File: aiplatform_v1.projects.locations.tuningJobs.html

package info (click to toggle)
python-googleapi 2.182.0-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 533,852 kB
  • sloc: python: 11,076; javascript: 249; sh: 114; makefile: 59
file content (1077 lines) | stat: -rw-r--r-- 110,093 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
<html><body>
<style>

body, h1, h2, h3, div, span, p, pre, a {
  margin: 0;
  padding: 0;
  border: 0;
  font-weight: inherit;
  font-style: inherit;
  font-size: 100%;
  font-family: inherit;
  vertical-align: baseline;
}

body {
  font-size: 13px;
  padding: 1em;
}

h1 {
  font-size: 26px;
  margin-bottom: 1em;
}

h2 {
  font-size: 24px;
  margin-bottom: 1em;
}

h3 {
  font-size: 20px;
  margin-bottom: 1em;
  margin-top: 1em;
}

pre, code {
  line-height: 1.5;
  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}

pre {
  margin-top: 0.5em;
}

h1, h2, h3, p {
  font-family: Arial, sans serif;
}

h1, h2, h3 {
  border-bottom: solid #CCC 1px;
}

.toc_element {
  margin-top: 0.5em;
}

.firstline {
  margin-left: 2 em;
}

.method  {
  margin-top: 1em;
  border: solid 1px #CCC;
  padding: 1em;
  background: #EEE;
}

.details {
  font-weight: bold;
  font-size: 14px;
}

</style>

<h1><a href="aiplatform_v1.html">Vertex AI API</a> . <a href="aiplatform_v1.projects.html">projects</a> . <a href="aiplatform_v1.projects.locations.html">locations</a> . <a href="aiplatform_v1.projects.locations.tuningJobs.html">tuningJobs</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
  <code><a href="aiplatform_v1.projects.locations.tuningJobs.operations.html">operations()</a></code>
</p>
<p class="firstline">Returns the operations Resource.</p>

<p class="toc_element">
  <code><a href="#cancel">cancel(name, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Cancels a TuningJob. Starts asynchronous cancellation on the TuningJob. The server makes a best effort to cancel the job, but success is not guaranteed. Clients can use GenAiTuningService.GetTuningJob or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On successful cancellation, the TuningJob is not deleted; instead it becomes a job with a TuningJob.error value with a google.rpc.Status.code of 1, corresponding to `Code.CANCELLED`, and TuningJob.state is set to `CANCELLED`.</p>
<p class="toc_element">
  <code><a href="#close">close()</a></code></p>
<p class="firstline">Close httplib2 connections.</p>
<p class="toc_element">
  <code><a href="#create">create(parent, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Creates a TuningJob. A created TuningJob right away will be attempted to be run.</p>
<p class="toc_element">
  <code><a href="#get">get(name, x__xgafv=None)</a></code></p>
<p class="firstline">Gets a TuningJob.</p>
<p class="toc_element">
  <code><a href="#list">list(parent, filter=None, pageSize=None, pageToken=None, x__xgafv=None)</a></code></p>
<p class="firstline">Lists TuningJobs in a Location.</p>
<p class="toc_element">
  <code><a href="#list_next">list_next()</a></code></p>
<p class="firstline">Retrieves the next page of results.</p>
<p class="toc_element">
  <code><a href="#rebaseTunedModel">rebaseTunedModel(parent, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Rebase a TunedModel.</p>
<h3>Method Details</h3>
<div class="method">
    <code class="details" id="cancel">cancel(name, body=None, x__xgafv=None)</code>
  <pre>Cancels a TuningJob. Starts asynchronous cancellation on the TuningJob. The server makes a best effort to cancel the job, but success is not guaranteed. Clients can use GenAiTuningService.GetTuningJob or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On successful cancellation, the TuningJob is not deleted; instead it becomes a job with a TuningJob.error value with a google.rpc.Status.code of 1, corresponding to `Code.CANCELLED`, and TuningJob.state is set to `CANCELLED`.

Args:
  name: string, Required. The name of the TuningJob to cancel. Format: `projects/{project}/locations/{location}/tuningJobs/{tuning_job}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for GenAiTuningService.CancelTuningJob.
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); }
}</pre>
</div>

<div class="method">
    <code class="details" id="close">close()</code>
  <pre>Close httplib2 connections.</pre>
</div>

<div class="method">
    <code class="details" id="create">create(parent, body=None, x__xgafv=None)</code>
  <pre>Creates a TuningJob. A created TuningJob right away will be attempted to be run.

