| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 
 | <html><body>
<style>
body, h1, h2, h3, div, span, p, pre, a {
  margin: 0;
  padding: 0;
  border: 0;
  font-weight: inherit;
  font-style: inherit;
  font-size: 100%;
  font-family: inherit;
  vertical-align: baseline;
}
body {
  font-size: 13px;
  padding: 1em;
}
h1 {
  font-size: 26px;
  margin-bottom: 1em;
}
h2 {
  font-size: 24px;
  margin-bottom: 1em;
}
h3 {
  font-size: 20px;
  margin-bottom: 1em;
  margin-top: 1em;
}
pre, code {
  line-height: 1.5;
  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}
pre {
  margin-top: 0.5em;
}
h1, h2, h3, p {
  font-family: Arial, sans serif;
}
h1, h2, h3 {
  border-bottom: solid #CCC 1px;
}
.toc_element {
  margin-top: 0.5em;
}
.firstline {
  margin-left: 2 em;
}
.method  {
  margin-top: 1em;
  border: solid 1px #CCC;
  padding: 1em;
  background: #EEE;
}
.details {
  font-weight: bold;
  font-size: 14px;
}
</style>
<h1><a href="aiplatform_v1.html">Vertex AI API</a> . <a href="aiplatform_v1.projects.html">projects</a> . <a href="aiplatform_v1.projects.locations.html">locations</a> . <a href="aiplatform_v1.projects.locations.publishers.html">publishers</a> . <a href="aiplatform_v1.projects.locations.publishers.models.html">models</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
  <code><a href="#close">close()</a></code></p>
<p class="firstline">Close httplib2 connections.</p>
<p class="toc_element">
  <code><a href="#computeTokens">computeTokens(endpoint, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Return a list of tokens based on the input text.</p>
<p class="toc_element">
  <code><a href="#countTokens">countTokens(endpoint, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Perform a token counting.</p>
<p class="toc_element">
  <code><a href="#fetchPredictOperation">fetchPredictOperation(endpoint, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Fetch an asynchronous online prediction operation.</p>
<p class="toc_element">
  <code><a href="#generateContent">generateContent(model, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Generate content with multimodal inputs.</p>
<p class="toc_element">
  <code><a href="#predict">predict(endpoint, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Perform an online prediction.</p>
<p class="toc_element">
  <code><a href="#predictLongRunning">predictLongRunning(endpoint, body=None, x__xgafv=None)</a></code></p>
<p class="firstline"></p>
<p class="toc_element">
  <code><a href="#rawPredict">rawPredict(endpoint, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Perform an online prediction with an arbitrary HTTP payload. The response includes the following HTTP headers: * `X-Vertex-AI-Endpoint-Id`: ID of the Endpoint that served this prediction. * `X-Vertex-AI-Deployed-Model-Id`: ID of the Endpoint's DeployedModel that served this prediction.</p>
<p class="toc_element">
  <code><a href="#serverStreamingPredict">serverStreamingPredict(endpoint, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Perform a server-side streaming online prediction request for Vertex LLM streaming.</p>
<p class="toc_element">
  <code><a href="#streamGenerateContent">streamGenerateContent(model, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Generate content with multimodal inputs with streaming support.</p>
<p class="toc_element">
  <code><a href="#streamRawPredict">streamRawPredict(endpoint, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Perform a streaming online prediction with an arbitrary HTTP payload.</p>
<h3>Method Details</h3>
<div class="method">
    <code class="details" id="close">close()</code>
  <pre>Close httplib2 connections.</pre>
</div>
<div class="method">
    <code class="details" id="computeTokens">computeTokens(endpoint, body=None, x__xgafv=None)</code>
  <pre>Return a list of tokens based on the input text.
Args:
  endpoint: string, Required. The name of the Endpoint requested to get lists of tokens and token ids. (required)
  body: object, The request body.
    The object takes the form of:
{ # Request message for ComputeTokens RPC call.
  "contents": [ # Optional. Input content.
    { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
      "parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
        { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
          "codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
            "outcome": "A String", # Required. Outcome of the code execution.
            "output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
          },
          "executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
            "code": "A String", # Required. The code to be executed.
            "language": "A String", # Required. Programming language of the `code`.
          },
          "fileData": { # URI based data. # Optional. URI based data.
            "displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            "fileUri": "A String", # Required. URI.
            "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
          },
          "functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
            "args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
              "a_key": "", # Properties of the object.
            },
            "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
          },
          "functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
            "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
            "response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
              "a_key": "", # Properties of the object.
            },
          },
          "inlineData": { # Content blob. # Optional. Inlined bytes data.
            "data": "A String", # Required. Raw bytes.
            "displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
          },
          "text": "A String", # Optional. Text part (can be code).
          "thought": True or False, # Optional. Indicates if the part is thought from the model.
          "thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
          "videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
            "endOffset": "A String", # Optional. The end offset of the video.
            "fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
            "startOffset": "A String", # Optional. The start offset of the video.
          },
        },
      ],
      "role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
    },
  ],
  "instances": [ # Optional. The instances that are the input to token computing API call. Schema is identical to the prediction schema of the text model, even for the non-text models, like chat models, or Codey models.
    "",
  ],
  "model": "A String", # Optional. The name of the publisher model requested to serve the prediction. Format: projects/{project}/locations/{location}/publishers/*/models/*
}
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format
Returns:
  An object of the form:
    { # Response message for ComputeTokens RPC call.
  "tokensInfo": [ # Lists of tokens info from the input. A ComputeTokensRequest could have multiple instances with a prompt in each instance. We also need to return lists of tokens info for the request with multiple instances.
    { # Tokens info with a list of tokens and the corresponding list of token ids.
      "role": "A String", # Optional. Optional fields for the role from the corresponding Content.
      "tokenIds": [ # A list of token ids from the input.
        "A String",
      ],
      "tokens": [ # A list of tokens from the input.
        "A String",
      ],
    },
  ],
}</pre>
</div>
<div class="method">
    <code class="details" id="countTokens">countTokens(endpoint, body=None, x__xgafv=None)</code>
  <pre>Perform a token counting.
Args:
  endpoint: string, Required. The name of the Endpoint requested to perform token counting. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}` (required)
  body: object, The request body.
    The object takes the form of:
{ # Request message for PredictionService.CountTokens.
  "contents": [ # Optional. Input content.
    { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
      "parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
        { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
          "codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
            "outcome": "A String", # Required. Outcome of the code execution.
            "output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
          },
          "executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
            "code": "A String", # Required. The code to be executed.
            "language": "A String", # Required. Programming language of the `code`.
          },
          "fileData": { # URI based data. # Optional. URI based data.
            "displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            "fileUri": "A String", # Required. URI.
            "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
          },
          "functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
            "args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
              "a_key": "", # Properties of the object.
            },
            "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
          },
          "functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
            "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
            "response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
              "a_key": "", # Properties of the object.
            },
          },
          "inlineData": { # Content blob. # Optional. Inlined bytes data.
            "data": "A String", # Required. Raw bytes.
            "displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
          },
          "text": "A String", # Optional. Text part (can be code).
          "thought": True or False, # Optional. Indicates if the part is thought from the model.
          "thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
          "videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
            "endOffset": "A String", # Optional. The end offset of the video.
            "fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
            "startOffset": "A String", # Optional. The start offset of the video.
          },
        },
      ],
      "role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
    },
  ],
  "generationConfig": { # Generation config. # Optional. Generation config that the model will use to generate the response.
    "audioTimestamp": True or False, # Optional. If enabled, audio timestamp will be included in the request to the model.
    "candidateCount": 42, # Optional. Number of candidates to generate.
    "enableAffectiveDialog": True or False, # Optional. If enabled, the model will detect emotions and adapt its responses accordingly.
    "frequencyPenalty": 3.14, # Optional. Frequency penalties.
    "logprobs": 42, # Optional. Logit probabilities.
    "maxOutputTokens": 42, # Optional. The maximum number of output tokens to generate per message.
    "mediaResolution": "A String", # Optional. If specified, the media resolution specified will be used.
    "presencePenalty": 3.14, # Optional. Positive penalties.
    "responseJsonSchema": "", # Optional. Output schema of the generated response. This is an alternative to `response_schema` that accepts [JSON Schema](https://json-schema.org/). If set, `response_schema` must be omitted, but `response_mime_type` is required. While the full JSON Schema may be sent, not all features are supported. Specifically, only the following properties are supported: - `$id` - `$defs` - `$ref` - `$anchor` - `type` - `format` - `title` - `description` - `enum` (for strings and numbers) - `items` - `prefixItems` - `minItems` - `maxItems` - `minimum` - `maximum` - `anyOf` - `oneOf` (interpreted the same as `anyOf`) - `properties` - `additionalProperties` - `required` The non-standard `propertyOrdering` property may also be set. Cyclic references are unrolled to a limited degree and, as such, may only be used within non-required properties. (Nullable properties are not sufficient.) If `$ref` is set on a sub-schema, no other properties, except for than those starting as a `$`, may be set.
    "responseLogprobs": True or False, # Optional. If true, export the logprobs results in response.
    "responseMimeType": "A String", # Optional. Output response mimetype of the generated candidate text. Supported mimetype: - `text/plain`: (default) Text output. - `application/json`: JSON response in the candidates. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
    "responseModalities": [ # Optional. The modalities of the response.
      "A String",
    ],
    "responseSchema": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. The `Schema` object allows the definition of input and output data types. These types can be objects, but also primitives and arrays. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema). If set, a compatible response_mime_type must also be set. Compatible mimetypes: `application/json`: Schema for JSON response.
      "additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
      "anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
        # Object with schema name: GoogleCloudAiplatformV1Schema
      ],
      "default": "", # Optional. Default value of the data.
      "defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
        "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
      },
      "description": "A String", # Optional. The description of the data.
      "enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
        "A String",
      ],
      "example": "", # Optional. Example of the object. Will only populated when the object is the root.
      "format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
      "items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
      "maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
      "maxLength": "A String", # Optional. Maximum length of the Type.STRING
      "maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
      "maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
      "minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
      "minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
      "minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
      "minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
      "nullable": True or False, # Optional. Indicates if the value may be null.
      "pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
      "properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
        "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
      },
      "propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
        "A String",
      ],
      "ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
      "required": [ # Optional. Required properties of Type.OBJECT.
        "A String",
      ],
      "title": "A String", # Optional. The title of the Schema.
      "type": "A String", # Optional. The type of the data.
    },
    "routingConfig": { # The configuration for routing the request to a specific model. # Optional. Routing configuration.
      "autoMode": { # When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference. # Automated routing.
        "modelRoutingPreference": "A String", # The model routing preference.
      },
      "manualMode": { # When manual routing is set, the specified model will be used directly. # Manual routing.
        "modelName": "A String", # The model name to use. Only the public LLM models are accepted. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
      },
    },
    "seed": 42, # Optional. Seed.
    "speechConfig": { # The speech generation config. # Optional. The speech generation config.
      "languageCode": "A String", # Optional. Language code (ISO 639. e.g. en-US) for the speech synthesization.
      "voiceConfig": { # The configuration for the voice to use. # The configuration for the speaker to use.
        "prebuiltVoiceConfig": { # The configuration for the prebuilt speaker to use. # The configuration for the prebuilt voice to use.
          "voiceName": "A String", # The name of the preset voice to use.
        },
      },
    },
    "stopSequences": [ # Optional. Stop sequences.
      "A String",
    ],
    "temperature": 3.14, # Optional. Controls the randomness of predictions.
    "thinkingConfig": { # Config for thinking features. # Optional. Config for thinking features. An error will be returned if this field is set for models that don't support thinking.
      "includeThoughts": True or False, # Optional. Indicates whether to include thoughts in the response. If true, thoughts are returned only when available.
      "thinkingBudget": 42, # Optional. Indicates the thinking budget in tokens.
    },
    "topK": 3.14, # Optional. If specified, top-k sampling will be used.
    "topP": 3.14, # Optional. If specified, nucleus sampling will be used.
  },
  "instances": [ # Optional. The instances that are the input to token counting call. Schema is identical to the prediction schema of the underlying model.
