File: aiplatform_v1beta1.endpoints.html

package info (click to toggle)
python-googleapi 2.182.0-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 533,852 kB
  • sloc: python: 11,076; javascript: 249; sh: 114; makefile: 59
file content (2090 lines) | stat: -rw-r--r-- 231,757 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
<html><body>
<style>

body, h1, h2, h3, div, span, p, pre, a {
  margin: 0;
  padding: 0;
  border: 0;
  font-weight: inherit;
  font-style: inherit;
  font-size: 100%;
  font-family: inherit;
  vertical-align: baseline;
}

body {
  font-size: 13px;
  padding: 1em;
}

h1 {
  font-size: 26px;
  margin-bottom: 1em;
}

h2 {
  font-size: 24px;
  margin-bottom: 1em;
}

h3 {
  font-size: 20px;
  margin-bottom: 1em;
  margin-top: 1em;
}

pre, code {
  line-height: 1.5;
  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}

pre {
  margin-top: 0.5em;
}

h1, h2, h3, p {
  font-family: Arial, sans serif;
}

h1, h2, h3 {
  border-bottom: solid #CCC 1px;
}

.toc_element {
  margin-top: 0.5em;
}

.firstline {
  margin-left: 2 em;
}

.method  {
  margin-top: 1em;
  border: solid 1px #CCC;
  padding: 1em;
  background: #EEE;
}

.details {
  font-weight: bold;
  font-size: 14px;
}

</style>

<h1><a href="aiplatform_v1beta1.html">Vertex AI API</a> . <a href="aiplatform_v1beta1.endpoints.html">endpoints</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
  <code><a href="aiplatform_v1beta1.endpoints.chat.html">chat()</a></code>
</p>
<p class="firstline">Returns the chat Resource.</p>

<p class="toc_element">
  <code><a href="#close">close()</a></code></p>
<p class="firstline">Close httplib2 connections.</p>
<p class="toc_element">
  <code><a href="#computeTokens">computeTokens(endpoint, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Return a list of tokens based on the input text.</p>
<p class="toc_element">
  <code><a href="#countTokens">countTokens(endpoint, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Perform a token counting.</p>
<p class="toc_element">
  <code><a href="#fetchPredictOperation">fetchPredictOperation(endpoint, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Fetch an asynchronous online prediction operation.</p>
<p class="toc_element">
  <code><a href="#generateContent">generateContent(model, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Generate content with multimodal inputs.</p>
<p class="toc_element">
  <code><a href="#predict">predict(endpoint, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Perform an online prediction.</p>
<p class="toc_element">
  <code><a href="#predictLongRunning">predictLongRunning(endpoint, body=None, x__xgafv=None)</a></code></p>
<p class="firstline"></p>
<p class="toc_element">
  <code><a href="#streamGenerateContent">streamGenerateContent(model, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Generate content with multimodal inputs with streaming support.</p>
<h3>Method Details</h3>
<div class="method">
    <code class="details" id="close">close()</code>
  <pre>Close httplib2 connections.</pre>
</div>

<div class="method">
    <code class="details" id="computeTokens">computeTokens(endpoint, body=None, x__xgafv=None)</code>
  <pre>Return a list of tokens based on the input text.

Args:
  endpoint: string, Required. The name of the Endpoint requested to get lists of tokens and token ids. (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for ComputeTokens RPC call.
  &quot;contents&quot;: [ # Optional. Input content.
    { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
      &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
        { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
          &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
            &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
            &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
          },
          &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
            &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
            &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
          },
          &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
            &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
            &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
          },
          &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
            &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
            &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
          },
          &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
            &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
          &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
          &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
          &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
            &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
            &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
            &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
          },
        },
      ],
      &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
    },
  ],
  &quot;instances&quot;: [ # Optional. The instances that are the input to token computing API call. Schema is identical to the prediction schema of the text model, even for the non-text models, like chat models, or Codey models.
    &quot;&quot;,
  ],
  &quot;model&quot;: &quot;A String&quot;, # Optional. The name of the publisher model requested to serve the prediction. Format: projects/{project}/locations/{location}/publishers/*/models/*
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for ComputeTokens RPC call.
  &quot;tokensInfo&quot;: [ # Lists of tokens info from the input. A ComputeTokensRequest could have multiple instances with a prompt in each instance. We also need to return lists of tokens info for the request with multiple instances.
    { # Tokens info with a list of tokens and the corresponding list of token ids.
      &quot;role&quot;: &quot;A String&quot;, # Optional. Optional fields for the role from the corresponding Content.
      &quot;tokenIds&quot;: [ # A list of token ids from the input.
        &quot;A String&quot;,
      ],
      &quot;tokens&quot;: [ # A list of tokens from the input.
        &quot;A String&quot;,
      ],
    },
  ],
}</pre>
</div>

<div class="method">
    <code class="details" id="countTokens">countTokens(endpoint, body=None, x__xgafv=None)</code>
  <pre>Perform a token counting.