Args:
  parent: string, Required. The resource name of the Location to create the TuningJob in. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Represents a TuningJob that runs with Google owned models.
  &quot;baseModel&quot;: &quot;A String&quot;, # The base model that is being tuned. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/tuning#supported_models).
  &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob was created.
  &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the TuningJob.
  &quot;encryptionSpec&quot;: { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Customer-managed encryption key options for a TuningJob. If this is set, then all resources created by the TuningJob will be encrypted with the provided encryption key.
    &quot;kmsKeyName&quot;: &quot;A String&quot;, # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
  },
  &quot;endTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob entered any of the following JobStates: `JOB_STATE_SUCCEEDED`, `JOB_STATE_FAILED`, `JOB_STATE_CANCELLED`, `JOB_STATE_EXPIRED`.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # Output only. Only populated when job&#x27;s state is `JOB_STATE_FAILED` or `JOB_STATE_CANCELLED`.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;experiment&quot;: &quot;A String&quot;, # Output only. The Experiment associated with this TuningJob.
  &quot;labels&quot;: { # Optional. The labels with user-defined metadata to organize TuningJob and generated resources such as Model and Endpoint. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
    &quot;a_key&quot;: &quot;A String&quot;,
  },
  &quot;name&quot;: &quot;A String&quot;, # Output only. Identifier. Resource name of a TuningJob. Format: `projects/{project}/locations/{location}/tuningJobs/{tuning_job}`
  &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account that the tuningJob workload runs as. If not specified, the Vertex AI Secure Fine-Tuned Service Agent in the project will be used. See https://cloud.google.com/iam/docs/service-agents#vertex-ai-secure-fine-tuning-service-agent Users starting the pipeline must have the `iam.serviceAccounts.actAs` permission on this service account.
  &quot;startTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob for the first time entered the `JOB_STATE_RUNNING` state.
  &quot;state&quot;: &quot;A String&quot;, # Output only. The detailed state of the job.
  &quot;supervisedTuningSpec&quot;: { # Tuning Spec for Supervised Tuning for first party models. # Tuning Spec for Supervised Fine Tuning.
    &quot;exportLastCheckpointOnly&quot;: True or False, # Optional. If set to true, disable intermediate checkpoints for SFT and only the last checkpoint will be exported. Otherwise, enable intermediate checkpoints for SFT. Default is false.
    &quot;hyperParameters&quot;: { # Hyperparameters for SFT. # Optional. Hyperparameters for SFT.
      &quot;adapterSize&quot;: &quot;A String&quot;, # Optional. Adapter size for tuning.
      &quot;epochCount&quot;: &quot;A String&quot;, # Optional. Number of complete passes the model makes over the entire training dataset during training.
      &quot;learningRateMultiplier&quot;: 3.14, # Optional. Multiplier for adjusting the default learning rate. Mutually exclusive with `learning_rate`. This feature is only available for 1P models.
    },
    &quot;trainingDatasetUri&quot;: &quot;A String&quot;, # Required. Training dataset used for tuning. The dataset can be specified as either a Cloud Storage path to a JSONL file or as the resource name of a Vertex Multimodal Dataset.
    &quot;validationDatasetUri&quot;: &quot;A String&quot;, # Optional. Validation dataset used for tuning. The dataset can be specified as either a Cloud Storage path to a JSONL file or as the resource name of a Vertex Multimodal Dataset.
  },
  &quot;tunedModel&quot;: { # The Model Registry Model and Online Prediction Endpoint associated with this TuningJob. # Output only. The tuned model resources associated with this TuningJob.
    &quot;checkpoints&quot;: [ # Output only. The checkpoints associated with this TunedModel. This field is only populated for tuning jobs that enable intermediate checkpoints.
      { # TunedModelCheckpoint for the Tuned Model of a Tuning Job.
        &quot;checkpointId&quot;: &quot;A String&quot;, # The ID of the checkpoint.
        &quot;endpoint&quot;: &quot;A String&quot;, # The Endpoint resource name that the checkpoint is deployed to. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`.
        &quot;epoch&quot;: &quot;A String&quot;, # The epoch of the checkpoint.
        &quot;step&quot;: &quot;A String&quot;, # The step of the checkpoint.
      },
    ],
    &quot;endpoint&quot;: &quot;A String&quot;, # Output only. A resource name of an Endpoint. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`.
    &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the TunedModel. Format: `projects/{project}/locations/{location}/models/{model}@{version_id}` When tuning from a base model, the version_id will be 1. For continuous tuning, the version id will be incremented by 1 from the last version id in the parent model. E.g., `projects/{project}/locations/{location}/models/{model}@{last_version_id + 1}`
  },
  &quot;tunedModelDisplayName&quot;: &quot;A String&quot;, # Optional. The display name of the TunedModel. The name can be up to 128 characters long and can consist of any UTF-8 characters.
  &quot;tuningDataStats&quot;: { # The tuning data statistic values for TuningJob. # Output only. The tuning data statistics associated with this TuningJob.
    &quot;supervisedTuningDataStats&quot;: { # Tuning data statistics for Supervised Tuning. # The SFT Tuning data stats.
      &quot;droppedExampleReasons&quot;: [ # Output only. For each index in `truncated_example_indices`, the user-facing reason why the example was dropped.
        &quot;A String&quot;,
      ],
      &quot;totalBillableCharacterCount&quot;: &quot;A String&quot;, # Output only. Number of billable characters in the tuning dataset.
      &quot;totalBillableTokenCount&quot;: &quot;A String&quot;, # Output only. Number of billable tokens in the tuning dataset.
      &quot;totalTruncatedExampleCount&quot;: &quot;A String&quot;, # Output only. The number of examples in the dataset that have been dropped. An example can be dropped for reasons including: too many tokens, contains an invalid image, contains too many images, etc.
      &quot;totalTuningCharacterCount&quot;: &quot;A String&quot;, # Output only. Number of tuning characters in the tuning dataset.
      &quot;truncatedExampleIndices&quot;: [ # Output only. A partial sample of the indices (starting from 1) of the dropped examples.
        &quot;A String&quot;,
      ],
      &quot;tuningDatasetExampleCount&quot;: &quot;A String&quot;, # Output only. Number of examples in the tuning dataset.
      &quot;tuningStepCount&quot;: &quot;A String&quot;, # Output only. Number of tuning steps for this Tuning Job.
      &quot;userDatasetExamples&quot;: [ # Output only. Sample user messages in the training dataset uri.
        { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
          &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
            { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
              &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
                &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
              },
              &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
                &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
              },
              &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
                &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
              },
              &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
                &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                  &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                },
                &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