    "",
  ],
  "model": "A String", # Optional. The name of the publisher model requested to serve the prediction. Format: `projects/{project}/locations/{location}/publishers/*/models/*`
  "systemInstruction": { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Optional. The user provided system instructions for the model. Note: only text should be used in parts and content in each part will be in a separate paragraph.
    "parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
      { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
        "codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
          "outcome": "A String", # Required. Outcome of the code execution.
          "output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
        },
        "executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
          "code": "A String", # Required. The code to be executed.
          "language": "A String", # Required. Programming language of the `code`.
        },
        "fileData": { # URI based data. # Optional. URI based data.
          "displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
          "fileUri": "A String", # Required. URI.
          "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
        },
        "functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
          "args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
            "a_key": "", # Properties of the object.
          },
          "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
        },
        "functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
          "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
          "response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
            "a_key": "", # Properties of the object.
          },
        },
        "inlineData": { # Content blob. # Optional. Inlined bytes data.
          "data": "A String", # Required. Raw bytes.
          "displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
          "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
        },
        "text": "A String", # Optional. Text part (can be code).
        "thought": True or False, # Optional. Indicates if the part is thought from the model.
        "thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
        "videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
          "endOffset": "A String", # Optional. The end offset of the video.
          "fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
          "startOffset": "A String", # Optional. The start offset of the video.
        },
      },
    ],
    "role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
  },
  "tools": [ # Optional. A list of `Tools` the model may use to generate the next response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model.
    { # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
      "codeExecution": { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
      },
      "enterpriseWebSearch": { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
        "excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
          "A String",
        ],
      },
      "functionDeclarations": [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
        { # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
          "description": "A String", # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
          "name": "A String", # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
          "parameters": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
            "additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
            "anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
              # Object with schema name: GoogleCloudAiplatformV1Schema
            ],
            "default": "", # Optional. Default value of the data.
            "defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
              "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
            },
            "description": "A String", # Optional. The description of the data.
            "enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
              "A String",
            ],
            "example": "", # Optional. Example of the object. Will only populated when the object is the root.
            "format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
            "items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
            "maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
            "maxLength": "A String", # Optional. Maximum length of the Type.STRING
            "maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
            "maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
            "minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
            "minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
            "minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
            "minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
            "nullable": True or False, # Optional. Indicates if the value may be null.
            "pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
            "properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
              "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
            },
            "propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
              "A String",
            ],
            "ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
            "required": [ # Optional. Required properties of Type.OBJECT.
              "A String",
            ],
            "title": "A String", # Optional. The title of the Schema.
            "type": "A String", # Optional. The type of the data.
          },
          "parametersJsonSchema": "", # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { "type": "object", "properties": { "name": { "type": "string" }, "age": { "type": "integer" } }, "additionalProperties": false, "required": ["name", "age"], "propertyOrdering": ["name", "age"] } ``` This field is mutually exclusive with `parameters`.
          "response": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
            "additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
            "anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
              # Object with schema name: GoogleCloudAiplatformV1Schema
            ],
            "default": "", # Optional. Default value of the data.
            "defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
              "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
            },
            "description": "A String", # Optional. The description of the data.
            "enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
              "A String",
            ],
            "example": "", # Optional. Example of the object. Will only populated when the object is the root.
            "format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
            "items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
            "maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
            "maxLength": "A String", # Optional. Maximum length of the Type.STRING
            "maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
            "maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
            "minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
            "minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
            "minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
            "minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
            "nullable": True or False, # Optional. Indicates if the value may be null.
            "pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
            "properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
              "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
            },
            "propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
              "A String",
            ],
            "ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
            "required": [ # Optional. Required properties of Type.OBJECT.
              "A String",
            ],
            "title": "A String", # Optional. The title of the Schema.
            "type": "A String", # Optional. The type of the data.
          },
          "responseJsonSchema": "", # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
        },
      ],
      "googleMaps": { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
      },
      "googleSearch": { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
        "excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: ["amazon.com", "facebook.com"].
          "A String",
        ],
      },
      "googleSearchRetrieval": { # Tool to retrieve public web data for grounding, powered by Google. # Optional. GoogleSearchRetrieval tool type. Specialized retrieval tool that is powered by Google search.
        "dynamicRetrievalConfig": { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
          "dynamicThreshold": 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
          "mode": "A String", # The mode of the predictor to be used in dynamic retrieval.
        },
      },
      "retrieval": { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
        "disableAttribution": True or False, # Optional. Deprecated. This option is no longer supported.
        "externalApi": { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
          "apiAuth": { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
            "apiKeyConfig": { # The API secret. # The API secret.
              "apiKeySecretVersion": "A String", # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
              "apiKeyString": "A String", # The API key string. Either this or `api_key_secret_version` must be set.
            },
          },
          "apiSpec": "A String", # The API spec that the external API implements.
          "authConfig": { # Auth configuration to run the extension. # The authentication config to access the API.
            "apiKeyConfig": { # Config for authentication with API key. # Config for API key auth.
              "apiKeySecret": "A String", # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
              "apiKeyString": "A String", # Optional. The API key to be used in the request directly.
              "httpElementLocation": "A String", # Optional. The location of the API key.
              "name": "A String", # Optional. The parameter name of the API key. E.g. If the API request is "https://example.com/act?api_key=", "api_key" would be the parameter name.
            },
            "authType": "A String", # Type of auth scheme.
            "googleServiceAccountConfig": { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
              "serviceAccount": "A String", # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
            },
            "httpBasicAuthConfig": { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
              "credentialSecret": "A String", # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
            },
            "oauthConfig": { # Config for user oauth. # Config for user oauth.
              "accessToken": "A String", # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
              "serviceAccount": "A String", # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
            },
            "oidcConfig": { # Config for user OIDC auth. # Config for user OIDC auth.
              "idToken": "A String", # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
              "serviceAccount": "A String", # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
            },
          },
          "elasticSearchParams": { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
            "index": "A String", # The ElasticSearch index to use.
            "numHits": 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
            "searchTemplate": "A String", # The ElasticSearch search template to use.
          },
          "endpoint": "A String", # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
          "simpleSearchParams": { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
          },
        },
        "vertexAiSearch": { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
          "dataStoreSpecs": [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
            { # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
              "dataStore": "A String", # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
              "filter": "A String", # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
            },
          ],
          "datastore": "A String", # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
          "engine": "A String", # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
          "filter": "A String", # Optional. Filter strings to be passed to the search API.
          "maxResults": 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
        },
        "vertexRagStore": { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
          "ragResources": [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
            { # The definition of the Rag resource.
              "ragCorpus": "A String", # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
              "ragFileIds": [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
                "A String",
              ],
            },
          ],
          "ragRetrievalConfig": { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
            "filter": { # Config for filters. # Optional. Config for filters.
              "metadataFilter": "A String", # Optional. String for metadata filtering.
              "vectorDistanceThreshold": 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
              "vectorSimilarityThreshold": 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
            },
            "ranking": { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
              "llmRanker": { # Config for LlmRanker. # Optional. Config for LlmRanker.
                "modelName": "A String", # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
              },
              "rankService": { # Config for Rank Service. # Optional. Config for Rank Service.
                "modelName": "A String", # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
              },
            },
            "topK": 42, # Optional. The number of contexts to retrieve.
          },
          "similarityTopK": 42, # Optional. Number of top k results to return from the selected corpora.
          "vectorDistanceThreshold": 3.14, # Optional. Only return results with vector distance smaller than the threshold.
        },
      },
      "urlContext": { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
      },
    },
  ],
}
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format
Returns:
  An object of the form:
    { # Response message for PredictionService.CountTokens.
  "promptTokensDetails": [ # Output only. List of modalities that were processed in the request input.
    { # Represents token counting info for a single modality.
      "modality": "A String", # The modality associated with this token count.
      "tokenCount": 42, # Number of tokens.
    },
  ],
  "totalBillableCharacters": 42, # The total number of billable characters counted across all instances from the request.
  "totalTokens": 42, # The total number of tokens counted across all instances from the request.
}</pre>
</div>
<div class="method">
    <code class="details" id="fetchPredictOperation">fetchPredictOperation(endpoint, body=None, x__xgafv=None)</code>
  <pre>Fetch an asynchronous online prediction operation.
Args:
  endpoint: string, Required. The name of the Endpoint requested to serve the prediction. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}` or `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` (required)
  body: object, The request body.
    The object takes the form of:
{ # Request message for PredictionService.FetchPredictOperation.
  "operationName": "A String", # Required. The server-assigned name for the operation.
}
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format
Returns:
  An object of the form:
    { # This resource represents a long-running operation that is the result of a network API call.
  "done": True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  "error": { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    "code": 42, # The status code, which should be an enum value of google.rpc.Code.
    "details": [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        "a_key": "", # Properties of the object. Contains field @type with type URL.
      },
    ],
    "message": "A String", # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  "metadata": { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    "a_key": "", # Properties of the object. Contains field @type with type URL.
  },
  "name": "A String", # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  "response": { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    "a_key": "", # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>
<div class="method">
    <code class="details" id="generateContent">generateContent(model, body=None, x__xgafv=None)</code>
  <pre>Generate content with multimodal inputs.
Args:
  model: string, Required. The fully qualified name of the publisher model or tuned model endpoint to use. Publisher model format: `projects/{project}/locations/{location}/publishers/*/models/*` Tuned model endpoint format: `projects/{project}/locations/{location}/endpoints/{endpoint}` (required)
  body: object, The request body.
    The object takes the form of:
{ # Request message for [PredictionService.GenerateContent].
  "cachedContent": "A String", # Optional. The name of the cached content used as context to serve the prediction. Note: only used in explicit caching, where users can have control over caching (e.g. what content to cache) and enjoy guaranteed cost savings. Format: `projects/{project}/locations/{location}/cachedContents/{cachedContent}`
  "contents": [ # Required. The content of the current conversation with the model. For single-turn queries, this is a single instance. For multi-turn queries, this is a repeated field that contains conversation history + latest request.
    { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
      "parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
        { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
          "codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
            "outcome": "A String", # Required. Outcome of the code execution.
            "output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
          },
          "executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
            "code": "A String", # Required. The code to be executed.
            "language": "A String", # Required. Programming language of the `code`.
          },
          "fileData": { # URI based data. # Optional. URI based data.
            "displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            "fileUri": "A String", # Required. URI.
            "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
          },
          "functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
            "args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
              "a_key": "", # Properties of the object.
            },
            "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
          },
          "functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
            "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
            "response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
              "a_key": "", # Properties of the object.
            },
          },
          "inlineData": { # Content blob. # Optional. Inlined bytes data.
            "data": "A String", # Required. Raw bytes.
            "displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
          },
          "text": "A String", # Optional. Text part (can be code).
          "thought": True or False, # Optional. Indicates if the part is thought from the model.
          "thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
          "videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
            "endOffset": "A String", # Optional. The end offset of the video.
            "fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
            "startOffset": "A String", # Optional. The start offset of the video.
          },
        },
      ],
      "role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
    },
  ],
  "generationConfig": { # Generation config. # Optional. Generation config.
    "audioTimestamp": True or False, # Optional. If enabled, audio timestamp will be included in the request to the model.
    "candidateCount": 42, # Optional. Number of candidates to generate.
    "enableAffectiveDialog": True or False, # Optional. If enabled, the model will detect emotions and adapt its responses accordingly.
    "frequencyPenalty": 3.14, # Optional. Frequency penalties.
    "logprobs": 42, # Optional. Logit probabilities.
    "maxOutputTokens": 42, # Optional. The maximum number of output tokens to generate per message.
    "mediaResolution": "A String", # Optional. If specified, the media resolution specified will be used.
    "presencePenalty": 3.14, # Optional. Positive penalties.