Args:
  endpoint: string, Required. The name of the Endpoint requested to perform token counting. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for PredictionService.CountTokens.
  &quot;contents&quot;: [ # Optional. Input content.
    { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
      &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
        { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
          &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
            &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
            &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
          },
          &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
            &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
            &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
          },
          &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
            &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
            &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
          },
          &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
            &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
            &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
          },
          &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
            &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
          &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
          &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
          &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
            &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
            &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
            &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
          },
        },
      ],
      &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
    },
  ],
  &quot;generationConfig&quot;: { # Generation config. # Optional. Generation config that the model will use to generate the response.
    &quot;audioTimestamp&quot;: True or False, # Optional. If enabled, audio timestamp will be included in the request to the model.
    &quot;candidateCount&quot;: 42, # Optional. Number of candidates to generate.
    &quot;enableAffectiveDialog&quot;: True or False, # Optional. If enabled, the model will detect emotions and adapt its responses accordingly.
    &quot;frequencyPenalty&quot;: 3.14, # Optional. Frequency penalties.
    &quot;logprobs&quot;: 42, # Optional. Logit probabilities.
    &quot;maxOutputTokens&quot;: 42, # Optional. The maximum number of output tokens to generate per message.
    &quot;mediaResolution&quot;: &quot;A String&quot;, # Optional. If specified, the media resolution specified will be used.
    &quot;modelConfig&quot;: { # Config for model selection. # Optional. Config for model selection.
      &quot;featureSelectionPreference&quot;: &quot;A String&quot;, # Required. Feature selection preference.
    },
    &quot;presencePenalty&quot;: 3.14, # Optional. Positive penalties.
    &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. Output schema of the generated response. This is an alternative to `response_schema` that accepts [JSON Schema](https://json-schema.org/). If set, `response_schema` must be omitted, but `response_mime_type` is required. While the full JSON Schema may be sent, not all features are supported. Specifically, only the following properties are supported: - `$id` - `$defs` - `$ref` - `$anchor` - `type` - `format` - `title` - `description` - `enum` (for strings and numbers) - `items` - `prefixItems` - `minItems` - `maxItems` - `minimum` - `maximum` - `anyOf` - `oneOf` (interpreted the same as `anyOf`) - `properties` - `additionalProperties` - `required` The non-standard `propertyOrdering` property may also be set. Cyclic references are unrolled to a limited degree and, as such, may only be used within non-required properties. (Nullable properties are not sufficient.) If `$ref` is set on a sub-schema, no other properties, except for than those starting as a `$`, may be set.
    &quot;responseLogprobs&quot;: True or False, # Optional. If true, export the logprobs results in response.
    &quot;responseMimeType&quot;: &quot;A String&quot;, # Optional. Output response mimetype of the generated candidate text. Supported mimetype: - `text/plain`: (default) Text output. - `application/json`: JSON response in the candidates. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
    &quot;responseModalities&quot;: [ # Optional. The modalities of the response.
      &quot;A String&quot;,
    ],
    &quot;responseSchema&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. The `Schema` object allows the definition of input and output data types. These types can be objects, but also primitives and arrays. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema). If set, a compatible response_mime_type must also be set. Compatible mimetypes: `application/json`: Schema for JSON response.
      &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
      &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
        # Object with schema name: GoogleCloudAiplatformV1beta1Schema
      ],
      &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
      &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
        &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
      },
      &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
      &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
        &quot;A String&quot;,
      ],
      &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
      &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
      &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
      &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
      &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
      &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
      &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
      &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
      &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
      &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
      &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
      &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
      &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
      &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
        &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
      },
      &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
        &quot;A String&quot;,
      ],
      &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
      &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
        &quot;A String&quot;,
      ],
      &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
      &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
    },
    &quot;routingConfig&quot;: { # The configuration for routing the request to a specific model. # Optional. Routing configuration.
      &quot;autoMode&quot;: { # When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference. # Automated routing.
        &quot;modelRoutingPreference&quot;: &quot;A String&quot;, # The model routing preference.
      },
      &quot;manualMode&quot;: { # When manual routing is set, the specified model will be used directly. # Manual routing.
        &quot;modelName&quot;: &quot;A String&quot;, # The model name to use. Only the public LLM models are accepted. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
      },
    },
    &quot;seed&quot;: 42, # Optional. Seed.
    &quot;speechConfig&quot;: { # The speech generation config. # Optional. The speech generation config.
      &quot;languageCode&quot;: &quot;A String&quot;, # Optional. Language code (ISO 639. e.g. en-US) for the speech synthesization.
      &quot;voiceConfig&quot;: { # The configuration for the voice to use. # The configuration for the speaker to use.
        &quot;prebuiltVoiceConfig&quot;: { # The configuration for the prebuilt speaker to use. # The configuration for the prebuilt voice to use.
          &quot;voiceName&quot;: &quot;A String&quot;, # The name of the preset voice to use.
        },
      },
    },
    &quot;stopSequences&quot;: [ # Optional. Stop sequences.
      &quot;A String&quot;,
    ],
    &quot;temperature&quot;: 3.14, # Optional. Controls the randomness of predictions.
    &quot;thinkingConfig&quot;: { # Config for thinking features. # Optional. Config for thinking features. An error will be returned if this field is set for models that don&#x27;t support thinking.
      &quot;includeThoughts&quot;: True or False, # Optional. Indicates whether to include thoughts in the response. If true, thoughts are returned only when available.
      &quot;thinkingBudget&quot;: 42, # Optional. Indicates the thinking budget in tokens.
    },
    &quot;topK&quot;: 3.14, # Optional. If specified, top-k sampling will be used.
    &quot;topP&quot;: 3.14, # Optional. If specified, nucleus sampling will be used.
  },
  &quot;instances&quot;: [ # Optional. The instances that are the input to token counting call. Schema is identical to the prediction schema of the underlying model.
    &quot;&quot;,
  ],
  &quot;model&quot;: &quot;A String&quot;, # Optional. The name of the publisher model requested to serve the prediction. Format: `projects/{project}/locations/{location}/publishers/*/models/*`
  &quot;systemInstruction&quot;: { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Optional. The user provided system instructions for the model. Note: only text should be used in parts and content in each part will be in a separate paragraph.
    &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
      { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
        &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
          &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
          &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
        },
        &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
          &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
          &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
        },
        &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
          &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
          &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
          &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
        },
        &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
          &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
          },
          &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
          &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
        },
        &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
          &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
          &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
          &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
          },
        },
        &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
          &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
          &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
          &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
        },
        &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
        &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
        &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
        &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
          &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
          &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
          &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
        },
      },
    ],
    &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
  },
  &quot;tools&quot;: [ # Optional. A list of `Tools` the model may use to generate the next response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model.
    { # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
      &quot;codeExecution&quot;: { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
      },
      &quot;enterpriseWebSearch&quot;: { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
        &quot;excludeDomains&quot;: [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
          &quot;A String&quot;,
        ],
      },
      &quot;functionDeclarations&quot;: [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
        { # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
          &quot;description&quot;: &quot;A String&quot;, # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
          &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
          &quot;parameters&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
            &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
            &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
              # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            ],
            &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
            &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
              &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            },
            &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
            &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
              &quot;A String&quot;,
            ],
            &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
            &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
            &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
            &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
            &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
            &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
            &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
            &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
            &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
            &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
            &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
            &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
            &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
            &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
              &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            },
            &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
              &quot;A String&quot;,
            ],
            &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
            &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
              &quot;A String&quot;,
            ],
            &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
            &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
          },
          &quot;parametersJsonSchema&quot;: &quot;&quot;, # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { &quot;type&quot;: &quot;object&quot;, &quot;properties&quot;: { &quot;name&quot;: { &quot;type&quot;: &quot;string&quot; }, &quot;age&quot;: { &quot;type&quot;: &quot;integer&quot; } }, &quot;additionalProperties&quot;: false, &quot;required&quot;: [&quot;name&quot;, &quot;age&quot;], &quot;propertyOrdering&quot;: [&quot;name&quot;, &quot;age&quot;] } ``` This field is mutually exclusive with `parameters`.
          &quot;response&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
            &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
            &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
              # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            ],
            &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
            &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
              &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            },
            &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
            &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
              &quot;A String&quot;,
            ],
            &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
            &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
            &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
            &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
            &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
            &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
            &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
            &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
            &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
            &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
            &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
            &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
            &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
            &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
              &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            },
            &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
              &quot;A String&quot;,
            ],
            &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
            &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
              &quot;A String&quot;,
            ],
            &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
            &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
          },
          &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
        },
      ],
      &quot;googleMaps&quot;: { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
      },
      &quot;googleSearch&quot;: { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
        &quot;excludeDomains&quot;: [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: [&quot;amazon.com&quot;, &quot;facebook.com&quot;].
          &quot;A String&quot;,
        ],
      },
      &quot;googleSearchRetrieval&quot;: { # Tool to retrieve public web data for grounding, powered by Google. # Optional. GoogleSearchRetrieval tool type. Specialized retrieval tool that is powered by Google search.
        &quot;dynamicRetrievalConfig&quot;: { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
          &quot;dynamicThreshold&quot;: 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
          &quot;mode&quot;: &quot;A String&quot;, # The mode of the predictor to be used in dynamic retrieval.
        },
      },
      &quot;retrieval&quot;: { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
        &quot;disableAttribution&quot;: True or False, # Optional. Deprecated. This option is no longer supported.
        &quot;externalApi&quot;: { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
          &quot;apiAuth&quot;: { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
            &quot;apiKeyConfig&quot;: { # The API secret. # The API secret.
              &quot;apiKeySecretVersion&quot;: &quot;A String&quot;, # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
              &quot;apiKeyString&quot;: &quot;A String&quot;, # The API key string. Either this or `api_key_secret_version` must be set.
            },
          },
          &quot;apiSpec&quot;: &quot;A String&quot;, # The API spec that the external API implements.
          &quot;authConfig&quot;: { # Auth configuration to run the extension. # The authentication config to access the API.
            &quot;apiKeyConfig&quot;: { # Config for authentication with API key. # Config for API key auth.
              &quot;apiKeySecret&quot;: &quot;A String&quot;, # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
              &quot;apiKeyString&quot;: &quot;A String&quot;, # Optional. The API key to be used in the request directly.
              &quot;httpElementLocation&quot;: &quot;A String&quot;, # Optional. The location of the API key.
              &quot;name&quot;: &quot;A String&quot;, # Optional. The parameter name of the API key. E.g. If the API request is &quot;https://example.com/act?api_key=&quot;, &quot;api_key&quot; would be the parameter name.
            },
            &quot;authType&quot;: &quot;A String&quot;, # Type of auth scheme.
            &quot;googleServiceAccountConfig&quot;: { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
              &quot;serviceAccount&quot;: &quot;A String&quot;, # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
            },
            &quot;httpBasicAuthConfig&quot;: { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
              &quot;credentialSecret&quot;: &quot;A String&quot;, # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
            },
            &quot;oauthConfig&quot;: { # Config for user oauth. # Config for user oauth.
              &quot;accessToken&quot;: &quot;A String&quot;, # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
              &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
            },
            &quot;oidcConfig&quot;: { # Config for user OIDC auth. # Config for user OIDC auth.
              &quot;idToken&quot;: &quot;A String&quot;, # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
              &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
            },
          },
          &quot;elasticSearchParams&quot;: { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
            &quot;index&quot;: &quot;A String&quot;, # The ElasticSearch index to use.
            &quot;numHits&quot;: 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
            &quot;searchTemplate&quot;: &quot;A String&quot;, # The ElasticSearch search template to use.
          },
          &quot;endpoint&quot;: &quot;A String&quot;, # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
          &quot;simpleSearchParams&quot;: { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
          },
        },
        &quot;vertexAiSearch&quot;: { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
          &quot;dataStoreSpecs&quot;: [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
            { # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
              &quot;dataStore&quot;: &quot;A String&quot;, # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
              &quot;filter&quot;: &quot;A String&quot;, # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
            },
          ],
          &quot;datastore&quot;: &quot;A String&quot;, # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
          &quot;engine&quot;: &quot;A String&quot;, # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
          &quot;filter&quot;: &quot;A String&quot;, # Optional. Filter strings to be passed to the search API.
          &quot;maxResults&quot;: 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
        },
        &quot;vertexRagStore&quot;: { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
          &quot;ragCorpora&quot;: [ # Optional. Deprecated. Please use rag_resources instead.
            &quot;A String&quot;,
          ],
          &quot;ragResources&quot;: [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
            { # The definition of the Rag resource.
              &quot;ragCorpus&quot;: &quot;A String&quot;, # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
              &quot;ragFileIds&quot;: [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
                &quot;A String&quot;,
              ],
            },
          ],
          &quot;ragRetrievalConfig&quot;: { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
            &quot;filter&quot;: { # Config for filters. # Optional. Config for filters.
              &quot;metadataFilter&quot;: &quot;A String&quot;, # Optional. String for metadata filtering.
              &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
              &quot;vectorSimilarityThreshold&quot;: 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
            },
            &quot;hybridSearch&quot;: { # Config for Hybrid Search. # Optional. Config for Hybrid Search.
              &quot;alpha&quot;: 3.14, # Optional. Alpha value controls the weight between dense and sparse vector search results. The range is [0, 1], while 0 means sparse vector search only and 1 means dense vector search only. The default value is 0.5 which balances sparse and dense vector search equally.
            },
            &quot;ranking&quot;: { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
              &quot;llmRanker&quot;: { # Config for LlmRanker. # Optional. Config for LlmRanker.
                &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
              },
              &quot;rankService&quot;: { # Config for Rank Service. # Optional. Config for Rank Service.
                &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
              },
            },
            &quot;topK&quot;: 42, # Optional. The number of contexts to retrieve.
          },
          &quot;similarityTopK&quot;: 42, # Optional. Number of top k results to return from the selected corpora.
          &quot;storeContext&quot;: True or False, # Optional. Currently only supported for Gemini Multimodal Live API. In Gemini Multimodal Live API, if `store_context` bool is specified, Gemini will leverage it to automatically memorize the interactions between the client and Gemini, and retrieve context when needed to augment the response generation for users&#x27; ongoing and future interactions.
          &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only return results with vector distance smaller than the threshold.
        },
      },
      &quot;urlContext&quot;: { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
      },
    },
  ],
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for PredictionService.CountTokens.
  &quot;promptTokensDetails&quot;: [ # Output only. List of modalities that were processed in the request input.
    { # Represents token counting info for a single modality.
      &quot;modality&quot;: &quot;A String&quot;, # The modality associated with this token count.
      &quot;tokenCount&quot;: 42, # Number of tokens.
    },
  ],
  &quot;totalBillableCharacters&quot;: 42, # The total number of billable characters counted across all instances from the request.
  &quot;totalTokens&quot;: 42, # The total number of tokens counted across all instances from the request.
}</pre>
</div>