              },
              &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
                &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                  &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                },
              },
              &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
                &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
              },
              &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
              &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
              &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
              &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
                &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
              },
            },
          ],
          &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
        },
      ],
      &quot;userInputTokenDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the user input tokens.
        &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
        &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
          { # Dataset bucket used to create a histogram for the distribution given a population of values.
            &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
            &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
            &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
          },
        ],
        &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
        &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
        &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
        &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
        &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
        &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
        &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
      },
      &quot;userMessagePerExampleDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the messages per example.
        &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
        &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
          { # Dataset bucket used to create a histogram for the distribution given a population of values.
            &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
            &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
            &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
          },
        ],
        &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
        &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
        &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
        &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
        &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
        &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
        &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
      },
      &quot;userOutputTokenDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the user output tokens.
        &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
        &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
          { # Dataset bucket used to create a histogram for the distribution given a population of values.
            &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
            &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
            &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
          },
        ],
        &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
        &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
        &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
        &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
        &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
        &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
        &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
      },
    },
  },
  &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob was most recently updated.
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Represents a TuningJob that runs with Google owned models.
  &quot;baseModel&quot;: &quot;A String&quot;, # The base model that is being tuned. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/tuning#supported_models).
  &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob was created.
  &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the TuningJob.
  &quot;encryptionSpec&quot;: { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Customer-managed encryption key options for a TuningJob. If this is set, then all resources created by the TuningJob will be encrypted with the provided encryption key.
    &quot;kmsKeyName&quot;: &quot;A String&quot;, # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
  },
  &quot;endTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob entered any of the following JobStates: `JOB_STATE_SUCCEEDED`, `JOB_STATE_FAILED`, `JOB_STATE_CANCELLED`, `JOB_STATE_EXPIRED`.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # Output only. Only populated when job&#x27;s state is `JOB_STATE_FAILED` or `JOB_STATE_CANCELLED`.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;experiment&quot;: &quot;A String&quot;, # Output only. The Experiment associated with this TuningJob.
  &quot;labels&quot;: { # Optional. The labels with user-defined metadata to organize TuningJob and generated resources such as Model and Endpoint. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
    &quot;a_key&quot;: &quot;A String&quot;,
  },
  &quot;name&quot;: &quot;A String&quot;, # Output only. Identifier. Resource name of a TuningJob. Format: `projects/{project}/locations/{location}/tuningJobs/{tuning_job}`
  &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account that the tuningJob workload runs as. If not specified, the Vertex AI Secure Fine-Tuned Service Agent in the project will be used. See https://cloud.google.com/iam/docs/service-agents#vertex-ai-secure-fine-tuning-service-agent Users starting the pipeline must have the `iam.serviceAccounts.actAs` permission on this service account.
  &quot;startTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob for the first time entered the `JOB_STATE_RUNNING` state.
  &quot;state&quot;: &quot;A String&quot;, # Output only. The detailed state of the job.
  &quot;supervisedTuningSpec&quot;: { # Tuning Spec for Supervised Tuning for first party models. # Tuning Spec for Supervised Fine Tuning.
    &quot;exportLastCheckpointOnly&quot;: True or False, # Optional. If set to true, disable intermediate checkpoints for SFT and only the last checkpoint will be exported. Otherwise, enable intermediate checkpoints for SFT. Default is false.
    &quot;hyperParameters&quot;: { # Hyperparameters for SFT. # Optional. Hyperparameters for SFT.
      &quot;adapterSize&quot;: &quot;A String&quot;, # Optional. Adapter size for tuning.
      &quot;epochCount&quot;: &quot;A String&quot;, # Optional. Number of complete passes the model makes over the entire training dataset during training.
      &quot;learningRateMultiplier&quot;: 3.14, # Optional. Multiplier for adjusting the default learning rate. Mutually exclusive with `learning_rate`. This feature is only available for 1P models.
    },
    &quot;trainingDatasetUri&quot;: &quot;A String&quot;, # Required. Training dataset used for tuning. The dataset can be specified as either a Cloud Storage path to a JSONL file or as the resource name of a Vertex Multimodal Dataset.
    &quot;validationDatasetUri&quot;: &quot;A String&quot;, # Optional. Validation dataset used for tuning. The dataset can be specified as either a Cloud Storage path to a JSONL file or as the resource name of a Vertex Multimodal Dataset.
  },
  &quot;tunedModel&quot;: { # The Model Registry Model and Online Prediction Endpoint associated with this TuningJob. # Output only. The tuned model resources associated with this TuningJob.