    "responseJsonSchema": "", # Optional. Output schema of the generated response. This is an alternative to `response_schema` that accepts [JSON Schema](https://json-schema.org/). If set, `response_schema` must be omitted, but `response_mime_type` is required. While the full JSON Schema may be sent, not all features are supported. Specifically, only the following properties are supported: - `$id` - `$defs` - `$ref` - `$anchor` - `type` - `format` - `title` - `description` - `enum` (for strings and numbers) - `items` - `prefixItems` - `minItems` - `maxItems` - `minimum` - `maximum` - `anyOf` - `oneOf` (interpreted the same as `anyOf`) - `properties` - `additionalProperties` - `required` The non-standard `propertyOrdering` property may also be set. Cyclic references are unrolled to a limited degree and, as such, may only be used within non-required properties. (Nullable properties are not sufficient.) If `$ref` is set on a sub-schema, no other properties, except for than those starting as a `$`, may be set.
    "responseLogprobs": True or False, # Optional. If true, export the logprobs results in response.
    "responseMimeType": "A String", # Optional. Output response mimetype of the generated candidate text. Supported mimetype: - `text/plain`: (default) Text output. - `application/json`: JSON response in the candidates. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
    "responseModalities": [ # Optional. The modalities of the response.
      "A String",
    ],
    "responseSchema": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. The `Schema` object allows the definition of input and output data types. These types can be objects, but also primitives and arrays. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema). If set, a compatible response_mime_type must also be set. Compatible mimetypes: `application/json`: Schema for JSON response.
      "additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
      "anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
        # Object with schema name: GoogleCloudAiplatformV1Schema
      ],
      "default": "", # Optional. Default value of the data.
      "defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
        "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
      },
      "description": "A String", # Optional. The description of the data.
      "enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
        "A String",
      ],
      "example": "", # Optional. Example of the object. Will only populated when the object is the root.
      "format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
      "items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
      "maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
      "maxLength": "A String", # Optional. Maximum length of the Type.STRING
      "maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
      "maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
      "minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
      "minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
      "minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
      "minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
      "nullable": True or False, # Optional. Indicates if the value may be null.
      "pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
      "properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
        "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
      },
      "propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
        "A String",
      ],
      "ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
      "required": [ # Optional. Required properties of Type.OBJECT.
        "A String",
      ],
      "title": "A String", # Optional. The title of the Schema.
      "type": "A String", # Optional. The type of the data.
    },
    "routingConfig": { # The configuration for routing the request to a specific model. # Optional. Routing configuration.
      "autoMode": { # When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference. # Automated routing.
        "modelRoutingPreference": "A String", # The model routing preference.
      },
      "manualMode": { # When manual routing is set, the specified model will be used directly. # Manual routing.
        "modelName": "A String", # The model name to use. Only the public LLM models are accepted. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
      },
    },
    "seed": 42, # Optional. Seed.
    "speechConfig": { # The speech generation config. # Optional. The speech generation config.
      "languageCode": "A String", # Optional. Language code (ISO 639. e.g. en-US) for the speech synthesization.
      "voiceConfig": { # The configuration for the voice to use. # The configuration for the speaker to use.
        "prebuiltVoiceConfig": { # The configuration for the prebuilt speaker to use. # The configuration for the prebuilt voice to use.
          "voiceName": "A String", # The name of the preset voice to use.
        },
      },
    },
    "stopSequences": [ # Optional. Stop sequences.
      "A String",
    ],
    "temperature": 3.14, # Optional. Controls the randomness of predictions.
    "thinkingConfig": { # Config for thinking features. # Optional. Config for thinking features. An error will be returned if this field is set for models that don't support thinking.
      "includeThoughts": True or False, # Optional. Indicates whether to include thoughts in the response. If true, thoughts are returned only when available.
      "thinkingBudget": 42, # Optional. Indicates the thinking budget in tokens.
    },
    "topK": 3.14, # Optional. If specified, top-k sampling will be used.
    "topP": 3.14, # Optional. If specified, nucleus sampling will be used.
  },
  "labels": { # Optional. The labels with user-defined metadata for the request. It is used for billing and reporting only. Label keys and values can be no longer than 63 characters (Unicode codepoints) and can only contain lowercase letters, numeric characters, underscores, and dashes. International characters are allowed. Label values are optional. Label keys must start with a letter.
    "a_key": "A String",
  },
  "modelArmorConfig": { # Configuration for Model Armor integrations of prompt and responses. # Optional. Settings for prompt and response sanitization using the Model Armor service. If supplied, safety_settings must not be supplied.
    "promptTemplateName": "A String", # Optional. The name of the Model Armor template to use for prompt sanitization.
    "responseTemplateName": "A String", # Optional. The name of the Model Armor template to use for response sanitization.
  },
  "safetySettings": [ # Optional. Per request settings for blocking unsafe content. Enforced on GenerateContentResponse.candidates.
    { # Safety settings.
      "category": "A String", # Required. Harm category.
      "method": "A String", # Optional. Specify if the threshold is used for probability or severity score. If not specified, the threshold is used for probability score.
      "threshold": "A String", # Required. The harm block threshold.
    },
  ],
  "systemInstruction": { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Optional. The user provided system instructions for the model. Note: only text should be used in parts and content in each part will be in a separate paragraph.
    "parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
      { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
        "codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
          "outcome": "A String", # Required. Outcome of the code execution.
          "output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
        },
        "executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
          "code": "A String", # Required. The code to be executed.
          "language": "A String", # Required. Programming language of the `code`.
        },
        "fileData": { # URI based data. # Optional. URI based data.
          "displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
          "fileUri": "A String", # Required. URI.
          "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
        },
        "functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
          "args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
            "a_key": "", # Properties of the object.
          },
          "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
        },
        "functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
          "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
          "response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
            "a_key": "", # Properties of the object.
          },
        },
        "inlineData": { # Content blob. # Optional. Inlined bytes data.
          "data": "A String", # Required. Raw bytes.
          "displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
          "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
        },
        "text": "A String", # Optional. Text part (can be code).
        "thought": True or False, # Optional. Indicates if the part is thought from the model.
        "thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
        "videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
          "endOffset": "A String", # Optional. The end offset of the video.
          "fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
          "startOffset": "A String", # Optional. The start offset of the video.
        },
      },
    ],
    "role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
  },
  "toolConfig": { # Tool config. This config is shared for all tools provided in the request. # Optional. Tool config. This config is shared for all tools provided in the request.
    "functionCallingConfig": { # Function calling config. # Optional. Function calling config.
      "allowedFunctionNames": [ # Optional. Function names to call. Only set when the Mode is ANY. Function names should match [FunctionDeclaration.name]. With mode set to ANY, model will predict a function call from the set of function names provided.
        "A String",
      ],
      "mode": "A String", # Optional. Function calling mode.
    },
    "retrievalConfig": { # Retrieval config. # Optional. Retrieval config.
      "languageCode": "A String", # The language code of the user.
      "latLng": { # An object that represents a latitude/longitude pair. This is expressed as a pair of doubles to represent degrees latitude and degrees longitude. Unless specified otherwise, this object must conform to the WGS84 standard. Values must be within normalized ranges. # The location of the user.
        "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
        "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
      },
    },
  },
  "tools": [ # Optional. A list of `Tools` the model may use to generate the next response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model.
    { # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
      "codeExecution": { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
      },
      "enterpriseWebSearch": { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
        "excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
          "A String",
        ],
      },
      "functionDeclarations": [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
        { # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
          "description": "A String", # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
          "name": "A String", # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
          "parameters": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
            "additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
            "anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
              # Object with schema name: GoogleCloudAiplatformV1Schema
            ],
            "default": "", # Optional. Default value of the data.
            "defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
              "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
            },
            "description": "A String", # Optional. The description of the data.
            "enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
              "A String",
            ],
            "example": "", # Optional. Example of the object. Will only populated when the object is the root.
            "format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
            "items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
            "maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
            "maxLength": "A String", # Optional. Maximum length of the Type.STRING
            "maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
            "maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
            "minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
            "minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
            "minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
            "minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
            "nullable": True or False, # Optional. Indicates if the value may be null.
            "pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
            "properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
              "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
            },
            "propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
              "A String",
            ],
            "ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
            "required": [ # Optional. Required properties of Type.OBJECT.
              "A String",
            ],
            "title": "A String", # Optional. The title of the Schema.
            "type": "A String", # Optional. The type of the data.
          },
          "parametersJsonSchema": "", # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { "type": "object", "properties": { "name": { "type": "string" }, "age": { "type": "integer" } }, "additionalProperties": false, "required": ["name", "age"], "propertyOrdering": ["name", "age"] } ``` This field is mutually exclusive with `parameters`.
          "response": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
            "additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
            "anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
              # Object with schema name: GoogleCloudAiplatformV1Schema
            ],
            "default": "", # Optional. Default value of the data.
            "defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
              "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
            },
            "description": "A String", # Optional. The description of the data.
            "enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
              "A String",
            ],
            "example": "", # Optional. Example of the object. Will only populated when the object is the root.
            "format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
            "items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
            "maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
            "maxLength": "A String", # Optional. Maximum length of the Type.STRING
            "maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
            "maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
            "minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
            "minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
            "minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
            "minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
            "nullable": True or False, # Optional. Indicates if the value may be null.
            "pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
            "properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
              "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
            },
            "propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
              "A String",
            ],
            "ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
            "required": [ # Optional. Required properties of Type.OBJECT.
              "A String",
            ],
            "title": "A String", # Optional. The title of the Schema.
            "type": "A String", # Optional. The type of the data.
          },
          "responseJsonSchema": "", # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
        },
      ],
      "googleMaps": { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
      },
      "googleSearch": { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
        "excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: ["amazon.com", "facebook.com"].
          "A String",
        ],
      },
      "googleSearchRetrieval": { # Tool to retrieve public web data for grounding, powered by Google. # Optional. GoogleSearchRetrieval tool type. Specialized retrieval tool that is powered by Google search.
        "dynamicRetrievalConfig": { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
          "dynamicThreshold": 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
          "mode": "A String", # The mode of the predictor to be used in dynamic retrieval.
        },
      },
      "retrieval": { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
        "disableAttribution": True or False, # Optional. Deprecated. This option is no longer supported.
        "externalApi": { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
          "apiAuth": { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
            "apiKeyConfig": { # The API secret. # The API secret.
              "apiKeySecretVersion": "A String", # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
              "apiKeyString": "A String", # The API key string. Either this or `api_key_secret_version` must be set.
            },
          },
          "apiSpec": "A String", # The API spec that the external API implements.
          "authConfig": { # Auth configuration to run the extension. # The authentication config to access the API.
            "apiKeyConfig": { # Config for authentication with API key. # Config for API key auth.
              "apiKeySecret": "A String", # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
              "apiKeyString": "A String", # Optional. The API key to be used in the request directly.
              "httpElementLocation": "A String", # Optional. The location of the API key.
              "name": "A String", # Optional. The parameter name of the API key. E.g. If the API request is "https://example.com/act?api_key=", "api_key" would be the parameter name.
            },
            "authType": "A String", # Type of auth scheme.
            "googleServiceAccountConfig": { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
              "serviceAccount": "A String", # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
            },
            "httpBasicAuthConfig": { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
              "credentialSecret": "A String", # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
            },
            "oauthConfig": { # Config for user oauth. # Config for user oauth.
              "accessToken": "A String", # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
              "serviceAccount": "A String", # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
            },
            "oidcConfig": { # Config for user OIDC auth. # Config for user OIDC auth.
              "idToken": "A String", # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
              "serviceAccount": "A String", # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
            },
          },
          "elasticSearchParams": { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
            "index": "A String", # The ElasticSearch index to use.
            "numHits": 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
            "searchTemplate": "A String", # The ElasticSearch search template to use.
          },
          "endpoint": "A String", # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
          "simpleSearchParams": { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
          },
        },
        "vertexAiSearch": { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
          "dataStoreSpecs": [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
            { # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
              "dataStore": "A String", # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
              "filter": "A String", # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
            },
          ],
          "datastore": "A String", # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
          "engine": "A String", # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
          "filter": "A String", # Optional. Filter strings to be passed to the search API.
          "maxResults": 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
        },
        "vertexRagStore": { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
          "ragResources": [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
            { # The definition of the Rag resource.