<div class="method">
    <code class="details" id="fetchPredictOperation">fetchPredictOperation(endpoint, body=None, x__xgafv=None)</code>
  <pre>Fetch an asynchronous online prediction operation.

Args:
  endpoint: string, Required. The name of the Endpoint requested to serve the prediction. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}` or `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for PredictionService.FetchPredictOperation.
  &quot;operationName&quot;: &quot;A String&quot;, # Required. The server-assigned name for the operation.
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # This resource represents a long-running operation that is the result of a network API call.
  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  &quot;response&quot;: { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="generateContent">generateContent(model, body=None, x__xgafv=None)</code>
  <pre>Generate content with multimodal inputs.

Args:
  model: string, Required. The fully qualified name of the publisher model or tuned model endpoint to use. Publisher model format: `projects/{project}/locations/{location}/publishers/*/models/*` Tuned model endpoint format: `projects/{project}/locations/{location}/endpoints/{endpoint}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for [PredictionService.GenerateContent].
  &quot;cachedContent&quot;: &quot;A String&quot;, # Optional. The name of the cached content used as context to serve the prediction. Note: only used in explicit caching, where users can have control over caching (e.g. what content to cache) and enjoy guaranteed cost savings. Format: `projects/{project}/locations/{location}/cachedContents/{cachedContent}`
  &quot;contents&quot;: [ # Required. The content of the current conversation with the model. For single-turn queries, this is a single instance. For multi-turn queries, this is a repeated field that contains conversation history + latest request.
    { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
      &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
        { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
          &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
            &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
            &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
          },
          &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
            &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
            &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
          },
          &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
            &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
            &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
          },
          &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
            &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
            &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
          },
          &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
            &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
          &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
          &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
          &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
            &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
            &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
            &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
          },
        },
      ],
      &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
    },
  ],
  &quot;generationConfig&quot;: { # Generation config. # Optional. Generation config.
    &quot;audioTimestamp&quot;: True or False, # Optional. If enabled, audio timestamp will be included in the request to the model.
    &quot;candidateCount&quot;: 42, # Optional. Number of candidates to generate.
    &quot;enableAffectiveDialog&quot;: True or False, # Optional. If enabled, the model will detect emotions and adapt its responses accordingly.
    &quot;frequencyPenalty&quot;: 3.14, # Optional. Frequency penalties.
    &quot;logprobs&quot;: 42, # Optional. Logit probabilities.
    &quot;maxOutputTokens&quot;: 42, # Optional. The maximum number of output tokens to generate per message.
    &quot;mediaResolution&quot;: &quot;A String&quot;, # Optional. If specified, the media resolution specified will be used.
    &quot;modelConfig&quot;: { # Config for model selection. # Optional. Config for model selection.
      &quot;featureSelectionPreference&quot;: &quot;A String&quot;, # Required. Feature selection preference.
    },
    &quot;presencePenalty&quot;: 3.14, # Optional. Positive penalties.
    &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. Output schema of the generated response. This is an alternative to `response_schema` that accepts [JSON Schema](https://json-schema.org/). If set, `response_schema` must be omitted, but `response_mime_type` is required. While the full JSON Schema may be sent, not all features are supported. Specifically, only the following properties are supported: - `$id` - `$defs` - `$ref` - `$anchor` - `type` - `format` - `title` - `description` - `enum` (for strings and numbers) - `items` - `prefixItems` - `minItems` - `maxItems` - `minimum` - `maximum` - `anyOf` - `oneOf` (interpreted the same as `anyOf`) - `properties` - `additionalProperties` - `required` The non-standard `propertyOrdering` property may also be set. Cyclic references are unrolled to a limited degree and, as such, may only be used within non-required properties. (Nullable properties are not sufficient.) If `$ref` is set on a sub-schema, no other properties, except for than those starting as a `$`, may be set.
    &quot;responseLogprobs&quot;: True or False, # Optional. If true, export the logprobs results in response.
    &quot;responseMimeType&quot;: &quot;A String&quot;, # Optional. Output response mimetype of the generated candidate text. Supported mimetype: - `text/plain`: (default) Text output. - `application/json`: JSON response in the candidates. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
    &quot;responseModalities&quot;: [ # Optional. The modalities of the response.
      &quot;A String&quot;,
    ],
    &quot;responseSchema&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. The `Schema` object allows the definition of input and output data types. These types can be objects, but also primitives and arrays. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema). If set, a compatible response_mime_type must also be set. Compatible mimetypes: `application/json`: Schema for JSON response.
      &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
      &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
        # Object with schema name: GoogleCloudAiplatformV1beta1Schema
      ],
      &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
      &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
        &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
      },
      &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
      &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
        &quot;A String&quot;,
      ],
      &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
      &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
      &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
      &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
      &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
      &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
      &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
      &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
      &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
      &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
      &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
      &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
      &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
      &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
        &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
      },
      &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
        &quot;A String&quot;,
      ],
      &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
      &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
        &quot;A String&quot;,
      ],
      &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
      &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
    },
    &quot;routingConfig&quot;: { # The configuration for routing the request to a specific model. # Optional. Routing configuration.
      &quot;autoMode&quot;: { # When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference. # Automated routing.
        &quot;modelRoutingPreference&quot;: &quot;A String&quot;, # The model routing preference.
      },
      &quot;manualMode&quot;: { # When manual routing is set, the specified model will be used directly. # Manual routing.
        &quot;modelName&quot;: &quot;A String&quot;, # The model name to use. Only the public LLM models are accepted. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
      },
    },
    &quot;seed&quot;: 42, # Optional. Seed.
    &quot;speechConfig&quot;: { # The speech generation config. # Optional. The speech generation config.
      &quot;languageCode&quot;: &quot;A String&quot;, # Optional. Language code (ISO 639. e.g. en-US) for the speech synthesization.
      &quot;voiceConfig&quot;: { # The configuration for the voice to use. # The configuration for the speaker to use.
        &quot;prebuiltVoiceConfig&quot;: { # The configuration for the prebuilt speaker to use. # The configuration for the prebuilt voice to use.
          &quot;voiceName&quot;: &quot;A String&quot;, # The name of the preset voice to use.
        },
      },
    },
    &quot;stopSequences&quot;: [ # Optional. Stop sequences.
      &quot;A String&quot;,
    ],
    &quot;temperature&quot;: 3.14, # Optional. Controls the randomness of predictions.
    &quot;thinkingConfig&quot;: { # Config for thinking features. # Optional. Config for thinking features. An error will be returned if this field is set for models that don&#x27;t support thinking.
      &quot;includeThoughts&quot;: True or False, # Optional. Indicates whether to include thoughts in the response. If true, thoughts are returned only when available.
      &quot;thinkingBudget&quot;: 42, # Optional. Indicates the thinking budget in tokens.
    },
    &quot;topK&quot;: 3.14, # Optional. If specified, top-k sampling will be used.
    &quot;topP&quot;: 3.14, # Optional. If specified, nucleus sampling will be used.
  },
  &quot;labels&quot;: { # Optional. The labels with user-defined metadata for the request. It is used for billing and reporting only. Label keys and values can be no longer than 63 characters (Unicode codepoints) and can only contain lowercase letters, numeric characters, underscores, and dashes. International characters are allowed. Label values are optional. Label keys must start with a letter.
    &quot;a_key&quot;: &quot;A String&quot;,
  },
  &quot;modelArmorConfig&quot;: { # Configuration for Model Armor integrations of prompt and responses. # Optional. Settings for prompt and response sanitization using the Model Armor service. If supplied, safety_settings must not be supplied.
    &quot;promptTemplateName&quot;: &quot;A String&quot;, # Optional. The name of the Model Armor template to use for prompt sanitization.
    &quot;responseTemplateName&quot;: &quot;A String&quot;, # Optional. The name of the Model Armor template to use for response sanitization.
  },
  &quot;safetySettings&quot;: [ # Optional. Per request settings for blocking unsafe content. Enforced on GenerateContentResponse.candidates.
    { # Safety settings.
      &quot;category&quot;: &quot;A String&quot;, # Required. Harm category.
      &quot;method&quot;: &quot;A String&quot;, # Optional. Specify if the threshold is used for probability or severity score. If not specified, the threshold is used for probability score.
      &quot;threshold&quot;: &quot;A String&quot;, # Required. The harm block threshold.
    },
  ],
  &quot;systemInstruction&quot;: { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Optional. The user provided system instructions for the model. Note: only text should be used in parts and content in each part will be in a separate paragraph.
    &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
      { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
        &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
          &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
          &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
        },
        &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
          &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
          &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
        },
        &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
          &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
          &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
          &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
        },
        &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
          &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
          },
          &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
          &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
        },
        &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
          &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
          &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
          &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
          },
        },
        &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
          &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
          &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
          &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
        },
        &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
        &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
        &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
        &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
          &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
          &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
          &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
        },
      },
    ],
    &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
  },
  &quot;toolConfig&quot;: { # Tool config. This config is shared for all tools provided in the request. # Optional. Tool config. This config is shared for all tools provided in the request.
    &quot;functionCallingConfig&quot;: { # Function calling config. # Optional. Function calling config.
      &quot;allowedFunctionNames&quot;: [ # Optional. Function names to call. Only set when the Mode is ANY. Function names should match [FunctionDeclaration.name]. With mode set to ANY, model will predict a function call from the set of function names provided.
        &quot;A String&quot;,
      ],
      &quot;mode&quot;: &quot;A String&quot;, # Optional. Function calling mode.
    },
    &quot;retrievalConfig&quot;: { # Retrieval config. # Optional. Retrieval config.
      &quot;languageCode&quot;: &quot;A String&quot;, # The language code of the user.
      &quot;latLng&quot;: { # An object that represents a latitude/longitude pair. This is expressed as a pair of doubles to represent degrees latitude and degrees longitude. Unless specified otherwise, this object must conform to the WGS84 standard. Values must be within normalized ranges. # The location of the user.
        &quot;latitude&quot;: 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
        &quot;longitude&quot;: 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
      },
    },
  },
  &quot;tools&quot;: [ # Optional. A list of `Tools` the model may use to generate the next response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model.
    { # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
      &quot;codeExecution&quot;: { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
      },
      &quot;enterpriseWebSearch&quot;: { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
        &quot;excludeDomains&quot;: [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
          &quot;A String&quot;,
        ],
      },
      &quot;functionDeclarations&quot;: [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
        { # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
          &quot;description&quot;: &quot;A String&quot;, # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
          &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
          &quot;parameters&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
            &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
            &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
              # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            ],
            &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
            &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
              &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            },
            &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
            &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
              &quot;A String&quot;,
            ],
            &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
            &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
            &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
            &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
            &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
            &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
            &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
            &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
            &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
            &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
            &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
            &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
            &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
            &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
              &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            },
            &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
              &quot;A String&quot;,
            ],
            &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
            &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
              &quot;A String&quot;,
            ],
            &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
            &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
          },
          &quot;parametersJsonSchema&quot;: &quot;&quot;, # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { &quot;type&quot;: &quot;object&quot;, &quot;properties&quot;: { &quot;name&quot;: { &quot;type&quot;: &quot;string&quot; }, &quot;age&quot;: { &quot;type&quot;: &quot;integer&quot; } }, &quot;additionalProperties&quot;: false, &quot;required&quot;: [&quot;name&quot;, &quot;age&quot;], &quot;propertyOrdering&quot;: [&quot;name&quot;, &quot;age&quot;] } ``` This field is mutually exclusive with `parameters`.
          &quot;response&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
            &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
            &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
              # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            ],
            &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
            &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
              &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            },
            &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
            &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
              &quot;A String&quot;,
            ],
            &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
            &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
            &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
            &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
            &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
            &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
            &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
            &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
            &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
            &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
            &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
            &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
            &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
            &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
              &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            },
            &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
              &quot;A String&quot;,
            ],
            &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
            &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
              &quot;A String&quot;,
            ],
            &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
            &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
          },
          &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
        },
      ],
      &quot;googleMaps&quot;: { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
      },
      &quot;googleSearch&quot;: { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
        &quot;excludeDomains&quot;: [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: [&quot;amazon.com&quot;, &quot;facebook.com&quot;].
          &quot;A String&quot;,
        ],
      },
      &quot;googleSearchRetrieval&quot;: { # Tool to retrieve public web data for grounding, powered by Google. # Optional. GoogleSearchRetrieval tool type. Specialized retrieval tool that is powered by Google search.
        &quot;dynamicRetrievalConfig&quot;: { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
          &quot;dynamicThreshold&quot;: 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
          &quot;mode&quot;: &quot;A String&quot;, # The mode of the predictor to be used in dynamic retrieval.
        },
      },
      &quot;retrieval&quot;: { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
        &quot;disableAttribution&quot;: True or False, # Optional. Deprecated. This option is no longer supported.
        &quot;externalApi&quot;: { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
          &quot;apiAuth&quot;: { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
            &quot;apiKeyConfig&quot;: { # The API secret. # The API secret.
              &quot;apiKeySecretVersion&quot;: &quot;A String&quot;, # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
              &quot;apiKeyString&quot;: &quot;A String&quot;, # The API key string. Either this or `api_key_secret_version` must be set.
            },
          },
          &quot;apiSpec&quot;: &quot;A String&quot;, # The API spec that the external API implements.
          &quot;authConfig&quot;: { # Auth configuration to run the extension. # The authentication config to access the API.
            &quot;apiKeyConfig&quot;: { # Config for authentication with API key. # Config for API key auth.
              &quot;apiKeySecret&quot;: &quot;A String&quot;, # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
              &quot;apiKeyString&quot;: &quot;A String&quot;, # Optional. The API key to be used in the request directly.
              &quot;httpElementLocation&quot;: &quot;A String&quot;, # Optional. The location of the API key.
              &quot;name&quot;: &quot;A String&quot;, # Optional. The parameter name of the API key. E.g. If the API request is &quot;https://example.com/act?api_key=&quot;, &quot;api_key&quot; would be the parameter name.
            },
            &quot;authType&quot;: &quot;A String&quot;, # Type of auth scheme.
            &quot;googleServiceAccountConfig&quot;: { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
              &quot;serviceAccount&quot;: &quot;A String&quot;, # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
            },
            &quot;httpBasicAuthConfig&quot;: { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
              &quot;credentialSecret&quot;: &quot;A String&quot;, # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
            },
            &quot;oauthConfig&quot;: { # Config for user oauth. # Config for user oauth.
              &quot;accessToken&quot;: &quot;A String&quot;, # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
              &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
            },
            &quot;oidcConfig&quot;: { # Config for user OIDC auth. # Config for user OIDC auth.
              &quot;idToken&quot;: &quot;A String&quot;, # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
              &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
            },
          },
          &quot;elasticSearchParams&quot;: { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
            &quot;index&quot;: &quot;A String&quot;, # The ElasticSearch index to use.
            &quot;numHits&quot;: 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
            &quot;searchTemplate&quot;: &quot;A String&quot;, # The ElasticSearch search template to use.
          },
          &quot;endpoint&quot;: &quot;A String&quot;, # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
          &quot;simpleSearchParams&quot;: { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
          },
        },
        &quot;vertexAiSearch&quot;: { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
          &quot;dataStoreSpecs&quot;: [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
            { # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
              &quot;dataStore&quot;: &quot;A String&quot;, # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
              &quot;filter&quot;: &quot;A String&quot;, # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
            },
          ],
          &quot;datastore&quot;: &quot;A String&quot;, # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
          &quot;engine&quot;: &quot;A String&quot;, # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
          &quot;filter&quot;: &quot;A String&quot;, # Optional. Filter strings to be passed to the search API.
          &quot;maxResults&quot;: 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
        },
        &quot;vertexRagStore&quot;: { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
          &quot;ragCorpora&quot;: [ # Optional. Deprecated. Please use rag_resources instead.
            &quot;A String&quot;,
          ],
          &quot;ragResources&quot;: [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
            { # The definition of the Rag resource.
              &quot;ragCorpus&quot;: &quot;A String&quot;, # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
              &quot;ragFileIds&quot;: [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
                &quot;A String&quot;,
              ],
            },
          ],
          &quot;ragRetrievalConfig&quot;: { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
            &quot;filter&quot;: { # Config for filters. # Optional. Config for filters.
              &quot;metadataFilter&quot;: &quot;A String&quot;, # Optional. String for metadata filtering.
              &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
              &quot;vectorSimilarityThreshold&quot;: 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
            },
            &quot;hybridSearch&quot;: { # Config for Hybrid Search. # Optional. Config for Hybrid Search.
              &quot;alpha&quot;: 3.14, # Optional. Alpha value controls the weight between dense and sparse vector search results. The range is [0, 1], while 0 means sparse vector search only and 1 means dense vector search only. The default value is 0.5 which balances sparse and dense vector search equally.
            },
            &quot;ranking&quot;: { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
              &quot;llmRanker&quot;: { # Config for LlmRanker. # Optional. Config for LlmRanker.
                &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
              },
              &quot;rankService&quot;: { # Config for Rank Service. # Optional. Config for Rank Service.
                &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
              },
            },
            &quot;topK&quot;: 42, # Optional. The number of contexts to retrieve.
          },
          &quot;similarityTopK&quot;: 42, # Optional. Number of top k results to return from the selected corpora.
          &quot;storeContext&quot;: True or False, # Optional. Currently only supported for Gemini Multimodal Live API. In Gemini Multimodal Live API, if `store_context` bool is specified, Gemini will leverage it to automatically memorize the interactions between the client and Gemini, and retrieve context when needed to augment the response generation for users&#x27; ongoing and future interactions.
          &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only return results with vector distance smaller than the threshold.
        },
      },
      &quot;urlContext&quot;: { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
      },
    },
  ],
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for [PredictionService.GenerateContent].
  &quot;candidates&quot;: [ # Output only. Generated candidates.
    { # A response candidate generated from the model.
      &quot;avgLogprobs&quot;: 3.14, # Output only. Average log probability score of the candidate.
      &quot;citationMetadata&quot;: { # A collection of source attributions for a piece of content. # Output only. Source attribution of the generated content.
        &quot;citations&quot;: [ # Output only. List of citations.
          { # Source attributions for content.
            &quot;endIndex&quot;: 42, # Output only. End index into the content.
            &quot;license&quot;: &quot;A String&quot;, # Output only. License of the attribution.
            &quot;publicationDate&quot;: { # Represents a whole or partial calendar date, such as a birthday. The time of day and time zone are either specified elsewhere or are insignificant. The date is relative to the Gregorian Calendar. This can represent one of the following: * A full date, with non-zero year, month, and day values. * A month and day, with a zero year (for example, an anniversary). * A year on its own, with a zero month and a zero day. * A year and month, with a zero day (for example, a credit card expiration date). Related types: * google.type.TimeOfDay * google.type.DateTime * google.protobuf.Timestamp # Output only. Publication date of the attribution.
              &quot;day&quot;: 42, # Day of a month. Must be from 1 to 31 and valid for the year and month, or 0 to specify a year by itself or a year and month where the day isn&#x27;t significant.
              &quot;month&quot;: 42, # Month of a year. Must be from 1 to 12, or 0 to specify a year without a month and day.
              &quot;year&quot;: 42, # Year of the date. Must be from 1 to 9999, or 0 to specify a date without a year.
            },
            &quot;startIndex&quot;: 42, # Output only. Start index into the content.
            &quot;title&quot;: &quot;A String&quot;, # Output only. Title of the attribution.
            &quot;uri&quot;: &quot;A String&quot;, # Output only. Url reference of the attribution.
          },
        ],
      },
      &quot;content&quot;: { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Output only. Content parts of the candidate.
        &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
          { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
            &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
              &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
              &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
            },
            &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
              &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
              &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
            },
            &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
              &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
              &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
              &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