    &quot;checkpoints&quot;: [ # Output only. The checkpoints associated with this TunedModel. This field is only populated for tuning jobs that enable intermediate checkpoints.
      { # TunedModelCheckpoint for the Tuned Model of a Tuning Job.
        &quot;checkpointId&quot;: &quot;A String&quot;, # The ID of the checkpoint.
        &quot;endpoint&quot;: &quot;A String&quot;, # The Endpoint resource name that the checkpoint is deployed to. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`.
        &quot;epoch&quot;: &quot;A String&quot;, # The epoch of the checkpoint.
        &quot;step&quot;: &quot;A String&quot;, # The step of the checkpoint.
      },
    ],
    &quot;endpoint&quot;: &quot;A String&quot;, # Output only. A resource name of an Endpoint. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`.
    &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the TunedModel. Format: `projects/{project}/locations/{location}/models/{model}@{version_id}` When tuning from a base model, the version_id will be 1. For continuous tuning, the version id will be incremented by 1 from the last version id in the parent model. E.g., `projects/{project}/locations/{location}/models/{model}@{last_version_id + 1}`
  },
  &quot;tunedModelDisplayName&quot;: &quot;A String&quot;, # Optional. The display name of the TunedModel. The name can be up to 128 characters long and can consist of any UTF-8 characters.
  &quot;tuningDataStats&quot;: { # The tuning data statistic values for TuningJob. # Output only. The tuning data statistics associated with this TuningJob.
    &quot;supervisedTuningDataStats&quot;: { # Tuning data statistics for Supervised Tuning. # The SFT Tuning data stats.
      &quot;droppedExampleReasons&quot;: [ # Output only. For each index in `truncated_example_indices`, the user-facing reason why the example was dropped.
        &quot;A String&quot;,
      ],
      &quot;totalBillableCharacterCount&quot;: &quot;A String&quot;, # Output only. Number of billable characters in the tuning dataset.
      &quot;totalBillableTokenCount&quot;: &quot;A String&quot;, # Output only. Number of billable tokens in the tuning dataset.
      &quot;totalTruncatedExampleCount&quot;: &quot;A String&quot;, # Output only. The number of examples in the dataset that have been dropped. An example can be dropped for reasons including: too many tokens, contains an invalid image, contains too many images, etc.
      &quot;totalTuningCharacterCount&quot;: &quot;A String&quot;, # Output only. Number of tuning characters in the tuning dataset.
      &quot;truncatedExampleIndices&quot;: [ # Output only. A partial sample of the indices (starting from 1) of the dropped examples.
        &quot;A String&quot;,
      ],
      &quot;tuningDatasetExampleCount&quot;: &quot;A String&quot;, # Output only. Number of examples in the tuning dataset.
      &quot;tuningStepCount&quot;: &quot;A String&quot;, # Output only. Number of tuning steps for this Tuning Job.
      &quot;userDatasetExamples&quot;: [ # Output only. Sample user messages in the training dataset uri.
        { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
          &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
            { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
              &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
                &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
              },
              &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
                &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
              },
              &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
                &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
              },
              &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
                &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                  &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                },
                &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
              },
              &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
                &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                  &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                },
              },
              &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
                &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
              },
              &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
              &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
              &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
              &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
                &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
              },
            },
          ],
          &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
        },
      ],
      &quot;userInputTokenDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the user input tokens.
        &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
        &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
          { # Dataset bucket used to create a histogram for the distribution given a population of values.
            &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
            &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
            &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
          },
        ],
        &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
        &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
        &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
        &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
        &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
        &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
        &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
      },
      &quot;userMessagePerExampleDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the messages per example.
        &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
        &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
          { # Dataset bucket used to create a histogram for the distribution given a population of values.
            &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
            &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
            &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
          },
        ],
        &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
        &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
        &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
        &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
        &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
        &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
        &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
      },
      &quot;userOutputTokenDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the user output tokens.
        &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
        &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
          { # Dataset bucket used to create a histogram for the distribution given a population of values.
            &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
            &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
            &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
          },
        ],
        &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
        &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
        &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
        &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
        &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
        &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
        &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
      },
    },
  },
  &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob was most recently updated.
}</pre>
</div>