              "ragCorpus": "A String", # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
              "ragFileIds": [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
                "A String",
              ],
            },
          ],
          "ragRetrievalConfig": { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
            "filter": { # Config for filters. # Optional. Config for filters.
              "metadataFilter": "A String", # Optional. String for metadata filtering.
              "vectorDistanceThreshold": 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
              "vectorSimilarityThreshold": 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
            },
            "ranking": { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
              "llmRanker": { # Config for LlmRanker. # Optional. Config for LlmRanker.
                "modelName": "A String", # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
              },
              "rankService": { # Config for Rank Service. # Optional. Config for Rank Service.
                "modelName": "A String", # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
              },
            },
            "topK": 42, # Optional. The number of contexts to retrieve.
          },
          "similarityTopK": 42, # Optional. Number of top k results to return from the selected corpora.
          "vectorDistanceThreshold": 3.14, # Optional. Only return results with vector distance smaller than the threshold.
        },
      },
      "urlContext": { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
      },
    },
  ],
}
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format
Returns:
  An object of the form:
    { # Response message for [PredictionService.GenerateContent].
  "candidates": [ # Output only. Generated candidates.
    { # A response candidate generated from the model.
      "avgLogprobs": 3.14, # Output only. Average log probability score of the candidate.
      "citationMetadata": { # A collection of source attributions for a piece of content. # Output only. Source attribution of the generated content.
        "citations": [ # Output only. List of citations.
          { # Source attributions for content.
            "endIndex": 42, # Output only. End index into the content.
            "license": "A String", # Output only. License of the attribution.
            "publicationDate": { # Represents a whole or partial calendar date, such as a birthday. The time of day and time zone are either specified elsewhere or are insignificant. The date is relative to the Gregorian Calendar. This can represent one of the following: * A full date, with non-zero year, month, and day values. * A month and day, with a zero year (for example, an anniversary). * A year on its own, with a zero month and a zero day. * A year and month, with a zero day (for example, a credit card expiration date). Related types: * google.type.TimeOfDay * google.type.DateTime * google.protobuf.Timestamp # Output only. Publication date of the attribution.
              "day": 42, # Day of a month. Must be from 1 to 31 and valid for the year and month, or 0 to specify a year by itself or a year and month where the day isn't significant.
              "month": 42, # Month of a year. Must be from 1 to 12, or 0 to specify a year without a month and day.
              "year": 42, # Year of the date. Must be from 1 to 9999, or 0 to specify a date without a year.
            },
            "startIndex": 42, # Output only. Start index into the content.
            "title": "A String", # Output only. Title of the attribution.
            "uri": "A String", # Output only. Url reference of the attribution.
          },
        ],
      },
      "content": { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Output only. Content parts of the candidate.
        "parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
          { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
            "codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
              "outcome": "A String", # Required. Outcome of the code execution.
              "output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
            },
            "executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
              "code": "A String", # Required. The code to be executed.
              "language": "A String", # Required. Programming language of the `code`.
            },
            "fileData": { # URI based data. # Optional. URI based data.
              "displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
              "fileUri": "A String", # Required. URI.
              "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
            },
            "functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
              "args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                "a_key": "", # Properties of the object.
              },
              "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
            },
            "functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
              "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
              "response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
                "a_key": "", # Properties of the object.
              },
            },
            "inlineData": { # Content blob. # Optional. Inlined bytes data.
              "data": "A String", # Required. Raw bytes.
              "displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
              "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
            },
            "text": "A String", # Optional. Text part (can be code).
            "thought": True or False, # Optional. Indicates if the part is thought from the model.
            "thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
            "videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
              "endOffset": "A String", # Optional. The end offset of the video.
              "fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
              "startOffset": "A String", # Optional. The start offset of the video.
            },
          },
        ],
        "role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
      },
      "finishMessage": "A String", # Output only. Describes the reason the mode stopped generating tokens in more detail. This is only filled when `finish_reason` is set.
      "finishReason": "A String", # Output only. The reason why the model stopped generating tokens. If empty, the model has not stopped generating the tokens.
      "groundingMetadata": { # Metadata returned to client when grounding is enabled. # Output only. Metadata specifies sources used to ground generated content.
        "googleMapsWidgetContextToken": "A String", # Optional. Output only. Resource name of the Google Maps widget context token to be used with the PlacesContextElement widget to render contextual data. This is populated only for Google Maps grounding.
        "groundingChunks": [ # List of supporting references retrieved from specified grounding source.
          { # Grounding chunk.
            "maps": { # Chunk from Google Maps. # Grounding chunk from Google Maps.
              "placeAnswerSources": { # Sources used to generate the place answer. # Sources used to generate the place answer. This includes review snippets and photos that were used to generate the answer, as well as uris to flag content.
                "flagContentUri": "A String", # A link where users can flag a problem with the generated answer.
                "reviewSnippets": [ # Snippets of reviews that are used to generate the answer.
                  { # Encapsulates a review snippet.
                    "authorAttribution": { # Author attribution for a photo or review. # This review's author.
                      "displayName": "A String", # Name of the author of the Photo or Review.
                      "photoUri": "A String", # Profile photo URI of the author of the Photo or Review.
                      "uri": "A String", # URI of the author of the Photo or Review.
                    },
                    "flagContentUri": "A String", # A link where users can flag a problem with the review.
                    "googleMapsUri": "A String", # A link to show the review on Google Maps.
                    "relativePublishTimeDescription": "A String", # A string of formatted recent time, expressing the review time relative to the current time in a form appropriate for the language and country.
                    "review": "A String", # A reference representing this place review which may be used to look up this place review again.
                  },
                ],
              },
              "placeId": "A String", # This Place's resource name, in `places/{place_id}` format. Can be used to look up the Place.
              "text": "A String", # Text of the chunk.
              "title": "A String", # Title of the chunk.
              "uri": "A String", # URI reference of the chunk.
            },
            "retrievedContext": { # Chunk from context retrieved by the retrieval tools. # Grounding chunk from context retrieved by the retrieval tools.
              "documentName": "A String", # Output only. The full document name for the referenced Vertex AI Search document.
              "ragChunk": { # A RagChunk includes the content of a chunk of a RagFile, and associated metadata. # Additional context for the RAG retrieval result. This is only populated when using the RAG retrieval tool.
                "pageSpan": { # Represents where the chunk starts and ends in the document. # If populated, represents where the chunk starts and ends in the document.
                  "firstPage": 42, # Page where chunk starts in the document. Inclusive. 1-indexed.
                  "lastPage": 42, # Page where chunk ends in the document. Inclusive. 1-indexed.
                },
                "text": "A String", # The content of the chunk.
              },
              "text": "A String", # Text of the attribution.
              "title": "A String", # Title of the attribution.
              "uri": "A String", # URI reference of the attribution.
            },
            "web": { # Chunk from the web. # Grounding chunk from the web.
              "domain": "A String", # Domain of the (original) URI.
              "title": "A String", # Title of the chunk.
              "uri": "A String", # URI reference of the chunk.
            },
          },
        ],
        "groundingSupports": [ # Optional. List of grounding support.
          { # Grounding support.
            "confidenceScores": [ # Confidence score of the support references. Ranges from 0 to 1. 1 is the most confident. For Gemini 2.0 and before, this list must have the same size as the grounding_chunk_indices. For Gemini 2.5 and after, this list will be empty and should be ignored.
              3.14,
            ],
            "groundingChunkIndices": [ # A list of indices (into 'grounding_chunk') specifying the citations associated with the claim. For instance [1,3,4] means that grounding_chunk[1], grounding_chunk[3], grounding_chunk[4] are the retrieved content attributed to the claim.
              42,
            ],
            "segment": { # Segment of the content. # Segment of the content this support belongs to.
              "endIndex": 42, # Output only. End index in the given Part, measured in bytes. Offset from the start of the Part, exclusive, starting at zero.
              "partIndex": 42, # Output only. The index of a Part object within its parent Content object.
              "startIndex": 42, # Output only. Start index in the given Part, measured in bytes. Offset from the start of the Part, inclusive, starting at zero.
              "text": "A String", # Output only. The text corresponding to the segment from the response.
            },
          },
        ],
        "retrievalMetadata": { # Metadata related to retrieval in the grounding flow. # Optional. Output only. Retrieval metadata.
          "googleSearchDynamicRetrievalScore": 3.14, # Optional. Score indicating how likely information from Google Search could help answer the prompt. The score is in the range `[0, 1]`, where 0 is the least likely and 1 is the most likely. This score is only populated when Google Search grounding and dynamic retrieval is enabled. It will be compared to the threshold to determine whether to trigger Google Search.
        },
        "searchEntryPoint": { # Google search entry point. # Optional. Google search entry for the following-up web searches.
          "renderedContent": "A String", # Optional. Web content snippet that can be embedded in a web page or an app webview.
          "sdkBlob": "A String", # Optional. Base64 encoded JSON representing array of tuple.
        },
        "webSearchQueries": [ # Optional. Web search queries for the following-up web search.
          "A String",
        ],
      },
      "index": 42, # Output only. Index of the candidate.
      "logprobsResult": { # Logprobs Result # Output only. Log-likelihood scores for the response tokens and top tokens
        "chosenCandidates": [ # Length = total number of decoding steps. The chosen candidates may or may not be in top_candidates.
          { # Candidate for the logprobs token and score.
            "logProbability": 3.14, # The candidate's log probability.
            "token": "A String", # The candidate's token string value.
            "tokenId": 42, # The candidate's token id value.
          },
        ],
        "topCandidates": [ # Length = total number of decoding steps.
          { # Candidates with top log probabilities at each decoding step.
            "candidates": [ # Sorted by log probability in descending order.
              { # Candidate for the logprobs token and score.
                "logProbability": 3.14, # The candidate's log probability.
                "token": "A String", # The candidate's token string value.
                "tokenId": 42, # The candidate's token id value.
              },
            ],
          },
        ],
      },
      "safetyRatings": [ # Output only. List of ratings for the safety of a response candidate. There is at most one rating per category.
        { # Safety rating corresponding to the generated content.
          "blocked": True or False, # Output only. Indicates whether the content was filtered out because of this rating.
          "category": "A String", # Output only. Harm category.
          "overwrittenThreshold": "A String", # Output only. The overwritten threshold for the safety category of Gemini 2.0 image out. If minors are detected in the output image, the threshold of each safety category will be overwritten if user sets a lower threshold.
          "probability": "A String", # Output only. Harm probability levels in the content.
          "probabilityScore": 3.14, # Output only. Harm probability score.
          "severity": "A String", # Output only. Harm severity levels in the content.
          "severityScore": 3.14, # Output only. Harm severity score.
        },
      ],
      "urlContextMetadata": { # Metadata related to url context retrieval tool. # Output only. Metadata related to url context retrieval tool.
        "urlMetadata": [ # Output only. List of url context.
          { # Context of the a single url retrieval.
            "retrievedUrl": "A String", # Retrieved url by the tool.
            "urlRetrievalStatus": "A String", # Status of the url retrieval.
          },
        ],
      },
    },
  ],
  "createTime": "A String", # Output only. Timestamp when the request is made to the server.
  "modelVersion": "A String", # Output only. The model version used to generate the response.
  "promptFeedback": { # Content filter results for a prompt sent in the request. # Output only. Content filter results for a prompt sent in the request. Note: Sent only in the first stream chunk. Only happens when no candidates were generated due to content violations.
    "blockReason": "A String", # Output only. Blocked reason.
    "blockReasonMessage": "A String", # Output only. A readable block reason message.
    "safetyRatings": [ # Output only. Safety ratings.
      { # Safety rating corresponding to the generated content.
        "blocked": True or False, # Output only. Indicates whether the content was filtered out because of this rating.
        "category": "A String", # Output only. Harm category.
        "overwrittenThreshold": "A String", # Output only. The overwritten threshold for the safety category of Gemini 2.0 image out. If minors are detected in the output image, the threshold of each safety category will be overwritten if user sets a lower threshold.
        "probability": "A String", # Output only. Harm probability levels in the content.
        "probabilityScore": 3.14, # Output only. Harm probability score.
        "severity": "A String", # Output only. Harm severity levels in the content.