            },
            &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
              &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
              },
              &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
              &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
            },
            &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
              &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
              &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
              &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
              },
            },
            &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
              &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
              &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
              &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
            },
            &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
            &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
            &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
            &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
              &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
              &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
              &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
            },
          },
        ],
        &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
      },
      &quot;finishMessage&quot;: &quot;A String&quot;, # Output only. Describes the reason the mode stopped generating tokens in more detail. This is only filled when `finish_reason` is set.
      &quot;finishReason&quot;: &quot;A String&quot;, # Output only. The reason why the model stopped generating tokens. If empty, the model has not stopped generating the tokens.
      &quot;groundingMetadata&quot;: { # Metadata returned to client when grounding is enabled. # Output only. Metadata specifies sources used to ground generated content.
        &quot;googleMapsWidgetContextToken&quot;: &quot;A String&quot;, # Optional. Output only. Resource name of the Google Maps widget context token to be used with the PlacesContextElement widget to render contextual data. This is populated only for Google Maps grounding.
        &quot;groundingChunks&quot;: [ # List of supporting references retrieved from specified grounding source.
          { # Grounding chunk.
            &quot;maps&quot;: { # Chunk from Google Maps. # Grounding chunk from Google Maps.
              &quot;placeAnswerSources&quot;: { # Sources used to generate the place answer. # Sources used to generate the place answer. This includes review snippets and photos that were used to generate the answer, as well as uris to flag content.
                &quot;flagContentUri&quot;: &quot;A String&quot;, # A link where users can flag a problem with the generated answer.
                &quot;reviewSnippets&quot;: [ # Snippets of reviews that are used to generate the answer.
                  { # Encapsulates a review snippet.
                    &quot;authorAttribution&quot;: { # Author attribution for a photo or review. # This review&#x27;s author.
                      &quot;displayName&quot;: &quot;A String&quot;, # Name of the author of the Photo or Review.
                      &quot;photoUri&quot;: &quot;A String&quot;, # Profile photo URI of the author of the Photo or Review.
                      &quot;uri&quot;: &quot;A String&quot;, # URI of the author of the Photo or Review.
                    },
                    &quot;flagContentUri&quot;: &quot;A String&quot;, # A link where users can flag a problem with the review.
                    &quot;googleMapsUri&quot;: &quot;A String&quot;, # A link to show the review on Google Maps.
                    &quot;relativePublishTimeDescription&quot;: &quot;A String&quot;, # A string of formatted recent time, expressing the review time relative to the current time in a form appropriate for the language and country.
                    &quot;review&quot;: &quot;A String&quot;, # A reference representing this place review which may be used to look up this place review again.
                  },
                ],
              },
              &quot;placeId&quot;: &quot;A String&quot;, # This Place&#x27;s resource name, in `places/{place_id}` format. Can be used to look up the Place.
              &quot;text&quot;: &quot;A String&quot;, # Text of the chunk.
              &quot;title&quot;: &quot;A String&quot;, # Title of the chunk.
              &quot;uri&quot;: &quot;A String&quot;, # URI reference of the chunk.
            },
            &quot;retrievedContext&quot;: { # Chunk from context retrieved by the retrieval tools. # Grounding chunk from context retrieved by the retrieval tools.
              &quot;documentName&quot;: &quot;A String&quot;, # Output only. The full document name for the referenced Vertex AI Search document.
              &quot;ragChunk&quot;: { # A RagChunk includes the content of a chunk of a RagFile, and associated metadata. # Additional context for the RAG retrieval result. This is only populated when using the RAG retrieval tool.
                &quot;pageSpan&quot;: { # Represents where the chunk starts and ends in the document. # If populated, represents where the chunk starts and ends in the document.
                  &quot;firstPage&quot;: 42, # Page where chunk starts in the document. Inclusive. 1-indexed.
                  &quot;lastPage&quot;: 42, # Page where chunk ends in the document. Inclusive. 1-indexed.
                },
                &quot;text&quot;: &quot;A String&quot;, # The content of the chunk.
              },
              &quot;text&quot;: &quot;A String&quot;, # Text of the attribution.
              &quot;title&quot;: &quot;A String&quot;, # Title of the attribution.
              &quot;uri&quot;: &quot;A String&quot;, # URI reference of the attribution.
            },
            &quot;web&quot;: { # Chunk from the web. # Grounding chunk from the web.
              &quot;domain&quot;: &quot;A String&quot;, # Domain of the (original) URI.
              &quot;title&quot;: &quot;A String&quot;, # Title of the chunk.
              &quot;uri&quot;: &quot;A String&quot;, # URI reference of the chunk.
            },
          },
        ],
        &quot;groundingSupports&quot;: [ # Optional. List of grounding support.
          { # Grounding support.
            &quot;confidenceScores&quot;: [ # Confidence score of the support references. Ranges from 0 to 1. 1 is the most confident. For Gemini 2.0 and before, this list must have the same size as the grounding_chunk_indices. For Gemini 2.5 and after, this list will be empty and should be ignored.
              3.14,
            ],
            &quot;groundingChunkIndices&quot;: [ # A list of indices (into &#x27;grounding_chunk&#x27;) specifying the citations associated with the claim. For instance [1,3,4] means that grounding_chunk[1], grounding_chunk[3], grounding_chunk[4] are the retrieved content attributed to the claim.
              42,
            ],
            &quot;segment&quot;: { # Segment of the content. # Segment of the content this support belongs to.
              &quot;endIndex&quot;: 42, # Output only. End index in the given Part, measured in bytes. Offset from the start of the Part, exclusive, starting at zero.
              &quot;partIndex&quot;: 42, # Output only. The index of a Part object within its parent Content object.
              &quot;startIndex&quot;: 42, # Output only. Start index in the given Part, measured in bytes. Offset from the start of the Part, inclusive, starting at zero.
              &quot;text&quot;: &quot;A String&quot;, # Output only. The text corresponding to the segment from the response.
            },
          },
        ],
        &quot;retrievalMetadata&quot;: { # Metadata related to retrieval in the grounding flow. # Optional. Output only. Retrieval metadata.
          &quot;googleSearchDynamicRetrievalScore&quot;: 3.14, # Optional. Score indicating how likely information from Google Search could help answer the prompt. The score is in the range `[0, 1]`, where 0 is the least likely and 1 is the most likely. This score is only populated when Google Search grounding and dynamic retrieval is enabled. It will be compared to the threshold to determine whether to trigger Google Search.
        },
        &quot;retrievalQueries&quot;: [ # Optional. Queries executed by the retrieval tools.
          &quot;A String&quot;,
        ],
        &quot;searchEntryPoint&quot;: { # Google search entry point. # Optional. Google search entry for the following-up web searches.
          &quot;renderedContent&quot;: &quot;A String&quot;, # Optional. Web content snippet that can be embedded in a web page or an app webview.
          &quot;sdkBlob&quot;: &quot;A String&quot;, # Optional. Base64 encoded JSON representing array of tuple.
        },
        &quot;webSearchQueries&quot;: [ # Optional. Web search queries for the following-up web search.
          &quot;A String&quot;,
        ],
      },
      &quot;index&quot;: 42, # Output only. Index of the candidate.
      &quot;logprobsResult&quot;: { # Logprobs Result # Output only. Log-likelihood scores for the response tokens and top tokens
        &quot;chosenCandidates&quot;: [ # Length = total number of decoding steps. The chosen candidates may or may not be in top_candidates.
          { # Candidate for the logprobs token and score.
            &quot;logProbability&quot;: 3.14, # The candidate&#x27;s log probability.
            &quot;token&quot;: &quot;A String&quot;, # The candidate&#x27;s token string value.
            &quot;tokenId&quot;: 42, # The candidate&#x27;s token id value.
          },
        ],
        &quot;topCandidates&quot;: [ # Length = total number of decoding steps.
          { # Candidates with top log probabilities at each decoding step.
            &quot;candidates&quot;: [ # Sorted by log probability in descending order.
              { # Candidate for the logprobs token and score.
                &quot;logProbability&quot;: 3.14, # The candidate&#x27;s log probability.
                &quot;token&quot;: &quot;A String&quot;, # The candidate&#x27;s token string value.
                &quot;tokenId&quot;: 42, # The candidate&#x27;s token id value.
              },
            ],
          },
        ],
      },
      &quot;safetyRatings&quot;: [ # Output only. List of ratings for the safety of a response candidate. There is at most one rating per category.
        { # Safety rating corresponding to the generated content.
          &quot;blocked&quot;: True or False, # Output only. Indicates whether the content was filtered out because of this rating.
          &quot;category&quot;: &quot;A String&quot;, # Output only. Harm category.
          &quot;overwrittenThreshold&quot;: &quot;A String&quot;, # Output only. The overwritten threshold for the safety category of Gemini 2.0 image out. If minors are detected in the output image, the threshold of each safety category will be overwritten if user sets a lower threshold.
          &quot;probability&quot;: &quot;A String&quot;, # Output only. Harm probability levels in the content.
          &quot;probabilityScore&quot;: 3.14, # Output only. Harm probability score.
          &quot;severity&quot;: &quot;A String&quot;, # Output only. Harm severity levels in the content.
          &quot;severityScore&quot;: 3.14, # Output only. Harm severity score.
        },
      ],
      &quot;urlContextMetadata&quot;: { # Metadata related to url context retrieval tool. # Output only. Metadata related to url context retrieval tool.
        &quot;urlMetadata&quot;: [ # Output only. List of url context.
          { # Context of the a single url retrieval.
            &quot;retrievedUrl&quot;: &quot;A String&quot;, # Retrieved url by the tool.
            &quot;urlRetrievalStatus&quot;: &quot;A String&quot;, # Status of the url retrieval.
          },
        ],
      },
    },
  ],
  &quot;createTime&quot;: &quot;A String&quot;, # Output only. Timestamp when the request is made to the server.
  &quot;modelVersion&quot;: &quot;A String&quot;, # Output only. The model version used to generate the response.
  &quot;promptFeedback&quot;: { # Content filter results for a prompt sent in the request. # Output only. Content filter results for a prompt sent in the request. Note: Sent only in the first stream chunk. Only happens when no candidates were generated due to content violations.
    &quot;blockReason&quot;: &quot;A String&quot;, # Output only. Blocked reason.
    &quot;blockReasonMessage&quot;: &quot;A String&quot;, # Output only. A readable block reason message.
    &quot;safetyRatings&quot;: [ # Output only. Safety ratings.
      { # Safety rating corresponding to the generated content.
        &quot;blocked&quot;: True or False, # Output only. Indicates whether the content was filtered out because of this rating.
        &quot;category&quot;: &quot;A String&quot;, # Output only. Harm category.
        &quot;overwrittenThreshold&quot;: &quot;A String&quot;, # Output only. The overwritten threshold for the safety category of Gemini 2.0 image out. If minors are detected in the output image, the threshold of each safety category will be overwritten if user sets a lower threshold.
        &quot;probability&quot;: &quot;A String&quot;, # Output only. Harm probability levels in the content.
        &quot;probabilityScore&quot;: 3.14, # Output only. Harm probability score.
        &quot;severity&quot;: &quot;A String&quot;, # Output only. Harm severity levels in the content.
        &quot;severityScore&quot;: 3.14, # Output only. Harm severity score.
      },
    ],
  },
  &quot;responseId&quot;: &quot;A String&quot;, # Output only. response_id is used to identify each response. It is the encoding of the event_id.
  &quot;usageMetadata&quot;: { # Usage metadata about response(s). # Usage metadata about the response(s).
    &quot;cacheTokensDetails&quot;: [ # Output only. List of modalities of the cached content in the request input.
      { # Represents token counting info for a single modality.
        &quot;modality&quot;: &quot;A String&quot;, # The modality associated with this token count.
        &quot;tokenCount&quot;: 42, # Number of tokens.
      },
    ],
    &quot;cachedContentTokenCount&quot;: 42, # Output only. Number of tokens in the cached part in the input (the cached content).
    &quot;candidatesTokenCount&quot;: 42, # Number of tokens in the response(s).
    &quot;candidatesTokensDetails&quot;: [ # Output only. List of modalities that were returned in the response.
      { # Represents token counting info for a single modality.
        &quot;modality&quot;: &quot;A String&quot;, # The modality associated with this token count.
        &quot;tokenCount&quot;: 42, # Number of tokens.
      },
    ],
    &quot;promptTokenCount&quot;: 42, # Number of tokens in the request. When `cached_content` is set, this is still the total effective prompt size meaning this includes the number of tokens in the cached content.
    &quot;promptTokensDetails&quot;: [ # Output only. List of modalities that were processed in the request input.
      { # Represents token counting info for a single modality.
        &quot;modality&quot;: &quot;A String&quot;, # The modality associated with this token count.
        &quot;tokenCount&quot;: 42, # Number of tokens.
      },
    ],
    &quot;thoughtsTokenCount&quot;: 42, # Output only. Number of tokens present in thoughts output.
    &quot;toolUsePromptTokenCount&quot;: 42, # Output only. Number of tokens present in tool-use prompt(s).
    &quot;toolUsePromptTokensDetails&quot;: [ # Output only. List of modalities that were processed for tool-use request inputs.
      { # Represents token counting info for a single modality.
        &quot;modality&quot;: &quot;A String&quot;, # The modality associated with this token count.
        &quot;tokenCount&quot;: 42, # Number of tokens.
      },
    ],
    &quot;totalTokenCount&quot;: 42, # Total token count for prompt, response candidates, and tool-use prompts (if present).
    &quot;trafficType&quot;: &quot;A String&quot;, # Output only. Traffic type. This shows whether a request consumes Pay-As-You-Go or Provisioned Throughput quota.
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="predict">predict(endpoint, body=None, x__xgafv=None)</code>
  <pre>Perform an online prediction.