<div class="method">
    <code class="details" id="get">get(name, x__xgafv=None)</code>
  <pre>Gets a TuningJob.

Args:
  name: string, Required. The name of the TuningJob resource. Format: `projects/{project}/locations/{location}/tuningJobs/{tuning_job}` (required)
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Represents a TuningJob that runs with Google owned models.
  &quot;baseModel&quot;: &quot;A String&quot;, # The base model that is being tuned. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/tuning#supported_models).
  &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob was created.
  &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the TuningJob.
  &quot;encryptionSpec&quot;: { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Customer-managed encryption key options for a TuningJob. If this is set, then all resources created by the TuningJob will be encrypted with the provided encryption key.
    &quot;kmsKeyName&quot;: &quot;A String&quot;, # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
  },
  &quot;endTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob entered any of the following JobStates: `JOB_STATE_SUCCEEDED`, `JOB_STATE_FAILED`, `JOB_STATE_CANCELLED`, `JOB_STATE_EXPIRED`.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # Output only. Only populated when job&#x27;s state is `JOB_STATE_FAILED` or `JOB_STATE_CANCELLED`.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;experiment&quot;: &quot;A String&quot;, # Output only. The Experiment associated with this TuningJob.
  &quot;labels&quot;: { # Optional. The labels with user-defined metadata to organize TuningJob and generated resources such as Model and Endpoint. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
    &quot;a_key&quot;: &quot;A String&quot;,
  },
  &quot;name&quot;: &quot;A String&quot;, # Output only. Identifier. Resource name of a TuningJob. Format: `projects/{project}/locations/{location}/tuningJobs/{tuning_job}`
  &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account that the tuningJob workload runs as. If not specified, the Vertex AI Secure Fine-Tuned Service Agent in the project will be used. See https://cloud.google.com/iam/docs/service-agents#vertex-ai-secure-fine-tuning-service-agent Users starting the pipeline must have the `iam.serviceAccounts.actAs` permission on this service account.
  &quot;startTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob for the first time entered the `JOB_STATE_RUNNING` state.
  &quot;state&quot;: &quot;A String&quot;, # Output only. The detailed state of the job.
  &quot;supervisedTuningSpec&quot;: { # Tuning Spec for Supervised Tuning for first party models. # Tuning Spec for Supervised Fine Tuning.
    &quot;exportLastCheckpointOnly&quot;: True or False, # Optional. If set to true, disable intermediate checkpoints for SFT and only the last checkpoint will be exported. Otherwise, enable intermediate checkpoints for SFT. Default is false.
    &quot;hyperParameters&quot;: { # Hyperparameters for SFT. # Optional. Hyperparameters for SFT.
      &quot;adapterSize&quot;: &quot;A String&quot;, # Optional. Adapter size for tuning.
      &quot;epochCount&quot;: &quot;A String&quot;, # Optional. Number of complete passes the model makes over the entire training dataset during training.
      &quot;learningRateMultiplier&quot;: 3.14, # Optional. Multiplier for adjusting the default learning rate. Mutually exclusive with `learning_rate`. This feature is only available for 1P models.
    },
    &quot;trainingDatasetUri&quot;: &quot;A String&quot;, # Required. Training dataset used for tuning. The dataset can be specified as either a Cloud Storage path to a JSONL file or as the resource name of a Vertex Multimodal Dataset.
    &quot;validationDatasetUri&quot;: &quot;A String&quot;, # Optional. Validation dataset used for tuning. The dataset can be specified as either a Cloud Storage path to a JSONL file or as the resource name of a Vertex Multimodal Dataset.
  },
  &quot;tunedModel&quot;: { # The Model Registry Model and Online Prediction Endpoint associated with this TuningJob. # Output only. The tuned model resources associated with this TuningJob.
    &quot;checkpoints&quot;: [ # Output only. The checkpoints associated with this TunedModel. This field is only populated for tuning jobs that enable intermediate checkpoints.
      { # TunedModelCheckpoint for the Tuned Model of a Tuning Job.
        &quot;checkpointId&quot;: &quot;A String&quot;, # The ID of the checkpoint.
        &quot;endpoint&quot;: &quot;A String&quot;, # The Endpoint resource name that the checkpoint is deployed to. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`.
        &quot;epoch&quot;: &quot;A String&quot;, # The epoch of the checkpoint.
        &quot;step&quot;: &quot;A String&quot;, # The step of the checkpoint.
      },
    ],
    &quot;endpoint&quot;: &quot;A String&quot;, # Output only. A resource name of an Endpoint. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`.
    &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the TunedModel. Format: `projects/{project}/locations/{location}/models/{model}@{version_id}` When tuning from a base model, the version_id will be 1. For continuous tuning, the version id will be incremented by 1 from the last version id in the parent model. E.g., `projects/{project}/locations/{location}/models/{model}@{last_version_id + 1}`
  },
  &quot;tunedModelDisplayName&quot;: &quot;A String&quot;, # Optional. The display name of the TunedModel. The name can be up to 128 characters long and can consist of any UTF-8 characters.
  &quot;tuningDataStats&quot;: { # The tuning data statistic values for TuningJob. # Output only. The tuning data statistics associated with this TuningJob.
    &quot;supervisedTuningDataStats&quot;: { # Tuning data statistics for Supervised Tuning. # The SFT Tuning data stats.
      &quot;droppedExampleReasons&quot;: [ # Output only. For each index in `truncated_example_indices`, the user-facing reason why the example was dropped.
        &quot;A String&quot;,
      ],
      &quot;totalBillableCharacterCount&quot;: &quot;A String&quot;, # Output only. Number of billable characters in the tuning dataset.
      &quot;totalBillableTokenCount&quot;: &quot;A String&quot;, # Output only. Number of billable tokens in the tuning dataset.
      &quot;totalTruncatedExampleCount&quot;: &quot;A String&quot;, # Output only. The number of examples in the dataset that have been dropped. An example can be dropped for reasons including: too many tokens, contains an invalid image, contains too many images, etc.
      &quot;totalTuningCharacterCount&quot;: &quot;A String&quot;, # Output only. Number of tuning characters in the tuning dataset.
      &quot;truncatedExampleIndices&quot;: [ # Output only. A partial sample of the indices (starting from 1) of the dropped examples.
        &quot;A String&quot;,
      ],
      &quot;tuningDatasetExampleCount&quot;: &quot;A String&quot;, # Output only. Number of examples in the tuning dataset.
      &quot;tuningStepCount&quot;: &quot;A String&quot;, # Output only. Number of tuning steps for this Tuning Job.
      &quot;userDatasetExamples&quot;: [ # Output only. Sample user messages in the training dataset uri.
        { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
          &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
            { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
              &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
                &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
              },
              &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
                &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
              },
              &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
                &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
              },
              &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
                &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                  &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                },
                &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
              },
              &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
                &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                  &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                },
              },
              &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
                &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
              },
              &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
              &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
              &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
              &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
                &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
              },
            },
          ],
          &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
        },
      ],
      &quot;userInputTokenDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the user input tokens.
        &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
        &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
          { # Dataset bucket used to create a histogram for the distribution given a population of values.
            &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
            &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
            &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
          },
        ],
        &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
        &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
        &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
        &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
        &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
        &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
        &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
      },
      &quot;userMessagePerExampleDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the messages per example.
        &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
        &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
          { # Dataset bucket used to create a histogram for the distribution given a population of values.
            &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
            &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
            &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
          },
        ],
        &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
        &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
        &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
        &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
        &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
        &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
        &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
      },
      &quot;userOutputTokenDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the user output tokens.
        &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
        &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
          { # Dataset bucket used to create a histogram for the distribution given a population of values.
            &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
            &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
            &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
          },
        ],
        &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
        &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
        &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
        &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
        &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
        &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
        &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
      },
    },
  },
  &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob was most recently updated.
}</pre>
</div>