        "severityScore": 3.14, # Output only. Harm severity score.
      },
    ],
  },
  "responseId": "A String", # Output only. response_id is used to identify each response. It is the encoding of the event_id.
  "usageMetadata": { # Usage metadata about response(s). # Usage metadata about the response(s).
    "cacheTokensDetails": [ # Output only. List of modalities of the cached content in the request input.
      { # Represents token counting info for a single modality.
        "modality": "A String", # The modality associated with this token count.
        "tokenCount": 42, # Number of tokens.
      },
    ],
    "cachedContentTokenCount": 42, # Output only. Number of tokens in the cached part in the input (the cached content).
    "candidatesTokenCount": 42, # Number of tokens in the response(s).
    "candidatesTokensDetails": [ # Output only. List of modalities that were returned in the response.
      { # Represents token counting info for a single modality.
        "modality": "A String", # The modality associated with this token count.
        "tokenCount": 42, # Number of tokens.
      },
    ],
    "promptTokenCount": 42, # Number of tokens in the request. When `cached_content` is set, this is still the total effective prompt size meaning this includes the number of tokens in the cached content.
    "promptTokensDetails": [ # Output only. List of modalities that were processed in the request input.
      { # Represents token counting info for a single modality.
        "modality": "A String", # The modality associated with this token count.
        "tokenCount": 42, # Number of tokens.
      },
    ],
    "thoughtsTokenCount": 42, # Output only. Number of tokens present in thoughts output.
    "toolUsePromptTokenCount": 42, # Output only. Number of tokens present in tool-use prompt(s).
    "toolUsePromptTokensDetails": [ # Output only. List of modalities that were processed for tool-use request inputs.
      { # Represents token counting info for a single modality.
        "modality": "A String", # The modality associated with this token count.
        "tokenCount": 42, # Number of tokens.
      },
    ],
    "totalTokenCount": 42, # Total token count for prompt, response candidates, and tool-use prompts (if present).
    "trafficType": "A String", # Output only. Traffic type. This shows whether a request consumes Pay-As-You-Go or Provisioned Throughput quota.
  },
}</pre>
</div>
<div class="method">
    <code class="details" id="predict">predict(endpoint, body=None, x__xgafv=None)</code>
  <pre>Perform an online prediction.
Args:
  endpoint: string, Required. The name of the Endpoint requested to serve the prediction. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}` (required)
  body: object, The request body.
    The object takes the form of:
{ # Request message for PredictionService.Predict.
  "instances": [ # Required. The instances that are the input to the prediction call. A DeployedModel may have an upper limit on the number of instances it supports per request, and when it is exceeded the prediction call errors in case of AutoML Models, or, in case of customer created Models, the behaviour is as documented by that Model. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.
    "",
  ],
  "parameters": "", # The parameters that govern the prediction. The schema of the parameters may be specified via Endpoint's DeployedModels' Model's PredictSchemata's parameters_schema_uri.
}
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format
Returns:
  An object of the form:
    { # Response message for PredictionService.Predict.
  "deployedModelId": "A String", # ID of the Endpoint's DeployedModel that served this prediction.
  "metadata": "", # Output only. Request-level metadata returned by the model. The metadata type will be dependent upon the model implementation.
  "model": "A String", # Output only. The resource name of the Model which is deployed as the DeployedModel that this prediction hits.
  "modelDisplayName": "A String", # Output only. The display name of the Model which is deployed as the DeployedModel that this prediction hits.
  "modelVersionId": "A String", # Output only. The version ID of the Model which is deployed as the DeployedModel that this prediction hits.
  "predictions": [ # The predictions that are the output of the predictions call. The schema of any single prediction may be specified via Endpoint's DeployedModels' Model's PredictSchemata's prediction_schema_uri.
    "",
  ],
}</pre>
</div>
<div class="method">
    <code class="details" id="predictLongRunning">predictLongRunning(endpoint, body=None, x__xgafv=None)</code>
  <pre>
Args:
  endpoint: string, Required. The name of the Endpoint requested to serve the prediction. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}` or `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` (required)
  body: object, The request body.
    The object takes the form of:
{ # Request message for PredictionService.PredictLongRunning.
  "instances": [ # Required. The instances that are the input to the prediction call. A DeployedModel may have an upper limit on the number of instances it supports per request, and when it is exceeded the prediction call errors in case of AutoML Models, or, in case of customer created Models, the behaviour is as documented by that Model. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.
    "",
  ],
  "parameters": "", # Optional. The parameters that govern the prediction. The schema of the parameters may be specified via Endpoint's DeployedModels' Model's PredictSchemata's parameters_schema_uri.
}
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format
Returns:
  An object of the form:
    { # This resource represents a long-running operation that is the result of a network API call.
  "done": True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  "error": { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    "code": 42, # The status code, which should be an enum value of google.rpc.Code.
    "details": [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        "a_key": "", # Properties of the object. Contains field @type with type URL.
      },
    ],
    "message": "A String", # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  "metadata": { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    "a_key": "", # Properties of the object. Contains field @type with type URL.
  },
  "name": "A String", # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  "response": { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    "a_key": "", # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>
<div class="method">
    <code class="details" id="rawPredict">rawPredict(endpoint, body=None, x__xgafv=None)</code>
  <pre>Perform an online prediction with an arbitrary HTTP payload. The response includes the following HTTP headers: * `X-Vertex-AI-Endpoint-Id`: ID of the Endpoint that served this prediction. * `X-Vertex-AI-Deployed-Model-Id`: ID of the Endpoint's DeployedModel that served this prediction.
Args:
  endpoint: string, Required. The name of the Endpoint requested to serve the prediction. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}` (required)
  body: object, The request body.
    The object takes the form of:
{ # Request message for PredictionService.RawPredict.
  "httpBody": { # Message that represents an arbitrary HTTP body. It should only be used for payload formats that can't be represented as JSON, such as raw binary or an HTML page. This message can be used both in streaming and non-streaming API methods in the request as well as the response. It can be used as a top-level request field, which is convenient if one wants to extract parameters from either the URL or HTTP template into the request fields and also want access to the raw HTTP body. Example: message GetResourceRequest { // A unique request id. string request_id = 1; // The raw HTTP body is bound to this field. google.api.HttpBody http_body = 2; } service ResourceService { rpc GetResource(GetResourceRequest) returns (google.api.HttpBody); rpc UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty); } Example with streaming methods: service CaldavService { rpc GetCalendar(stream google.api.HttpBody) returns (stream google.api.HttpBody); rpc UpdateCalendar(stream google.api.HttpBody) returns (stream google.api.HttpBody); } Use of this type only changes how the request and response bodies are handled, all other features will continue to work unchanged. # The prediction input. Supports HTTP headers and arbitrary data payload. A DeployedModel may have an upper limit on the number of instances it supports per request. When this limit it is exceeded for an AutoML model, the RawPredict method returns an error. When this limit is exceeded for a custom-trained model, the behavior varies depending on the model. You can specify the schema for each instance in the predict_schemata.instance_schema_uri field when you create a Model. This schema applies when you deploy the `Model` as a `DeployedModel` to an Endpoint and use the `RawPredict` method.
    "contentType": "A String", # The HTTP Content-Type header value specifying the content type of the body.
    "data": "A String", # The HTTP request/response body as raw binary.
    "extensions": [ # Application specific response metadata. Must be set in the first response for streaming APIs.
      {
        "a_key": "", # Properties of the object. Contains field @type with type URL.
      },
    ],
  },
}
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format
Returns:
  An object of the form:
    { # Message that represents an arbitrary HTTP body. It should only be used for payload formats that can't be represented as JSON, such as raw binary or an HTML page. This message can be used both in streaming and non-streaming API methods in the request as well as the response. It can be used as a top-level request field, which is convenient if one wants to extract parameters from either the URL or HTTP template into the request fields and also want access to the raw HTTP body. Example: message GetResourceRequest { // A unique request id. string request_id = 1; // The raw HTTP body is bound to this field. google.api.HttpBody http_body = 2; } service ResourceService { rpc GetResource(GetResourceRequest) returns (google.api.HttpBody); rpc UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty); } Example with streaming methods: service CaldavService { rpc GetCalendar(stream google.api.HttpBody) returns (stream google.api.HttpBody); rpc UpdateCalendar(stream google.api.HttpBody) returns (stream google.api.HttpBody); } Use of this type only changes how the request and response bodies are handled, all other features will continue to work unchanged.
  "contentType": "A String", # The HTTP Content-Type header value specifying the content type of the body.
  "data": "A String", # The HTTP request/response body as raw binary.
  "extensions": [ # Application specific response metadata. Must be set in the first response for streaming APIs.
    {
      "a_key": "", # Properties of the object. Contains field @type with type URL.
    },
  ],
}</pre>
</div>
<div class="method">
    <code class="details" id="serverStreamingPredict">serverStreamingPredict(endpoint, body=None, x__xgafv=None)</code>
  <pre>Perform a server-side streaming online prediction request for Vertex LLM streaming.
Args:
  endpoint: string, Required. The name of the Endpoint requested to serve the prediction. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}` (required)
  body: object, The request body.
    The object takes the form of:
{ # Request message for PredictionService.StreamingPredict. The first message must contain endpoint field and optionally input. The subsequent messages must contain input.
  "inputs": [ # The prediction input.
    { # A tensor value type.
      "boolVal": [ # Type specific representations that make it easy to create tensor protos in all languages. Only the representation corresponding to "dtype" can be set. The values hold the flattened representation of the tensor in row major order. BOOL
        True or False,
      ],
      "bytesVal": [ # STRING
        "A String",
      ],
      "doubleVal": [ # DOUBLE
        3.14,
      ],
      "dtype": "A String", # The data type of tensor.
      "floatVal": [ # FLOAT
        3.14,
      ],
      "int64Val": [ # INT64
        "A String",
      ],
      "intVal": [ # INT_8 INT_16 INT_32
        42,
      ],
      "listVal": [ # A list of tensor values.
        # Object with schema name: GoogleCloudAiplatformV1Tensor
      ],
      "shape": [ # Shape of the tensor.
        "A String",
      ],
      "stringVal": [ # STRING
        "A String",
      ],
      "structVal": { # A map of string to tensor.
        "a_key": # Object with schema name: GoogleCloudAiplatformV1Tensor
      },
      "tensorVal": "A String", # Serialized raw tensor content.
      "uint64Val": [ # UINT64
        "A String",
      ],
      "uintVal": [ # UINT8 UINT16 UINT32
        42,
      ],
    },
  ],
  "parameters": { # A tensor value type. # The parameters that govern the prediction.
    "boolVal": [ # Type specific representations that make it easy to create tensor protos in all languages. Only the representation corresponding to "dtype" can be set. The values hold the flattened representation of the tensor in row major order. BOOL
      True or False,
    ],
    "bytesVal": [ # STRING
      "A String",
    ],
    "doubleVal": [ # DOUBLE
      3.14,
    ],
    "dtype": "A String", # The data type of tensor.
    "floatVal": [ # FLOAT
      3.14,
    ],
    "int64Val": [ # INT64
      "A String",
    ],
    "intVal": [ # INT_8 INT_16 INT_32
      42,
    ],
    "listVal": [ # A list of tensor values.
      # Object with schema name: GoogleCloudAiplatformV1Tensor
    ],
    "shape": [ # Shape of the tensor.
      "A String",
    ],
    "stringVal": [ # STRING
      "A String",
    ],
    "structVal": { # A map of string to tensor.
      "a_key": # Object with schema name: GoogleCloudAiplatformV1Tensor
    },
    "tensorVal": "A String", # Serialized raw tensor content.
    "uint64Val": [ # UINT64
      "A String",
    ],
    "uintVal": [ # UINT8 UINT16 UINT32
      42,
    ],
  },
}
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format
Returns:
  An object of the form:
    { # Response message for PredictionService.StreamingPredict.
  "outputs": [ # The prediction output.
    { # A tensor value type.