Args:
  endpoint: string, Required. The name of the Endpoint requested to serve the prediction. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for PredictionService.Predict.
  &quot;instances&quot;: [ # Required. The instances that are the input to the prediction call. A DeployedModel may have an upper limit on the number of instances it supports per request, and when it is exceeded the prediction call errors in case of AutoML Models, or, in case of customer created Models, the behaviour is as documented by that Model. The schema of any single instance may be specified via Endpoint&#x27;s DeployedModels&#x27; Model&#x27;s PredictSchemata&#x27;s instance_schema_uri.
    &quot;&quot;,
  ],
  &quot;parameters&quot;: &quot;&quot;, # The parameters that govern the prediction. The schema of the parameters may be specified via Endpoint&#x27;s DeployedModels&#x27; Model&#x27;s PredictSchemata&#x27;s parameters_schema_uri.
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for PredictionService.Predict.
  &quot;deployedModelId&quot;: &quot;A String&quot;, # ID of the Endpoint&#x27;s DeployedModel that served this prediction.
  &quot;metadata&quot;: &quot;&quot;, # Output only. Request-level metadata returned by the model. The metadata type will be dependent upon the model implementation.
  &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the Model which is deployed as the DeployedModel that this prediction hits.
  &quot;modelDisplayName&quot;: &quot;A String&quot;, # Output only. The display name of the Model which is deployed as the DeployedModel that this prediction hits.
  &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. The version ID of the Model which is deployed as the DeployedModel that this prediction hits.
  &quot;predictions&quot;: [ # The predictions that are the output of the predictions call. The schema of any single prediction may be specified via Endpoint&#x27;s DeployedModels&#x27; Model&#x27;s PredictSchemata&#x27;s prediction_schema_uri.
    &quot;&quot;,
  ],
}</pre>
</div>