<div class="method">
    <code class="details" id="list">list(parent, filter=None, pageSize=None, pageToken=None, x__xgafv=None)</code>
  <pre>Lists TuningJobs in a Location.

Args:
  parent: string, Required. The resource name of the Location to list the TuningJobs from. Format: `projects/{project}/locations/{location}` (required)
  filter: string, Optional. The standard list filter.
  pageSize: integer, Optional. The standard list page size.
  pageToken: string, Optional. The standard list page token. Typically obtained via ListTuningJobsResponse.next_page_token of the previous GenAiTuningService.ListTuningJob][] call.
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for GenAiTuningService.ListTuningJobs
  &quot;nextPageToken&quot;: &quot;A String&quot;, # A token to retrieve the next page of results. Pass to ListTuningJobsRequest.page_token to obtain that page.
  &quot;tuningJobs&quot;: [ # List of TuningJobs in the requested page.
    { # Represents a TuningJob that runs with Google owned models.
      &quot;baseModel&quot;: &quot;A String&quot;, # The base model that is being tuned. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/tuning#supported_models).
      &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob was created.
      &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the TuningJob.
      &quot;encryptionSpec&quot;: { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Customer-managed encryption key options for a TuningJob. If this is set, then all resources created by the TuningJob will be encrypted with the provided encryption key.
        &quot;kmsKeyName&quot;: &quot;A String&quot;, # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
      },
      &quot;endTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob entered any of the following JobStates: `JOB_STATE_SUCCEEDED`, `JOB_STATE_FAILED`, `JOB_STATE_CANCELLED`, `JOB_STATE_EXPIRED`.
      &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # Output only. Only populated when job&#x27;s state is `JOB_STATE_FAILED` or `JOB_STATE_CANCELLED`.
        &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
        &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
          {
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
          },
        ],
        &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
      },
      &quot;experiment&quot;: &quot;A String&quot;, # Output only. The Experiment associated with this TuningJob.
      &quot;labels&quot;: { # Optional. The labels with user-defined metadata to organize TuningJob and generated resources such as Model and Endpoint. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
        &quot;a_key&quot;: &quot;A String&quot;,
      },
      &quot;name&quot;: &quot;A String&quot;, # Output only. Identifier. Resource name of a TuningJob. Format: `projects/{project}/locations/{location}/tuningJobs/{tuning_job}`
      &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account that the tuningJob workload runs as. If not specified, the Vertex AI Secure Fine-Tuned Service Agent in the project will be used. See https://cloud.google.com/iam/docs/service-agents#vertex-ai-secure-fine-tuning-service-agent Users starting the pipeline must have the `iam.serviceAccounts.actAs` permission on this service account.
      &quot;startTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob for the first time entered the `JOB_STATE_RUNNING` state.
      &quot;state&quot;: &quot;A String&quot;, # Output only. The detailed state of the job.
      &quot;supervisedTuningSpec&quot;: { # Tuning Spec for Supervised Tuning for first party models. # Tuning Spec for Supervised Fine Tuning.
        &quot;exportLastCheckpointOnly&quot;: True or False, # Optional. If set to true, disable intermediate checkpoints for SFT and only the last checkpoint will be exported. Otherwise, enable intermediate checkpoints for SFT. Default is false.
        &quot;hyperParameters&quot;: { # Hyperparameters for SFT. # Optional. Hyperparameters for SFT.
          &quot;adapterSize&quot;: &quot;A String&quot;, # Optional. Adapter size for tuning.
          &quot;epochCount&quot;: &quot;A String&quot;, # Optional. Number of complete passes the model makes over the entire training dataset during training.
          &quot;learningRateMultiplier&quot;: 3.14, # Optional. Multiplier for adjusting the default learning rate. Mutually exclusive with `learning_rate`. This feature is only available for 1P models.
        },
        &quot;trainingDatasetUri&quot;: &quot;A String&quot;, # Required. Training dataset used for tuning. The dataset can be specified as either a Cloud Storage path to a JSONL file or as the resource name of a Vertex Multimodal Dataset.
        &quot;validationDatasetUri&quot;: &quot;A String&quot;, # Optional. Validation dataset used for tuning. The dataset can be specified as either a Cloud Storage path to a JSONL file or as the resource name of a Vertex Multimodal Dataset.
      },
      &quot;tunedModel&quot;: { # The Model Registry Model and Online Prediction Endpoint associated with this TuningJob. # Output only. The tuned model resources associated with this TuningJob.
        &quot;checkpoints&quot;: [ # Output only. The checkpoints associated with this TunedModel. This field is only populated for tuning jobs that enable intermediate checkpoints.
          { # TunedModelCheckpoint for the Tuned Model of a Tuning Job.
            &quot;checkpointId&quot;: &quot;A String&quot;, # The ID of the checkpoint.
            &quot;endpoint&quot;: &quot;A String&quot;, # The Endpoint resource name that the checkpoint is deployed to. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`.
            &quot;epoch&quot;: &quot;A String&quot;, # The epoch of the checkpoint.
            &quot;step&quot;: &quot;A String&quot;, # The step of the checkpoint.
          },
        ],
        &quot;endpoint&quot;: &quot;A String&quot;, # Output only. A resource name of an Endpoint. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`.
        &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the TunedModel. Format: `projects/{project}/locations/{location}/models/{model}@{version_id}` When tuning from a base model, the version_id will be 1. For continuous tuning, the version id will be incremented by 1 from the last version id in the parent model. E.g., `projects/{project}/locations/{location}/models/{model}@{last_version_id + 1}`
      },
      &quot;tunedModelDisplayName&quot;: &quot;A String&quot;, # Optional. The display name of the TunedModel. The name can be up to 128 characters long and can consist of any UTF-8 characters.
      &quot;tuningDataStats&quot;: { # The tuning data statistic values for TuningJob. # Output only. The tuning data statistics associated with this TuningJob.
        &quot;supervisedTuningDataStats&quot;: { # Tuning data statistics for Supervised Tuning. # The SFT Tuning data stats.
          &quot;droppedExampleReasons&quot;: [ # Output only. For each index in `truncated_example_indices`, the user-facing reason why the example was dropped.
            &quot;A String&quot;,
          ],
          &quot;totalBillableCharacterCount&quot;: &quot;A String&quot;, # Output only. Number of billable characters in the tuning dataset.
          &quot;totalBillableTokenCount&quot;: &quot;A String&quot;, # Output only. Number of billable tokens in the tuning dataset.
          &quot;totalTruncatedExampleCount&quot;: &quot;A String&quot;, # Output only. The number of examples in the dataset that have been dropped. An example can be dropped for reasons including: too many tokens, contains an invalid image, contains too many images, etc.
          &quot;totalTuningCharacterCount&quot;: &quot;A String&quot;, # Output only. Number of tuning characters in the tuning dataset.
          &quot;truncatedExampleIndices&quot;: [ # Output only. A partial sample of the indices (starting from 1) of the dropped examples.
            &quot;A String&quot;,
          ],
          &quot;tuningDatasetExampleCount&quot;: &quot;A String&quot;, # Output only. Number of examples in the tuning dataset.
          &quot;tuningStepCount&quot;: &quot;A String&quot;, # Output only. Number of tuning steps for this Tuning Job.
          &quot;userDatasetExamples&quot;: [ # Output only. Sample user messages in the training dataset uri.
            { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
              &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
                { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                  &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
                    &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                    &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                  },
                  &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
                    &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                    &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                  },
                  &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
                    &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                    &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                    &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                  },
                  &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
                    &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                      &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                    },
                    &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
                  },
                  &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
                    &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                    &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                      &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                    },
                  },
                  &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
                    &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                    &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                    &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                  },
                  &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
                  &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
                  &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                  &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                    &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                    &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
                    &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                  },
                },
              ],
              &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
            },
          ],
          &quot;userInputTokenDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the user input tokens.
            &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
            &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
              { # Dataset bucket used to create a histogram for the distribution given a population of values.
                &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
                &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
                &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
              },
            ],
            &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
            &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
            &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
            &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
            &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
            &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
            &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
          },
          &quot;userMessagePerExampleDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the messages per example.
            &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
            &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
              { # Dataset bucket used to create a histogram for the distribution given a population of values.
                &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
                &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
                &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
              },
            ],
            &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
            &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
            &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
            &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
            &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
            &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
            &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
          },
          &quot;userOutputTokenDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the user output tokens.
            &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
            &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
              { # Dataset bucket used to create a histogram for the distribution given a population of values.
                &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
                &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
                &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
              },
            ],
            &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
            &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
            &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
            &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
            &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
            &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
            &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
          },
        },
      },
      &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob was most recently updated.
    },
  ],
}</pre>
</div>