      "boolVal": [ # Type specific representations that make it easy to create tensor protos in all languages. Only the representation corresponding to "dtype" can be set. The values hold the flattened representation of the tensor in row major order. BOOL
        True or False,
      ],
      "bytesVal": [ # STRING
        "A String",
      ],
      "doubleVal": [ # DOUBLE
        3.14,
      ],
      "dtype": "A String", # The data type of tensor.
      "floatVal": [ # FLOAT
        3.14,
      ],
      "int64Val": [ # INT64
        "A String",
      ],
      "intVal": [ # INT_8 INT_16 INT_32
        42,
      ],
      "listVal": [ # A list of tensor values.
        # Object with schema name: GoogleCloudAiplatformV1Tensor
      ],
      "shape": [ # Shape of the tensor.
        "A String",
      ],
      "stringVal": [ # STRING
        "A String",
      ],
      "structVal": { # A map of string to tensor.
        "a_key": # Object with schema name: GoogleCloudAiplatformV1Tensor
      },
      "tensorVal": "A String", # Serialized raw tensor content.
      "uint64Val": [ # UINT64
        "A String",
      ],
      "uintVal": [ # UINT8 UINT16 UINT32
        42,
      ],
    },
  ],
  "parameters": { # A tensor value type. # The parameters that govern the prediction.
    "boolVal": [ # Type specific representations that make it easy to create tensor protos in all languages. Only the representation corresponding to "dtype" can be set. The values hold the flattened representation of the tensor in row major order. BOOL
      True or False,
    ],
    "bytesVal": [ # STRING
      "A String",
    ],
    "doubleVal": [ # DOUBLE
      3.14,
    ],
    "dtype": "A String", # The data type of tensor.
    "floatVal": [ # FLOAT
      3.14,
    ],
    "int64Val": [ # INT64
      "A String",
    ],
    "intVal": [ # INT_8 INT_16 INT_32
      42,
    ],
    "listVal": [ # A list of tensor values.
      # Object with schema name: GoogleCloudAiplatformV1Tensor
    ],
    "shape": [ # Shape of the tensor.
      "A String",
    ],
    "stringVal": [ # STRING
      "A String",
    ],
    "structVal": { # A map of string to tensor.
      "a_key": # Object with schema name: GoogleCloudAiplatformV1Tensor
    },
    "tensorVal": "A String", # Serialized raw tensor content.
    "uint64Val": [ # UINT64
      "A String",
    ],
    "uintVal": [ # UINT8 UINT16 UINT32
      42,
    ],
  },
}</pre>
</div>
<div class="method">
    <code class="details" id="streamGenerateContent">streamGenerateContent(model, body=None, x__xgafv=None)</code>
  <pre>Generate content with multimodal inputs with streaming support.
Args:
  model: string, Required. The fully qualified name of the publisher model or tuned model endpoint to use. Publisher model format: `projects/{project}/locations/{location}/publishers/*/models/*` Tuned model endpoint format: `projects/{project}/locations/{location}/endpoints/{endpoint}` (required)
  body: object, The request body.
    The object takes the form of:
{ # Request message for [PredictionService.GenerateContent].
  "cachedContent": "A String", # Optional. The name of the cached content used as context to serve the prediction. Note: only used in explicit caching, where users can have control over caching (e.g. what content to cache) and enjoy guaranteed cost savings. Format: `projects/{project}/locations/{location}/cachedContents/{cachedContent}`
  "contents": [ # Required. The content of the current conversation with the model. For single-turn queries, this is a single instance. For multi-turn queries, this is a repeated field that contains conversation history + latest request.
    { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
      "parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
        { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
          "codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
            "outcome": "A String", # Required. Outcome of the code execution.
            "output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
          },
          "executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
            "code": "A String", # Required. The code to be executed.
            "language": "A String", # Required. Programming language of the `code`.
          },
          "fileData": { # URI based data. # Optional. URI based data.
            "displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            "fileUri": "A String", # Required. URI.
            "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
          },
          "functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
            "args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
              "a_key": "", # Properties of the object.
            },
            "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
          },
          "functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
            "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
            "response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
              "a_key": "", # Properties of the object.
            },
          },
          "inlineData": { # Content blob. # Optional. Inlined bytes data.
            "data": "A String", # Required. Raw bytes.
            "displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
          },
          "text": "A String", # Optional. Text part (can be code).
          "thought": True or False, # Optional. Indicates if the part is thought from the model.
          "thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
          "videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
            "endOffset": "A String", # Optional. The end offset of the video.
            "fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
            "startOffset": "A String", # Optional. The start offset of the video.
          },
        },
      ],
      "role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
    },
  ],
  "generationConfig": { # Generation config. # Optional. Generation config.
    "audioTimestamp": True or False, # Optional. If enabled, audio timestamp will be included in the request to the model.
    "candidateCount": 42, # Optional. Number of candidates to generate.
    "enableAffectiveDialog": True or False, # Optional. If enabled, the model will detect emotions and adapt its responses accordingly.
    "frequencyPenalty": 3.14, # Optional. Frequency penalties.
    "logprobs": 42, # Optional. Logit probabilities.
    "maxOutputTokens": 42, # Optional. The maximum number of output tokens to generate per message.
    "mediaResolution": "A String", # Optional. If specified, the media resolution specified will be used.
    "presencePenalty": 3.14, # Optional. Positive penalties.
    "responseJsonSchema": "", # Optional. Output schema of the generated response. This is an alternative to `response_schema` that accepts [JSON Schema](https://json-schema.org/). If set, `response_schema` must be omitted, but `response_mime_type` is required. While the full JSON Schema may be sent, not all features are supported. Specifically, only the following properties are supported: - `$id` - `$defs` - `$ref` - `$anchor` - `type` - `format` - `title` - `description` - `enum` (for strings and numbers) - `items` - `prefixItems` - `minItems` - `maxItems` - `minimum` - `maximum` - `anyOf` - `oneOf` (interpreted the same as `anyOf`) - `properties` - `additionalProperties` - `required` The non-standard `propertyOrdering` property may also be set. Cyclic references are unrolled to a limited degree and, as such, may only be used within non-required properties. (Nullable properties are not sufficient.) If `$ref` is set on a sub-schema, no other properties, except for than those starting as a `$`, may be set.
    "responseLogprobs": True or False, # Optional. If true, export the logprobs results in response.
    "responseMimeType": "A String", # Optional. Output response mimetype of the generated candidate text. Supported mimetype: - `text/plain`: (default) Text output. - `application/json`: JSON response in the candidates. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
    "responseModalities": [ # Optional. The modalities of the response.
      "A String",
    ],
    "responseSchema": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. The `Schema` object allows the definition of input and output data types. These types can be objects, but also primitives and arrays. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema). If set, a compatible response_mime_type must also be set. Compatible mimetypes: `application/json`: Schema for JSON response.
      "additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
      "anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
        # Object with schema name: GoogleCloudAiplatformV1Schema
      ],
      "default": "", # Optional. Default value of the data.
      "defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
        "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
      },
      "description": "A String", # Optional. The description of the data.
      "enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
        "A String",
      ],
      "example": "", # Optional. Example of the object. Will only populated when the object is the root.
      "format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
      "items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
      "maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
      "maxLength": "A String", # Optional. Maximum length of the Type.STRING
      "maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
      "maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
      "minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
      "minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
      "minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
      "minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
      "nullable": True or False, # Optional. Indicates if the value may be null.
      "pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
      "properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
        "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
      },
      "propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
        "A String",
      ],
      "ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
      "required": [ # Optional. Required properties of Type.OBJECT.
        "A String",
      ],
      "title": "A String", # Optional. The title of the Schema.
      "type": "A String", # Optional. The type of the data.
    },
    "routingConfig": { # The configuration for routing the request to a specific model. # Optional. Routing configuration.
      "autoMode": { # When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference. # Automated routing.
        "modelRoutingPreference": "A String", # The model routing preference.
      },
      "manualMode": { # When manual routing is set, the specified model will be used directly. # Manual routing.
        "modelName": "A String", # The model name to use. Only the public LLM models are accepted. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
      },
    },
    "seed": 42, # Optional. Seed.
    "speechConfig": { # The speech generation config. # Optional. The speech generation config.
      "languageCode": "A String", # Optional. Language code (ISO 639. e.g. en-US) for the speech synthesization.
      "voiceConfig": { # The configuration for the voice to use. # The configuration for the speaker to use.
        "prebuiltVoiceConfig": { # The configuration for the prebuilt speaker to use. # The configuration for the prebuilt voice to use.
          "voiceName": "A String", # The name of the preset voice to use.
        },
      },
    },
    "stopSequences": [ # Optional. Stop sequences.
      "A String",
    ],
    "temperature": 3.14, # Optional. Controls the randomness of predictions.
    "thinkingConfig": { # Config for thinking features. # Optional. Config for thinking features. An error will be returned if this field is set for models that don't support thinking.
      "includeThoughts": True or False, # Optional. Indicates whether to include thoughts in the response. If true, thoughts are returned only when available.
      "thinkingBudget": 42, # Optional. Indicates the thinking budget in tokens.
    },
    "topK": 3.14, # Optional. If specified, top-k sampling will be used.
    "topP": 3.14, # Optional. If specified, nucleus sampling will be used.
  },
  "labels": { # Optional. The labels with user-defined metadata for the request. It is used for billing and reporting only. Label keys and values can be no longer than 63 characters (Unicode codepoints) and can only contain lowercase letters, numeric characters, underscores, and dashes. International characters are allowed. Label values are optional. Label keys must start with a letter.
    "a_key": "A String",
  },
  "modelArmorConfig": { # Configuration for Model Armor integrations of prompt and responses. # Optional. Settings for prompt and response sanitization using the Model Armor service. If supplied, safety_settings must not be supplied.
    "promptTemplateName": "A String", # Optional. The name of the Model Armor template to use for prompt sanitization.
    "responseTemplateName": "A String", # Optional. The name of the Model Armor template to use for response sanitization.
  },
  "safetySettings": [ # Optional. Per request settings for blocking unsafe content. Enforced on GenerateContentResponse.candidates.
    { # Safety settings.
      "category": "A String", # Required. Harm category.
      "method": "A String", # Optional. Specify if the threshold is used for probability or severity score. If not specified, the threshold is used for probability score.
      "threshold": "A String", # Required. The harm block threshold.
    },
  ],
  "systemInstruction": { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Optional. The user provided system instructions for the model. Note: only text should be used in parts and content in each part will be in a separate paragraph.
    "parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
      { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
        "codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
          "outcome": "A String", # Required. Outcome of the code execution.
          "output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
        },
        "executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
          "code": "A String", # Required. The code to be executed.
          "language": "A String", # Required. Programming language of the `code`.
        },
        "fileData": { # URI based data. # Optional. URI based data.
          "displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
          "fileUri": "A String", # Required. URI.
          "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
        },
        "functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
          "args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
            "a_key": "", # Properties of the object.
          },
          "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
        },
        "functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
          "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
          "response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
            "a_key": "", # Properties of the object.
          },
        },
        "inlineData": { # Content blob. # Optional. Inlined bytes data.
          "data": "A String", # Required. Raw bytes.
          "displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
          "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
        },
        "text": "A String", # Optional. Text part (can be code).
        "thought": True or False, # Optional. Indicates if the part is thought from the model.
        "thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
        "videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
          "endOffset": "A String", # Optional. The end offset of the video.
          "fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
          "startOffset": "A String", # Optional. The start offset of the video.
        },
      },
    ],
    "role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
  },
  "toolConfig": { # Tool config. This config is shared for all tools provided in the request. # Optional. Tool config. This config is shared for all tools provided in the request.
    "functionCallingConfig": { # Function calling config. # Optional. Function calling config.
      "allowedFunctionNames": [ # Optional. Function names to call. Only set when the Mode is ANY. Function names should match [FunctionDeclaration.name]. With mode set to ANY, model will predict a function call from the set of function names provided.
        "A String",
      ],
      "mode": "A String", # Optional. Function calling mode.
    },
    "retrievalConfig": { # Retrieval config. # Optional. Retrieval config.
      "languageCode": "A String", # The language code of the user.