<div class="method">
    <code class="details" id="predictLongRunning">predictLongRunning(endpoint, body=None, x__xgafv=None)</code>
  <pre>

Args:
  endpoint: string, Required. The name of the Endpoint requested to serve the prediction. Format: `projects/{project}/locations/{location}/endpoints/{endpoint}` or `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for PredictionService.PredictLongRunning.
  &quot;instances&quot;: [ # Required. The instances that are the input to the prediction call. A DeployedModel may have an upper limit on the number of instances it supports per request, and when it is exceeded the prediction call errors in case of AutoML Models, or, in case of customer created Models, the behaviour is as documented by that Model. The schema of any single instance may be specified via Endpoint&#x27;s DeployedModels&#x27; Model&#x27;s PredictSchemata&#x27;s instance_schema_uri.
    &quot;&quot;,
  ],
  &quot;parameters&quot;: &quot;&quot;, # Optional. The parameters that govern the prediction. The schema of the parameters may be specified via Endpoint&#x27;s DeployedModels&#x27; Model&#x27;s PredictSchemata&#x27;s parameters_schema_uri.
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # This resource represents a long-running operation that is the result of a network API call.
  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  &quot;response&quot;: { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="streamGenerateContent">streamGenerateContent(model, body=None, x__xgafv=None)</code>
  <pre>Generate content with multimodal inputs with streaming support.