<div class="method">
    <code class="details" id="list_next">list_next()</code>
  <pre>Retrieves the next page of results.

        Args:
          previous_request: The request for the previous page. (required)
          previous_response: The response from the request for the previous page. (required)

        Returns:
          A request object that you can call &#x27;execute()&#x27; on to request the next
          page. Returns None if there are no more items in the collection.
        </pre>
</div>

<div class="method">
    <code class="details" id="rebaseTunedModel">rebaseTunedModel(parent, body=None, x__xgafv=None)</code>
  <pre>Rebase a TunedModel.

Args:
  parent: string, Required. The resource name of the Location into which to rebase the Model. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for GenAiTuningService.RebaseTunedModel.
  &quot;artifactDestination&quot;: { # The Google Cloud Storage location where the output is to be written to. # Optional. The Google Cloud Storage location to write the artifacts.
    &quot;outputUriPrefix&quot;: &quot;A String&quot;, # Required. Google Cloud Storage URI to output directory. If the uri doesn&#x27;t end with &#x27;/&#x27;, a &#x27;/&#x27; will be automatically appended. The directory is created if it doesn&#x27;t exist.
  },
  &quot;deployToSameEndpoint&quot;: True or False, # Optional. By default, bison to gemini migration will always create new model/endpoint, but for gemini-1.0 to gemini-1.5 migration, we default deploy to the same endpoint. See details in this Section.
  &quot;tunedModelRef&quot;: { # TunedModel Reference for legacy model migration. # Required. TunedModel reference to retrieve the legacy model information.
    &quot;pipelineJob&quot;: &quot;A String&quot;, # Support migration from tuning job list page, from bison model to gemini model.
    &quot;tunedModel&quot;: &quot;A String&quot;, # Support migration from model registry.
    &quot;tuningJob&quot;: &quot;A String&quot;, # Support migration from tuning job list page, from gemini-1.0-pro-002 to 1.5 and above.
  },
  &quot;tuningJob&quot;: { # Represents a TuningJob that runs with Google owned models. # Optional. The TuningJob to be updated. Users can use this TuningJob field to overwrite tuning configs.
    &quot;baseModel&quot;: &quot;A String&quot;, # The base model that is being tuned. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/tuning#supported_models).
    &quot;createTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob was created.
    &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the TuningJob.
    &quot;encryptionSpec&quot;: { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Customer-managed encryption key options for a TuningJob. If this is set, then all resources created by the TuningJob will be encrypted with the provided encryption key.
      &quot;kmsKeyName&quot;: &quot;A String&quot;, # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
    },
    &quot;endTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob entered any of the following JobStates: `JOB_STATE_SUCCEEDED`, `JOB_STATE_FAILED`, `JOB_STATE_CANCELLED`, `JOB_STATE_EXPIRED`.
    &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # Output only. Only populated when job&#x27;s state is `JOB_STATE_FAILED` or `JOB_STATE_CANCELLED`.
      &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
      &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
        {
          &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
        },
      ],
      &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
    },
    &quot;experiment&quot;: &quot;A String&quot;, # Output only. The Experiment associated with this TuningJob.
    &quot;labels&quot;: { # Optional. The labels with user-defined metadata to organize TuningJob and generated resources such as Model and Endpoint. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
      &quot;a_key&quot;: &quot;A String&quot;,
    },
    &quot;name&quot;: &quot;A String&quot;, # Output only. Identifier. Resource name of a TuningJob. Format: `projects/{project}/locations/{location}/tuningJobs/{tuning_job}`
    &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account that the tuningJob workload runs as. If not specified, the Vertex AI Secure Fine-Tuned Service Agent in the project will be used. See https://cloud.google.com/iam/docs/service-agents#vertex-ai-secure-fine-tuning-service-agent Users starting the pipeline must have the `iam.serviceAccounts.actAs` permission on this service account.
    &quot;startTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob for the first time entered the `JOB_STATE_RUNNING` state.
    &quot;state&quot;: &quot;A String&quot;, # Output only. The detailed state of the job.
    &quot;supervisedTuningSpec&quot;: { # Tuning Spec for Supervised Tuning for first party models. # Tuning Spec for Supervised Fine Tuning.
      &quot;exportLastCheckpointOnly&quot;: True or False, # Optional. If set to true, disable intermediate checkpoints for SFT and only the last checkpoint will be exported. Otherwise, enable intermediate checkpoints for SFT. Default is false.
      &quot;hyperParameters&quot;: { # Hyperparameters for SFT. # Optional. Hyperparameters for SFT.
        &quot;adapterSize&quot;: &quot;A String&quot;, # Optional. Adapter size for tuning.
        &quot;epochCount&quot;: &quot;A String&quot;, # Optional. Number of complete passes the model makes over the entire training dataset during training.
        &quot;learningRateMultiplier&quot;: 3.14, # Optional. Multiplier for adjusting the default learning rate. Mutually exclusive with `learning_rate`. This feature is only available for 1P models.
      },
      &quot;trainingDatasetUri&quot;: &quot;A String&quot;, # Required. Training dataset used for tuning. The dataset can be specified as either a Cloud Storage path to a JSONL file or as the resource name of a Vertex Multimodal Dataset.
      &quot;validationDatasetUri&quot;: &quot;A String&quot;, # Optional. Validation dataset used for tuning. The dataset can be specified as either a Cloud Storage path to a JSONL file or as the resource name of a Vertex Multimodal Dataset.
    },
    &quot;tunedModel&quot;: { # The Model Registry Model and Online Prediction Endpoint associated with this TuningJob. # Output only. The tuned model resources associated with this TuningJob.
      &quot;checkpoints&quot;: [ # Output only. The checkpoints associated with this TunedModel. This field is only populated for tuning jobs that enable intermediate checkpoints.
        { # TunedModelCheckpoint for the Tuned Model of a Tuning Job.
          &quot;checkpointId&quot;: &quot;A String&quot;, # The ID of the checkpoint.
          &quot;endpoint&quot;: &quot;A String&quot;, # The Endpoint resource name that the checkpoint is deployed to. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`.
          &quot;epoch&quot;: &quot;A String&quot;, # The epoch of the checkpoint.
          &quot;step&quot;: &quot;A String&quot;, # The step of the checkpoint.
        },
      ],
      &quot;endpoint&quot;: &quot;A String&quot;, # Output only. A resource name of an Endpoint. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}`.
      &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the TunedModel. Format: `projects/{project}/locations/{location}/models/{model}@{version_id}` When tuning from a base model, the version_id will be 1. For continuous tuning, the version id will be incremented by 1 from the last version id in the parent model. E.g., `projects/{project}/locations/{location}/models/{model}@{last_version_id + 1}`