      "latLng": { # An object that represents a latitude/longitude pair. This is expressed as a pair of doubles to represent degrees latitude and degrees longitude. Unless specified otherwise, this object must conform to the WGS84 standard. Values must be within normalized ranges. # The location of the user.
        "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
        "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
      },
    },
  },
  "tools": [ # Optional. A list of `Tools` the model may use to generate the next response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model.
    { # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
      "codeExecution": { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
      },
      "enterpriseWebSearch": { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
        "excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
          "A String",
        ],
      },
      "functionDeclarations": [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
        { # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
          "description": "A String", # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
          "name": "A String", # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
          "parameters": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
            "additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
            "anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
              # Object with schema name: GoogleCloudAiplatformV1Schema
            ],
            "default": "", # Optional. Default value of the data.
            "defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
              "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
            },
            "description": "A String", # Optional. The description of the data.
            "enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
              "A String",
            ],
            "example": "", # Optional. Example of the object. Will only populated when the object is the root.
            "format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
            "items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
            "maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
            "maxLength": "A String", # Optional. Maximum length of the Type.STRING
            "maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
            "maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
            "minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
            "minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
            "minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
            "minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
            "nullable": True or False, # Optional. Indicates if the value may be null.
            "pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
            "properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
              "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
            },
            "propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
              "A String",
            ],
            "ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
            "required": [ # Optional. Required properties of Type.OBJECT.
              "A String",
            ],
            "title": "A String", # Optional. The title of the Schema.
            "type": "A String", # Optional. The type of the data.
          },
          "parametersJsonSchema": "", # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { "type": "object", "properties": { "name": { "type": "string" }, "age": { "type": "integer" } }, "additionalProperties": false, "required": ["name", "age"], "propertyOrdering": ["name", "age"] } ``` This field is mutually exclusive with `parameters`.
          "response": { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
            "additionalProperties": "", # Optional. Can either be a boolean or an object; controls the presence of additional properties.
            "anyOf": [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
              # Object with schema name: GoogleCloudAiplatformV1Schema
            ],
            "default": "", # Optional. Default value of the data.
            "defs": { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
              "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
            },
            "description": "A String", # Optional. The description of the data.
            "enum": [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:["EAST", NORTH", "SOUTH", "WEST"]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:["101", "201", "301"]}
              "A String",
            ],
            "example": "", # Optional. Example of the object. Will only populated when the object is the root.
            "format": "A String", # Optional. The format of the data. Supported formats: for NUMBER type: "float", "double" for INTEGER type: "int32", "int64" for STRING type: "email", "byte", etc
            "items": # Object with schema name: GoogleCloudAiplatformV1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
            "maxItems": "A String", # Optional. Maximum number of the elements for Type.ARRAY.
            "maxLength": "A String", # Optional. Maximum length of the Type.STRING
            "maxProperties": "A String", # Optional. Maximum number of the properties for Type.OBJECT.
            "maximum": 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
            "minItems": "A String", # Optional. Minimum number of the elements for Type.ARRAY.
            "minLength": "A String", # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
            "minProperties": "A String", # Optional. Minimum number of the properties for Type.OBJECT.
            "minimum": 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
            "nullable": True or False, # Optional. Indicates if the value may be null.
            "pattern": "A String", # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
            "properties": { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
              "a_key": # Object with schema name: GoogleCloudAiplatformV1Schema
            },
            "propertyOrdering": [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
              "A String",
            ],
            "ref": "A String", # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named "Pet": type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the "pet" property is a reference to the schema node named "Pet". See details in https://json-schema.org/understanding-json-schema/structuring
            "required": [ # Optional. Required properties of Type.OBJECT.
              "A String",
            ],
            "title": "A String", # Optional. The title of the Schema.
            "type": "A String", # Optional. The type of the data.
          },
          "responseJsonSchema": "", # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
        },
      ],
      "googleMaps": { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
      },
      "googleSearch": { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
        "excludeDomains": [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: ["amazon.com", "facebook.com"].
          "A String",
        ],
      },
      "googleSearchRetrieval": { # Tool to retrieve public web data for grounding, powered by Google. # Optional. GoogleSearchRetrieval tool type. Specialized retrieval tool that is powered by Google search.
        "dynamicRetrievalConfig": { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
          "dynamicThreshold": 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
          "mode": "A String", # The mode of the predictor to be used in dynamic retrieval.
        },
      },
      "retrieval": { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
        "disableAttribution": True or False, # Optional. Deprecated. This option is no longer supported.
        "externalApi": { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
          "apiAuth": { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
            "apiKeyConfig": { # The API secret. # The API secret.
              "apiKeySecretVersion": "A String", # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
              "apiKeyString": "A String", # The API key string. Either this or `api_key_secret_version` must be set.
            },
          },
          "apiSpec": "A String", # The API spec that the external API implements.
          "authConfig": { # Auth configuration to run the extension. # The authentication config to access the API.
            "apiKeyConfig": { # Config for authentication with API key. # Config for API key auth.
              "apiKeySecret": "A String", # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
              "apiKeyString": "A String", # Optional. The API key to be used in the request directly.
              "httpElementLocation": "A String", # Optional. The location of the API key.
              "name": "A String", # Optional. The parameter name of the API key. E.g. If the API request is "https://example.com/act?api_key=", "api_key" would be the parameter name.
            },
            "authType": "A String", # Type of auth scheme.
            "googleServiceAccountConfig": { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
              "serviceAccount": "A String", # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
            },
            "httpBasicAuthConfig": { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
              "credentialSecret": "A String", # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
            },
            "oauthConfig": { # Config for user oauth. # Config for user oauth.
              "accessToken": "A String", # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
              "serviceAccount": "A String", # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
            },
            "oidcConfig": { # Config for user OIDC auth. # Config for user OIDC auth.
              "idToken": "A String", # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
              "serviceAccount": "A String", # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
            },
          },
          "elasticSearchParams": { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
            "index": "A String", # The ElasticSearch index to use.
            "numHits": 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
            "searchTemplate": "A String", # The ElasticSearch search template to use.
          },
          "endpoint": "A String", # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
          "simpleSearchParams": { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
          },
        },
        "vertexAiSearch": { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
          "dataStoreSpecs": [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
            { # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
              "dataStore": "A String", # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
              "filter": "A String", # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
            },
          ],
          "datastore": "A String", # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
          "engine": "A String", # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
          "filter": "A String", # Optional. Filter strings to be passed to the search API.
          "maxResults": 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
        },
        "vertexRagStore": { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
          "ragResources": [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
            { # The definition of the Rag resource.
              "ragCorpus": "A String", # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
              "ragFileIds": [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
                "A String",
              ],
            },
          ],
          "ragRetrievalConfig": { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
            "filter": { # Config for filters. # Optional. Config for filters.
              "metadataFilter": "A String", # Optional. String for metadata filtering.
              "vectorDistanceThreshold": 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
              "vectorSimilarityThreshold": 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
            },
            "ranking": { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
              "llmRanker": { # Config for LlmRanker. # Optional. Config for LlmRanker.
                "modelName": "A String", # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
              },
              "rankService": { # Config for Rank Service. # Optional. Config for Rank Service.
                "modelName": "A String", # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
              },
            },
            "topK": 42, # Optional. The number of contexts to retrieve.
          },
          "similarityTopK": 42, # Optional. Number of top k results to return from the selected corpora.
          "vectorDistanceThreshold": 3.14, # Optional. Only return results with vector distance smaller than the threshold.
        },
      },
      "urlContext": { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
      },
    },
  ],
}
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format
Returns:
  An object of the form:
    { # Response message for [PredictionService.GenerateContent].
  "candidates": [ # Output only. Generated candidates.
    { # A response candidate generated from the model.
      "avgLogprobs": 3.14, # Output only. Average log probability score of the candidate.
      "citationMetadata": { # A collection of source attributions for a piece of content. # Output only. Source attribution of the generated content.
        "citations": [ # Output only. List of citations.
          { # Source attributions for content.
            "endIndex": 42, # Output only. End index into the content.
            "license": "A String", # Output only. License of the attribution.
            "publicationDate": { # Represents a whole or partial calendar date, such as a birthday. The time of day and time zone are either specified elsewhere or are insignificant. The date is relative to the Gregorian Calendar. This can represent one of the following: * A full date, with non-zero year, month, and day values. * A month and day, with a zero year (for example, an anniversary). * A year on its own, with a zero month and a zero day. * A year and month, with a zero day (for example, a credit card expiration date). Related types: * google.type.TimeOfDay * google.type.DateTime * google.protobuf.Timestamp # Output only. Publication date of the attribution.
              "day": 42, # Day of a month. Must be from 1 to 31 and valid for the year and month, or 0 to specify a year by itself or a year and month where the day isn't significant.
              "month": 42, # Month of a year. Must be from 1 to 12, or 0 to specify a year without a month and day.
              "year": 42, # Year of the date. Must be from 1 to 9999, or 0 to specify a date without a year.
            },
            "startIndex": 42, # Output only. Start index into the content.
            "title": "A String", # Output only. Title of the attribution.
            "uri": "A String", # Output only. Url reference of the attribution.
          },
        ],
      },
      "content": { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Output only. Content parts of the candidate.
        "parts": [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
          { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
            "codeExecutionResult": { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
              "outcome": "A String", # Required. Outcome of the code execution.
              "output": "A String", # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
            },
            "executableCode": { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
              "code": "A String", # Required. The code to be executed.
              "language": "A String", # Required. Programming language of the `code`.
            },
            "fileData": { # URI based data. # Optional. URI based data.
              "displayName": "A String", # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
              "fileUri": "A String", # Required. URI.
              "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
            },
            "functionCall": { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
              "args": { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                "a_key": "", # Properties of the object.
              },
              "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name].
            },
            "functionResponse": { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
              "name": "A String", # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
              "response": { # Required. The function response in JSON object format. Use "output" key to specify function output and "error" key to specify error details (if any). If "output" and "error" keys are not specified, then whole "response" is treated as function output.
                "a_key": "", # Properties of the object.
              },
            },
            "inlineData": { # Content blob. # Optional. Inlined bytes data.
              "data": "A String", # Required. Raw bytes.
              "displayName": "A String", # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
              "mimeType": "A String", # Required. The IANA standard MIME type of the source data.
            },
            "text": "A String", # Optional. Text part (can be code).
            "thought": True or False, # Optional. Indicates if the part is thought from the model.
            "thoughtSignature": "A String", # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
            "videoMetadata": { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
              "endOffset": "A String", # Optional. The end offset of the video.
              "fps": 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
              "startOffset": "A String", # Optional. The start offset of the video.
            },
          },
        ],
        "role": "A String", # Optional. The producer of the content. Must be either 'user' or 'model'. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
      },
      "finishMessage": "A String", # Output only. Describes the reason the mode stopped generating tokens in more detail. This is only filled when `finish_reason` is set.
      "finishReason": "A String", # Output only. The reason why the model stopped generating tokens. If empty, the model has not stopped generating the tokens.
      "groundingMetadata": { # Metadata returned to client when grounding is enabled. # Output only. Metadata specifies sources used to ground generated content.
        "googleMapsWidgetContextToken": "A String", # Optional. Output only. Resource name of the Google Maps widget context token to be used with the PlacesContextElement widget to render contextual data. This is populated only for Google Maps grounding.
        "groundingChunks": [ # List of supporting references retrieved from specified grounding source.
          { # Grounding chunk.
            "maps": { # Chunk from Google Maps. # Grounding chunk from Google Maps.
              "placeAnswerSources": { # Sources used to generate the place answer. # Sources used to generate the place answer. This includes review snippets and photos that were used to generate the answer, as well as uris to flag content.
                "flagContentUri": "A String", # A link where users can flag a problem with the generated answer.
                "reviewSnippets": [ # Snippets of reviews that are used to generate the answer.
                  { # Encapsulates a review snippet.
                    "authorAttribution": { # Author attribution for a photo or review. # This review's author.
                      "displayName": "A String", # Name of the author of the Photo or Review.
                      "photoUri": "A String", # Profile photo URI of the author of the Photo or Review.
                      "uri": "A String", # URI of the author of the Photo or Review.
