example.com/act?api_key=", "api_key" would be the parameter name.
},
"authType": "A String", # Type of auth scheme.
"googleServiceAccountConfig": { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
"serviceAccount": "A String", # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
},
"httpBasicAuthConfig": { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
"credentialSecret": "A String", # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
},
"oauthConfig": { # Config for user oauth. # Config for user oauth.
"accessToken": "A String", # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
"serviceAccount": "A String", # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
},
"oidcConfig": { # Config for user OIDC auth. # Config for user OIDC auth.
"idToken": "A String", # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
"serviceAccount": "A String", # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
},
},
"elasticSearchParams": { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
"index": "A String", # The ElasticSearch index to use.
"numHits": 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
"searchTemplate": "A String", # The ElasticSearch search template to use.
},
"endpoint": "A String", # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
"simpleSearchParams": { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
},
},
"vertexAiSearch": { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
"dataStoreSpecs": [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
{ # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
"dataStore": "A String", # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
"filter": "A String", # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
},
],
"datastore": "A String", # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
"engine": "A String", # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
"filter": "A String", # Optional. Filter strings to be passed to the search API.
"maxResults": 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
},
"vertexRagStore": { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
"ragResources": [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
{ # The definition of the Rag resource.
"ragCorpus": "A String", # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
"ragFileIds": [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
"A String",
],
},
],
"ragRetrievalConfig": { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
"filter": { # Config for filters. # Optional. Config for filters.
"metadataFilter": "A String", # Optional. String for metadata filtering.
"vectorDistanceThreshold": 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
"vectorSimilarityThreshold": 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
},
"ranking": { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
"llmRanker": { # Config for LlmRanker. # Optional. Config for LlmRanker.
"modelName": "A String", # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
},
"rankService": { # Config for Rank Service. # Optional. Config for Rank Service.
"modelName": "A String", # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
},
},
"topK": 42, # Optional. The number of contexts to retrieve.
},
"similarityTopK": 42, # Optional. Number of top k results to return from the selected corpora.
"vectorDistanceThreshold": 3.14, # Optional. Only return results with vector distance smaller than the threshold.
},
},
"urlContext": { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
},
},
],
"ttl": "A String", # Input only. The TTL for this resource. The expiration time is computed: now + TTL.
"updateTime": "A String", # Output only. When the cache entry was last updated in UTC time.
"usageMetadata": { # Metadata on the usage of the cached content. # Output only. Metadata on the usage of the cached content.
"audioDurationSeconds": 42, # Duration of audio in seconds.
"imageCount": 42, # Number of images.
"textCount": 42, # Number of text characters.
"totalTokenCount": 42, # Total number of tokens that the cached content consumes.
"videoDurationSeconds": 42, # Duration of video in seconds.
},
}
updateMask: string, Required. The list of fields to update.
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # A resource used in LLM queries for users to explicitly specify what to cache and how to cache.
"contents": [ # Optional. Input only. Immutable. The content to cache
{ # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
"parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
{ # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
"codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
"outcome": "A String", # Required. Outcome of the code execution.
"output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
},
"executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
"code": "A String", # Required. The code to be executed.
"language": "A String", # Required. Programming language of the `code`.
},
"fileData": { # URI based data. # Optional. URI based data.
"displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"fileUri": "A String", # Required. URI.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
"args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
"a_key": "", # Properties of the object.
},
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
},
"functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
"response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
"a_key": "", # Properties of the object.
},
},
"inlineData": { # Content blob. # Optional. Inlined bytes data.
"data": "A String", # Required. Raw bytes.
"displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"text": "A String", # Optional. Text part (can be code).
"thought": True or False, # Optional. Indicates if the part is thought from the model.
"thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
"videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
"endOffset": "A String", # Optional. The end offset of the video.
"fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
"startOffset": "A String", # Optional. The start offset of the video.
},
},
],
"role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
},
],
"createTime": "A String", # Output only. Creation time of the cache entry.
"displayName": "A String", # Optional. Immutable. The user-generated meaningful display name of the cached content.
"encryptionSpec": { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Input only. Immutable. Customer-managed encryption key spec for a `CachedContent`. If set, this `CachedContent` and all its sub-resources will be secured by this key.
"kmsKeyName": "A String", # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
},
"expireTime": "A String", # Timestamp of when this resource is considered expired. This is *always* provided on output, regardless of what was sent on input.