    },
    &quot;tunedModelDisplayName&quot;: &quot;A String&quot;, # Optional. The display name of the TunedModel. The name can be up to 128 characters long and can consist of any UTF-8 characters.
    &quot;tuningDataStats&quot;: { # The tuning data statistic values for TuningJob. # Output only. The tuning data statistics associated with this TuningJob.
      &quot;supervisedTuningDataStats&quot;: { # Tuning data statistics for Supervised Tuning. # The SFT Tuning data stats.
        &quot;droppedExampleReasons&quot;: [ # Output only. For each index in `truncated_example_indices`, the user-facing reason why the example was dropped.
          &quot;A String&quot;,
        ],
        &quot;totalBillableCharacterCount&quot;: &quot;A String&quot;, # Output only. Number of billable characters in the tuning dataset.
        &quot;totalBillableTokenCount&quot;: &quot;A String&quot;, # Output only. Number of billable tokens in the tuning dataset.
        &quot;totalTruncatedExampleCount&quot;: &quot;A String&quot;, # Output only. The number of examples in the dataset that have been dropped. An example can be dropped for reasons including: too many tokens, contains an invalid image, contains too many images, etc.
        &quot;totalTuningCharacterCount&quot;: &quot;A String&quot;, # Output only. Number of tuning characters in the tuning dataset.
        &quot;truncatedExampleIndices&quot;: [ # Output only. A partial sample of the indices (starting from 1) of the dropped examples.
          &quot;A String&quot;,
        ],
        &quot;tuningDatasetExampleCount&quot;: &quot;A String&quot;, # Output only. Number of examples in the tuning dataset.
        &quot;tuningStepCount&quot;: &quot;A String&quot;, # Output only. Number of tuning steps for this Tuning Job.
        &quot;userDatasetExamples&quot;: [ # Output only. Sample user messages in the training dataset uri.
          { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
            &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
              { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
                  &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                  &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                },
                &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
                  &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                  &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                },
                &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
                  &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
                },
                &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                  &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                },
                &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
                  &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
                &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
                &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                  &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                  &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
                  &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                },
              },
            ],
            &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
          },
        ],
        &quot;userInputTokenDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the user input tokens.
          &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
          &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
            { # Dataset bucket used to create a histogram for the distribution given a population of values.
              &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
              &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
              &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
            },
          ],
          &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
          &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
          &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
          &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
          &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
          &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
          &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
        },
        &quot;userMessagePerExampleDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the messages per example.
          &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
          &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
            { # Dataset bucket used to create a histogram for the distribution given a population of values.
              &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
              &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
              &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
            },
          ],
          &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
          &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
          &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
          &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
          &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
          &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
          &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
        },
        &quot;userOutputTokenDistribution&quot;: { # Dataset distribution for Supervised Tuning. # Output only. Dataset distributions for the user output tokens.
          &quot;billableSum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values that are billable.
          &quot;buckets&quot;: [ # Output only. Defines the histogram bucket.
            { # Dataset bucket used to create a histogram for the distribution given a population of values.
              &quot;count&quot;: 3.14, # Output only. Number of values in the bucket.
              &quot;left&quot;: 3.14, # Output only. Left bound of the bucket.
              &quot;right&quot;: 3.14, # Output only. Right bound of the bucket.
            },
          ],
          &quot;max&quot;: 3.14, # Output only. The maximum of the population values.
          &quot;mean&quot;: 3.14, # Output only. The arithmetic mean of the values in the population.
          &quot;median&quot;: 3.14, # Output only. The median of the values in the population.
          &quot;min&quot;: 3.14, # Output only. The minimum of the population values.
          &quot;p5&quot;: 3.14, # Output only. The 5th percentile of the values in the population.
          &quot;p95&quot;: 3.14, # Output only. The 95th percentile of the values in the population.
          &quot;sum&quot;: &quot;A String&quot;, # Output only. Sum of a given population of values.
        },
      },
    },
    &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Time when the TuningJob was most recently updated.
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # This resource represents a long-running operation that is the result of a network API call.
  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  &quot;response&quot;: { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>

</body></html>