                    },
                    "flagContentUri": "A String", # A link where users can flag a problem with the review.
                    "googleMapsUri": "A String", # A link to show the review on Google Maps.
                    "relativePublishTimeDescription": "A String", # A string of formatted recent time, expressing the review time relative to the current time in a form appropriate for the language and country.
                    "review": "A String", # A reference representing this place review which may be used to look up this place review again.
                  },
                ],
              },
              "placeId": "A String", # This Place's resource name, in `places/{place_id}` format. Can be used to look up the Place.
              "text": "A String", # Text of the chunk.
              "title": "A String", # Title of the chunk.
              "uri": "A String", # URI reference of the chunk.
            },
            "retrievedContext": { # Chunk from context retrieved by the retrieval tools. # Grounding chunk from context retrieved by the retrieval tools.
              "documentName": "A String", # Output only. The full document name for the referenced Vertex AI Search document.
              "ragChunk": { # A RagChunk includes the content of a chunk of a RagFile, and associated metadata. # Additional context for the RAG retrieval result. This is only populated when using the RAG retrieval tool.
                "pageSpan": { # Represents where the chunk starts and ends in the document. # If populated, represents where the chunk starts and ends in the document.
                  "firstPage": 42, # Page where chunk starts in the document. Inclusive. 1-indexed.
                  "lastPage": 42, # Page where chunk ends in the document. Inclusive. 1-indexed.
                },
                "text": "A String", # The content of the chunk.
              },
              "text": "A String", # Text of the attribution.
              "title": "A String", # Title of the attribution.
              "uri": "A String", # URI reference of the attribution.
            },
            "web": { # Chunk from the web. # Grounding chunk from the web.
              "domain": "A String", # Domain of the (original) URI.
              "title": "A String", # Title of the chunk.
              "uri": "A String", # URI reference of the chunk.
            },
          },
        ],
        "groundingSupports": [ # Optional. List of grounding support.
          { # Grounding support.
            "confidenceScores": [ # Confidence score of the support references. Ranges from 0 to 1. 1 is the most confident. For Gemini 2.0 and before, this list must have the same size as the grounding_chunk_indices. For Gemini 2.5 and after, this list will be empty and should be ignored.
              3.14,
            ],
            "groundingChunkIndices": [ # A list of indices (into 'grounding_chunk') specifying the citations associated with the claim. For instance [1,3,4] means that grounding_chunk[1], grounding_chunk[3], grounding_chunk[4] are the retrieved content attributed to the claim.
              42,
            ],
            "segment": { # Segment of the content. # Segment of the content this support belongs to.
              "endIndex": 42, # Output only. End index in the given Part, measured in bytes. Offset from the start of the Part, exclusive, starting at zero.
              "partIndex": 42, # Output only. The index of a Part object within its parent Content object.
              "startIndex": 42, # Output only. Start index in the given Part, measured in bytes. Offset from the start of the Part, inclusive, starting at zero.
              "text": "A String", # Output only. The text corresponding to the segment from the response.
            },
          },
        ],
        "retrievalMetadata": { # Metadata related to retrieval in the grounding flow. # Optional. Output only. Retrieval metadata.
          "googleSearchDynamicRetrievalScore": 3.14, # Optional. Score indicating how likely information from Google Search could help answer the prompt. The score is in the range `[0, 1]`, where 0 is the least likely and 1 is the most likely. This score is only populated when Google Search grounding and dynamic retrieval is enabled. It will be compared to the threshold to determine whether to trigger Google Search.
        },
        "searchEntryPoint": { # Google search entry point. # Optional. Google search entry for the following-up web searches.
          "renderedContent": "A String", # Optional. Web content snippet that can be embedded in a web page or an app webview.
          "sdkBlob": "A String", # Optional. Base64 encoded JSON representing array of tuple.
        },
        "webSearchQueries": [ # Optional. Web search queries for the following-up web search.
          "A String",
        ],
      },
      "index": 42, # Output only. Index of the candidate.
      "logprobsResult": { # Logprobs Result # Output only. Log-likelihood scores for the response tokens and top tokens
        "chosenCandidates": [ # Length = total number of decoding steps. The chosen candidates may or may not be in top_candidates.
          { # Candidate for the logprobs token and score.
            "logProbability": 3.14, # The candidate's log probability.
            "token": "A String", # The candidate's token string value.
            "tokenId": 42, # The candidate's token id value.
          },
        ],
        "topCandidates": [ # Length = total number of decoding steps.
          { # Candidates with top log probabilities at each decoding step.
            "candidates": [ # Sorted by log probability in descending order.
              { # Candidate for the logprobs token and score.
                "logProbability": 3.14, # The candidate's log probability.
                "token": "A String", # The candidate's token string value.
                "tokenId": 42, # The candidate's token id value.
              },
            ],
          },
        ],
      },
      "safetyRatings": [ # Output only. List of ratings for the safety of a response candidate. There is at most one rating per category.
        { # Safety rating corresponding to the generated content.
          "blocked": True or False, # Output only. Indicates whether the content was filtered out because of this rating.
          "category": "A String", # Output only. Harm category.
          "overwrittenThreshold": "A String", # Output only. The overwritten threshold for the safety category of Gemini 2.0 image out. If minors are detected in the output image, the threshold of each safety category will be overwritten if user sets a lower threshold.
          "probability": "A String", # Output only. Harm probability levels in the content.
          "probabilityScore": 3.14, # Output only. Harm probability score.
          "severity": "A String", # Output only. Harm severity levels in the content.
          "severityScore": 3.14, # Output only. Harm severity score.
        },
      ],
      "urlContextMetadata": { # Metadata related to url context retrieval tool. # Output only. Metadata related to url context retrieval tool.
        "urlMetadata": [ # Output only. List of url context.
          { # Context of the a single url retrieval.
            "retrievedUrl": "A String", # Retrieved url by the tool.
            "urlRetrievalStatus": "A String", # Status of the url retrieval.
          },
        ],
      },
    },
  ],
  "createTime": "A String", # Output only. Timestamp when the request is made to the server.
  "modelVersion": "A String", # Output only. The model version used to generate the response.
  "promptFeedback": { # Content filter results for a prompt sent in the request. # Output only. Content filter results for a prompt sent in the request. Note: Sent only in the first stream chunk. Only happens when no candidates were generated due to content violations.
    "blockReason": "A String", # Output only. Blocked reason.
    "blockReasonMessage": "A String", # Output only. A readable block reason message.
    "safetyRatings": [ # Output only. Safety ratings.
      { # Safety rating corresponding to the generated content.
        "blocked": True or False, # Output only. Indicates whether the content was filtered out because of this rating.
        "category": "A String", # Output only. Harm category.
        "overwrittenThreshold": "A String", # Output only. The overwritten threshold for the safety category of Gemini 2.0 image out. If minors are detected in the output image, the threshold of each safety category will be overwritten if user sets a lower threshold.
        "probability": "A String", # Output only. Harm probability levels in the content.
        "probabilityScore": 3.14, # Output only. Harm probability score.
        "severity": "A String", # Output only. Harm severity levels in the content.
        "severityScore": 3.14, # Output only. Harm severity score.
      },
    ],
  },
  "responseId": "A String", # Output only. response_id is used to identify each response. It is the encoding of the event_id.
  "usageMetadata": { # Usage metadata about response(s). # Usage metadata about the response(s).
    "cacheTokensDetails": [ # Output only. List of modalities of the cached content in the request input.
      { # Represents token counting info for a single modality.
        "modality": "A String", # The modality associated with this token count.
        "tokenCount": 42, # Number of tokens.
      },
    ],
    "cachedContentTokenCount": 42, # Output only. Number of tokens in the cached part in the input (the cached content).
    "candidatesTokenCount": 42, # Number of tokens in the response(s).
    "candidatesTokensDetails": [ # Output only. List of modalities that were returned in the response.
      { # Represents token counting info for a single modality.
        "modality": "A String", # The modality associated with this token count.
        "tokenCount": 42, # Number of tokens.
      },
    ],
    "promptTokenCount": 42, # Number of tokens in the request. When `cached_content` is set, this is still the total effective prompt size meaning this includes the number of tokens in the cached content.
    "promptTokensDetails": [ # Output only. List of modalities that were processed in the request input.
      { # Represents token counting info for a single modality.
        "modality": "A String", # The modality associated with this token count.
        "tokenCount": 42, # Number of tokens.
      },
    ],
    "thoughtsTokenCount": 42, # Output only. Number of tokens present in thoughts output.
    "toolUsePromptTokenCount": 42, # Output only. Number of tokens present in tool-use prompt(s).
    "toolUsePromptTokensDetails": [ # Output only. List of modalities that were processed for tool-use request inputs.
      { # Represents token counting info for a single modality.
        "modality": "A String", # The modality associated with this token count.
        "tokenCount": 42, # Number of tokens.
      },
    ],
    "totalTokenCount": 42, # Total token count for prompt, response candidates, and tool-use prompts (if present).
    "trafficType": "A String", # Output only. Traffic type. This shows whether a request consumes Pay-As-You-Go or Provisioned Throughput quota.
  },
}</pre>
</div>
<div class="method">
    <code class="details" id="streamRawPredict">streamRawPredict(endpoint, body=None, x__xgafv=None)</code>
  <pre>Perform a streaming online prediction with an arbitrary HTTP payload.
Args:
  endpoint: string, Required. The name of the Endpoint requested to serve the prediction. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}` (required)
  body: object, The request body.
    The object takes the form of:
{ # Request message for PredictionService.StreamRawPredict.
  "httpBody": { # Message that represents an arbitrary HTTP body. It should only be used for payload formats that can't be represented as JSON, such as raw binary or an HTML page. This message can be used both in streaming and non-streaming API methods in the request as well as the response. It can be used as a top-level request field, which is convenient if one wants to extract parameters from either the URL or HTTP template into the request fields and also want access to the raw HTTP body. Example: message GetResourceRequest { // A unique request id. string request_id = 1; // The raw HTTP body is bound to this field. google.api.HttpBody http_body = 2; } service ResourceService { rpc GetResource(GetResourceRequest) returns (google.api.HttpBody); rpc UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty); } Example with streaming methods: service CaldavService { rpc GetCalendar(stream google.api.HttpBody) returns (stream google.api.HttpBody); rpc UpdateCalendar(stream google.api.HttpBody) returns (stream google.api.HttpBody); } Use of this type only changes how the request and response bodies are handled, all other features will continue to work unchanged. # The prediction input. Supports HTTP headers and arbitrary data payload.
    "contentType": "A String", # The HTTP Content-Type header value specifying the content type of the body.
    "data": "A String", # The HTTP request/response body as raw binary.
    "extensions": [ # Application specific response metadata. Must be set in the first response for streaming APIs.
      {
        "a_key": "", # Properties of the object. Contains field @type with type URL.
      },
    ],
  },
}
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format
Returns:
  An object of the form:
    { # Message that represents an arbitrary HTTP body. It should only be used for payload formats that can't be represented as JSON, such as raw binary or an HTML page. This message can be used both in streaming and non-streaming API methods in the request as well as the response. It can be used as a top-level request field, which is convenient if one wants to extract parameters from either the URL or HTTP template into the request fields and also want access to the raw HTTP body. Example: message GetResourceRequest { // A unique request id. string request_id = 1; // The raw HTTP body is bound to this field. google.api.HttpBody http_body = 2; } service ResourceService { rpc GetResource(GetResourceRequest) returns (google.api.HttpBody); rpc UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty); } Example with streaming methods: service CaldavService { rpc GetCalendar(stream google.api.HttpBody) returns (stream google.api.HttpBody); rpc UpdateCalendar(stream google.api.HttpBody) returns (stream google.api.HttpBody); } Use of this type only changes how the request and response bodies are handled, all other features will continue to work unchanged.
  "contentType": "A String", # The HTTP Content-Type header value specifying the content type of the body.
  "data": "A String", # The HTTP request/response body as raw binary.
  "extensions": [ # Application specific response metadata. Must be set in the first response for streaming APIs.
    {
      "a_key": "", # Properties of the object. Contains field @type with type URL.
    },
  ],
}</pre>
</div>
</body></html>
 |