"model": "A String", # Immutable. The name of the `Model` to use for cached content. Currently, only the published Gemini base models are supported, in form of projects/{PROJECT}/locations/{LOCATION}/publishers/google/models/{MODEL}
"name": "A String", # Immutable. Identifier. The server-generated resource name of the cached content Format: projects/{project}/locations/{location}/cachedContents/{cached_content}
"systemInstruction": { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Optional. Input only. Immutable. Developer set system instruction. Currently, text only
"parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
{ # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
"codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
"outcome": "A String", # Required. Outcome of the code execution.
"output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
},
"executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
"code": "A String", # Required. The code to be executed.
"language": "A String", # Required. Programming language of the `code`.
},
"fileData": { # URI based data. # Optional. URI based data.
"displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"fileUri": "A String", # Required. URI.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
"args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
"a_key": "", # Properties of the object.
},
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
},
"functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
"name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
"response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
"a_key": "", # Properties of the object.
},
},
"inlineData": { # Content blob. # Optional. Inlined bytes data.
"data": "A String", # Required. Raw bytes.
"displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
"mimeType": "A String", # Required. The IANA standard MIME type of the source data.
},
"text": "A String", # Optional. Text part (can be code).
"thought": True or False, # Optional. Indicates if the part is thought from the model.
"thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
"videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
"endOffset": "A String", # Optional. The end offset of the video.
"fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
"startOffset": "A String", # Optional. The start offset of the video.
},
},
],
"role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
},
"toolConfig": { # Tool config. This config is shared for all tools provided in the request. # Optional. Input only. Immutable. Tool config. This config is shared for all tools
"functionCallingConfig": { # Function calling config. # Optional. Function calling config.
"allowedFunctionNames": [ # Optional. Function names to call. Only set when the Mode is ANY. Function names should match [FunctionDeclaration.name]. With mode set to ANY, model will predict a function call from the set of function names provided.
"A String",
],
"mode": "A String", # Optional. Function calling mode.
},
"retrievalConfig": { # Retrieval config. # Optional. Retrieval config.
"languageCode": "A String", # The language code of the user.
"latLng": { # An object that represents a latitude/longitude pair. This is expressed as a pair of doubles to represent degrees latitude and degrees longitude. Unless specified otherwise, this object must conform to the WGS84 standard. Values must be within normalized ranges. # The location of the user.
"latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
"longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
},
},
},
"tools": [ # Optional. Input only. Immutable. A list of `Tools` the model may use to generate the next response
{ # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
"codeExecution": { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
},
"enterpriseWebSearch": { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
"excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
"A String",
],
},
"functionDeclarations": [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
{ # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
"description": "A String", # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
"name": "A String", # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
"parameters": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
"additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
"anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
# Object with schema name: GoogleCloudAiplatformV1Schema
],
"default": "", # Optional. Default value of the data.
"defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"description": "A String", # Optional. The description of the data.
"enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
"A String",
],
"example": "", # Optional. Example of the object. Will only populated when the object is the root.
"format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
"items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
"maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
"maxLength": "A String", # Optional. Maximum length of the Type.STRING
"maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
"maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
"minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
"minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
"minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
"minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
"nullable": True or False, # Optional. Indicates if the value may be null.
"pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
"properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
"A String",
],
"ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
"required": [ # Optional. Required properties of Type.OBJECT.
"A String",
],
"title": "A String", # Optional. The title of the Schema.
"type": "A String", # Optional. The type of the data.
},
"parametersJsonSchema": "", # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { "type": "object", "properties": { "name": { "type": "string" }, "age": { "type": "integer" } }, "additionalProperties": false, "required": ["name", "age"], "propertyOrdering": ["name", "age"] } ``` This field is mutually exclusive with `parameters`.
"response": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
"additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
"anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
# Object with schema name: GoogleCloudAiplatformV1Schema
],
"default": "", # Optional. Default value of the data.
"defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"description": "A String", # Optional. The description of the data.
"enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
"A String",
],
"example": "", # Optional. Example of the object. Will only populated when the object is the root.
"format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
"items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
"maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
"maxLength": "A String", # Optional. Maximum length of the Type.STRING
"maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
"maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
"minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
"minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
"minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
"minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
"nullable": True or False, # Optional. Indicates if the value may be null.
"pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
"properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
"a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
},
"propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
"A String",
],
"ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
"required": [ # Optional. Required properties of Type.OBJECT.
"A String",
],
"title": "A String", # Optional. The title of the Schema.
"type": "A String", # Optional. The type of the data.
},
"responseJsonSchema": "", # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
},
],
"googleMaps": { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
},
"googleSearch": { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
"excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: ["amazon.com", "facebook.com"].
"A String",
],
},
"googleSearchRetrieval": { # Tool to retrieve public web data for grounding, powered by Google. # Optional. GoogleSearchRetrieval tool type. Specialized retrieval tool that is powered by Google search.
"dynamicRetrievalConfig": { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
"dynamicThreshold": 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
"mode": "A String", # The mode of the predictor to be used in dynamic retrieval.
},
},
"retrieval": { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
"disableAttribution": True or False, # Optional. Deprecated. This option is no longer supported.
"externalApi": { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
"apiAuth": { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
"apiKeyConfig": { # The API secret. # The API secret.
"apiKeySecretVersion": "A String", # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
"apiKeyString": "A String", # The API key string. Either this or `api_key_secret_version` must be set.
},
},
"apiSpec": "A String", # The API spec that the external API implements.
"authConfig": { # Auth configuration to run the extension. # The authentication config to access the API.
"apiKeyConfig": { # Config for authentication with API key. # Config for API key auth.
"apiKeySecret": "A String", # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
"apiKeyString": "A String", # Optional. The API key to be used in the request directly.
"httpElementLocation": "A String", # Optional. The location of the API key.
"name": "A String", # Optional. The parameter name of the API key. E.g. If the API request is "https://example.com/act?api_key=", "api_key" would be the parameter name.
},
"authType": "A String", # Type of auth scheme.
"googleServiceAccountConfig": { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
"serviceAccount": "A String", # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
},
"httpBasicAuthConfig": { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
"credentialSecret": "A String", # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
},
"oauthConfig": { # Config for user oauth. # Config for user oauth.
"accessToken": "A String", # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
"serviceAccount": "A String", # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
},
"oidcConfig": { # Config for user OIDC auth. # Config for user OIDC auth.
"idToken": "A String", # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
"serviceAccount": "A String", # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
},
},
"elasticSearchParams": { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
"index": "A String", # The ElasticSearch index to use.
"numHits": 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
"searchTemplate": "A String", # The ElasticSearch search template to use.
},
"endpoint": "A String", # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
"simpleSearchParams": { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
},
},
"vertexAiSearch": { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
"dataStoreSpecs": [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
{ # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
"dataStore": "A String", # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
"filter": "A String", # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
},
],
"datastore": "A String", # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
"engine": "A String", # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
"filter": "A String", # Optional. Filter strings to be passed to the search API.
"maxResults": 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
},
"vertexRagStore": { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
"ragResources": [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
{ # The definition of the Rag resource.
"ragCorpus": "A String", # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
"ragFileIds": [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
"A String",
],
},
],
"ragRetrievalConfig": { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
"filter": { # Config for filters. # Optional. Config for filters.
"metadataFilter": "A String", # Optional. String for metadata filtering.
"vectorDistanceThreshold": 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
"vectorSimilarityThreshold": 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
},
"ranking": { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
"llmRanker": { # Config for LlmRanker. # Optional. Config for LlmRanker.
"modelName": "A String", # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
},
"rankService": { # Config for Rank Service. # Optional. Config for Rank Service.
"modelName": "A String", # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
},
},
"topK": 42, # Optional. The number of contexts to retrieve.
},
"similarityTopK": 42, # Optional. Number of top k results to return from the selected corpora.
"vectorDistanceThreshold": 3.14, # Optional. Only return results with vector distance smaller than the threshold.
},
},
"urlContext": { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
},
},
],
"ttl": "A String", # Input only. The TTL for this resource. The expiration time is computed: now + TTL.
"updateTime": "A String", # Output only. When the cache entry was last updated in UTC time.
"usageMetadata": { # Metadata on the usage of the cached content. # Output only. Metadata on the usage of the cached content.
"audioDurationSeconds": 42, # Duration of audio in seconds.
"imageCount": 42, # Number of images.
"textCount": 42, # Number of text characters.
"totalTokenCount": 42, # Total number of tokens that the cached content consumes.
"videoDurationSeconds": 42, # Duration of video in seconds.
},
}</pre>
</div>
</body></html>
|