Args:
  model: string, Required. The fully qualified name of the publisher model or tuned model endpoint to use. Publisher model format: `projects/{project}/locations/{location}/publishers/*/models/*` Tuned model endpoint format: `projects/{project}/locations/{location}/endpoints/{endpoint}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for [PredictionService.GenerateContent].
  &quot;cachedContent&quot;: &quot;A String&quot;, # Optional. The name of the cached content used as context to serve the prediction. Note: only used in explicit caching, where users can have control over caching (e.g. what content to cache) and enjoy guaranteed cost savings. Format: `projects/{project}/locations/{location}/cachedContents/{cachedContent}`
  &quot;contents&quot;: [ # Required. The content of the current conversation with the model. For single-turn queries, this is a single instance. For multi-turn queries, this is a repeated field that contains conversation history + latest request.
    { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
      &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
        { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
          &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
            &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
            &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
          },
          &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
            &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
            &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
          },
          &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
            &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
            &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
          },
          &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
            &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
            &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
          },
          &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
            &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
          &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
          &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
          &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
            &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
            &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
            &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
          },
        },
      ],
      &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
    },
  ],
  &quot;generationConfig&quot;: { # Generation config. # Optional. Generation config.
    &quot;audioTimestamp&quot;: True or False, # Optional. If enabled, audio timestamp will be included in the request to the model.
    &quot;candidateCount&quot;: 42, # Optional. Number of candidates to generate.
    &quot;enableAffectiveDialog&quot;: True or False, # Optional. If enabled, the model will detect emotions and adapt its responses accordingly.
    &quot;frequencyPenalty&quot;: 3.14, # Optional. Frequency penalties.
    &quot;logprobs&quot;: 42, # Optional. Logit probabilities.
    &quot;maxOutputTokens&quot;: 42, # Optional. The maximum number of output tokens to generate per message.
    &quot;mediaResolution&quot;: &quot;A String&quot;, # Optional. If specified, the media resolution specified will be used.
    &quot;modelConfig&quot;: { # Config for model selection. # Optional. Config for model selection.
      &quot;featureSelectionPreference&quot;: &quot;A String&quot;, # Required. Feature selection preference.
    },
    &quot;presencePenalty&quot;: 3.14, # Optional. Positive penalties.
    &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. Output schema of the generated response. This is an alternative to `response_schema` that accepts [JSON Schema](https://json-schema.org/). If set, `response_schema` must be omitted, but `response_mime_type` is required. While the full JSON Schema may be sent, not all features are supported. Specifically, only the following properties are supported: - `$id` - `$defs` - `$ref` - `$anchor` - `type` - `format` - `title` - `description` - `enum` (for strings and numbers) - `items` - `prefixItems` - `minItems` - `maxItems` - `minimum` - `maximum` - `anyOf` - `oneOf` (interpreted the same as `anyOf`) - `properties` - `additionalProperties` - `required` The non-standard `propertyOrdering` property may also be set. Cyclic references are unrolled to a limited degree and, as such, may only be used within non-required properties. (Nullable properties are not sufficient.) If `$ref` is set on a sub-schema, no other properties, except for than those starting as a `$`, may be set.
    &quot;responseLogprobs&quot;: True or False, # Optional. If true, export the logprobs results in response.
    &quot;responseMimeType&quot;: &quot;A String&quot;, # Optional. Output response mimetype of the generated candidate text. Supported mimetype: - `text/plain`: (default) Text output. - `application/json`: JSON response in the candidates. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
    &quot;responseModalities&quot;: [ # Optional. The modalities of the response.
      &quot;A String&quot;,
    ],
    &quot;responseSchema&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. The `Schema` object allows the definition of input and output data types. These types can be objects, but also primitives and arrays. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema). If set, a compatible response_mime_type must also be set. Compatible mimetypes: `application/json`: Schema for JSON response.
      &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
      &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
        # Object with schema name: GoogleCloudAiplatformV1beta1Schema
      ],
      &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
      &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
        &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
      },
      &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
      &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
        &quot;A String&quot;,
      ],
      &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
      &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
      &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
      &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
      &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
      &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
      &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
      &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
      &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
      &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
      &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
      &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
      &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
      &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
        &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
      },
      &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
        &quot;A String&quot;,
      ],
      &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
      &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
        &quot;A String&quot;,
      ],
      &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
      &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
    },
    &quot;routingConfig&quot;: { # The configuration for routing the request to a specific model. # Optional. Routing configuration.
      &quot;autoMode&quot;: { # When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference. # Automated routing.
        &quot;modelRoutingPreference&quot;: &quot;A String&quot;, # The model routing preference.
      },
      &quot;manualMode&quot;: { # When manual routing is set, the specified model will be used directly. # Manual routing.
        &quot;modelName&quot;: &quot;A String&quot;, # The model name to use. Only the public LLM models are accepted. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
      },
    },
    &quot;seed&quot;: 42, # Optional. Seed.
    &quot;speechConfig&quot;: { # The speech generation config. # Optional. The speech generation config.
      &quot;languageCode&quot;: &quot;A String&quot;, # Optional. Language code (ISO 639. e.g. en-US) for the speech synthesization.
      &quot;voiceConfig&quot;: { # The configuration for the voice to use. # The configuration for the speaker to use.
        &quot;prebuiltVoiceConfig&quot;: { # The configuration for the prebuilt speaker to use. # The configuration for the prebuilt voice to use.
          &quot;voiceName&quot;: &quot;A String&quot;, # The name of the preset voice to use.
        },
      },
    },
    &quot;stopSequences&quot;: [ # Optional. Stop sequences.
      &quot;A String&quot;,
    ],
    &quot;temperature&quot;: 3.14, # Optional. Controls the randomness of predictions.
    &quot;thinkingConfig&quot;: { # Config for thinking features. # Optional. Config for thinking features. An error will be returned if this field is set for models that don&#x27;t support thinking.
      &quot;includeThoughts&quot;: True or False, # Optional. Indicates whether to include thoughts in the response. If true, thoughts are returned only when available.
      &quot;thinkingBudget&quot;: 42, # Optional. Indicates the thinking budget in tokens.
    },
    &quot;topK&quot;: 3.14, # Optional. If specified, top-k sampling will be used.
    &quot;topP&quot;: 3.14, # Optional. If specified, nucleus sampling will be used.
  },
  &quot;labels&quot;: { # Optional. The labels with user-defined metadata for the request. It is used for billing and reporting only. Label keys and values can be no longer than 63 characters (Unicode codepoints) and can only contain lowercase letters, numeric characters, underscores, and dashes. International characters are allowed. Label values are optional. Label keys must start with a letter.
    &quot;a_key&quot;: &quot;A String&quot;,
  },
  &quot;modelArmorConfig&quot;: { # Configuration for Model Armor integrations of prompt and responses. # Optional. Settings for prompt and response sanitization using the Model Armor service. If supplied, safety_settings must not be supplied.
    &quot;promptTemplateName&quot;: &quot;A String&quot;, # Optional. The name of the Model Armor template to use for prompt sanitization.
    &quot;responseTemplateName&quot;: &quot;A String&quot;, # Optional. The name of the Model Armor template to use for response sanitization.
  },
  &quot;safetySettings&quot;: [ # Optional. Per request settings for blocking unsafe content. Enforced on GenerateContentResponse.candidates.
    { # Safety settings.
      &quot;category&quot;: &quot;A String&quot;, # Required. Harm category.
      &quot;method&quot;: &quot;A String&quot;, # Optional. Specify if the threshold is used for probability or severity score. If not specified, the threshold is used for probability score.
      &quot;threshold&quot;: &quot;A String&quot;, # Required. The harm block threshold.
    },
  ],
  &quot;systemInstruction&quot;: { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Optional. The user provided system instructions for the model. Note: only text should be used in parts and content in each part will be in a separate paragraph.
    &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
      { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
        &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
          &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
          &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
        },
        &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
          &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
          &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
        },
        &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
          &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
          &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
          &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
        },
        &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
          &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
          },
          &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
          &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
        },
        &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
          &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
          &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
          &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
          },
        },
        &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
          &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
          &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
          &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
        },
        &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
        &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
        &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
        &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
          &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
          &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
          &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
        },
      },
    ],
    &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
  },
  &quot;toolConfig&quot;: { # Tool config. This config is shared for all tools provided in the request. # Optional. Tool config. This config is shared for all tools provided in the request.
    &quot;functionCallingConfig&quot;: { # Function calling config. # Optional. Function calling config.
      &quot;allowedFunctionNames&quot;: [ # Optional. Function names to call. Only set when the Mode is ANY. Function names should match [FunctionDeclaration.name]. With mode set to ANY, model will predict a function call from the set of function names provided.
        &quot;A String&quot;,
      ],
      &quot;mode&quot;: &quot;A String&quot;, # Optional. Function calling mode.
    },
    &quot;retrievalConfig&quot;: { # Retrieval config. # Optional. Retrieval config.
      &quot;languageCode&quot;: &quot;A String&quot;, # The language code of the user.
      &quot;latLng&quot;: { # An object that represents a latitude/longitude pair. This is expressed as a pair of doubles to represent degrees latitude and degrees longitude. Unless specified otherwise, this object must conform to the WGS84 standard. Values must be within normalized ranges. # The location of the user.
        &quot;latitude&quot;: 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
        &quot;longitude&quot;: 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
      },
    },
  },
  &quot;tools&quot;: [ # Optional. A list of `Tools` the model may use to generate the next response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model.
    { # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
      &quot;codeExecution&quot;: { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
      },
      &quot;enterpriseWebSearch&quot;: { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
        &quot;excludeDomains&quot;: [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
          &quot;A String&quot;,
        ],
      },
      &quot;functionDeclarations&quot;: [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
        { # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
          &quot;description&quot;: &quot;A String&quot;, # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
          &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
          &quot;parameters&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
            &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
            &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
              # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            ],
            &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
            &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
              &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            },
            &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
            &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
              &quot;A String&quot;,
            ],
            &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
            &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
            &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
            &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
            &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
            &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
            &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
            &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
            &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
            &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
            &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
            &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
            &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
            &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
              &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            },
            &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
              &quot;A String&quot;,
            ],
            &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
            &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
              &quot;A String&quot;,
            ],
            &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
            &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
          },
          &quot;parametersJsonSchema&quot;: &quot;&quot;, # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { &quot;type&quot;: &quot;object&quot;, &quot;properties&quot;: { &quot;name&quot;: { &quot;type&quot;: &quot;string&quot; }, &quot;age&quot;: { &quot;type&quot;: &quot;integer&quot; } }, &quot;additionalProperties&quot;: false, &quot;required&quot;: [&quot;name&quot;, &quot;age&quot;], &quot;propertyOrdering&quot;: [&quot;name&quot;, &quot;age&quot;] } ``` This field is mutually exclusive with `parameters`.
          &quot;response&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
            &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
            &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
              # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            ],
            &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
            &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
              &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            },
            &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
            &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
              &quot;A String&quot;,
            ],
            &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
            &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
            &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
            &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
            &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
            &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
            &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
            &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
            &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
            &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
            &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
            &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
            &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
            &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
              &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
            },
            &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
              &quot;A String&quot;,
            ],
            &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
            &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
              &quot;A String&quot;,
            ],
            &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
            &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
          },
          &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
        },
      ],
      &quot;googleMaps&quot;: { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
      },
      &quot;googleSearch&quot;: { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
        &quot;excludeDomains&quot;: [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: [&quot;amazon.com&quot;, &quot;facebook.com&quot;].
          &quot;A String&quot;,
        ],
      },
      &quot;googleSearchRetrieval&quot;: { # Tool to retrieve public web data for grounding, powered by Google. # Optional. GoogleSearchRetrieval tool type. Specialized retrieval tool that is powered by Google search.
        &quot;dynamicRetrievalConfig&quot;: { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
          &quot;dynamicThreshold&quot;: 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
          &quot;mode&quot;: &quot;A String&quot;, # The mode of the predictor to be used in dynamic retrieval.
        },
      },
      &quot;retrieval&quot;: { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
        &quot;disableAttribution&quot;: True or False, # Optional. Deprecated. This option is no longer supported.
        &quot;externalApi&quot;: { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
          &quot;apiAuth&quot;: { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
            &quot;apiKeyConfig&quot;: { # The API secret. # The API secret.
              &quot;apiKeySecretVersion&quot;: &quot;A String&quot;, # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
              &quot;apiKeyString&quot;: &quot;A String&quot;, # The API key string. Either this or `api_key_secret_version` must be set.
            },
          },
          &quot;apiSpec&quot;: &quot;A String&quot;, # The API spec that the external API implements.
          &quot;authConfig&quot;: { # Auth configuration to run the extension. # The authentication config to access the API.
            &quot;apiKeyConfig&quot;: { # Config for authentication with API key. # Config for API key auth.
              &quot;apiKeySecret&quot;: &quot;A String&quot;, # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
              &quot;apiKeyString&quot;: &quot;A String&quot;, # Optional. The API key to be used in the request directly.
              &quot;httpElementLocation&quot;: &quot;A String&quot;, # Optional. The location of the API key.
              &quot;name&quot;: &quot;A String&quot;, # Optional. The parameter name of the API key. E.g. If the API request is &quot;https://example.com/act?api_key=&quot;, &quot;api_key&quot; would be the parameter name.
            },
            &quot;authType&quot;: &quot;A String&quot;, # Type of auth scheme.
            &quot;googleServiceAccountConfig&quot;: { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
              &quot;serviceAccount&quot;: &quot;A String&quot;, # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
            },
            &quot;httpBasicAuthConfig&quot;: { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
              &quot;credentialSecret&quot;: &quot;A String&quot;, # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
            },
            &quot;oauthConfig&quot;: { # Config for user oauth. # Config for user oauth.
              &quot;accessToken&quot;: &quot;A String&quot;, # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
              &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
            },
            &quot;oidcConfig&quot;: { # Config for user OIDC auth. # Config for user OIDC auth.
              &quot;idToken&quot;: &quot;A String&quot;, # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
              &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
            },
          },
          &quot;elasticSearchParams&quot;: { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
            &quot;index&quot;: &quot;A String&quot;, # The ElasticSearch index to use.
            &quot;numHits&quot;: 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
            &quot;searchTemplate&quot;: &quot;A String&quot;, # The ElasticSearch search template to use.
          },
          &quot;endpoint&quot;: &quot;A String&quot;, # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
          &quot;simpleSearchParams&quot;: { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
          },
        },
        &quot;vertexAiSearch&quot;: { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
          &quot;dataStoreSpecs&quot;: [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
            { # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
              &quot;dataStore&quot;: &quot;A String&quot;, # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
              &quot;filter&quot;: &quot;A String&quot;, # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
            },
          ],
          &quot;datastore&quot;: &quot;A String&quot;, # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
          &quot;engine&quot;: &quot;A String&quot;, # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
          &quot;filter&quot;: &quot;A String&quot;, # Optional. Filter strings to be passed to the search API.
          &quot;maxResults&quot;: 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
        },
        &quot;vertexRagStore&quot;: { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
          &quot;ragCorpora&quot;: [ # Optional. Deprecated. Please use rag_resources instead.
            &quot;A String&quot;,
          ],
          &quot;ragResources&quot;: [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
            { # The definition of the Rag resource.
              &quot;ragCorpus&quot;: &quot;A String&quot;, # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
              &quot;ragFileIds&quot;: [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
                &quot;A String&quot;,
              ],
            },
          ],
          &quot;ragRetrievalConfig&quot;: { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
            &quot;filter&quot;: { # Config for filters. # Optional. Config for filters.
              &quot;metadataFilter&quot;: &quot;A String&quot;, # Optional. String for metadata filtering.
              &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
              &quot;vectorSimilarityThreshold&quot;: 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
            },
            &quot;hybridSearch&quot;: { # Config for Hybrid Search. # Optional. Config for Hybrid Search.
              &quot;alpha&quot;: 3.14, # Optional. Alpha value controls the weight between dense and sparse vector search results. The range is [0, 1], while 0 means sparse vector search only and 1 means dense vector search only. The default value is 0.5 which balances sparse and dense vector search equally.
            },
            &quot;ranking&quot;: { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
              &quot;llmRanker&quot;: { # Config for LlmRanker. # Optional. Config for LlmRanker.
                &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
              },
              &quot;rankService&quot;: { # Config for Rank Service. # Optional. Config for Rank Service.
                &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
              },
            },
            &quot;topK&quot;: 42, # Optional. The number of contexts to retrieve.
          },
          &quot;similarityTopK&quot;: 42, # Optional. Number of top k results to return from the selected corpora.
          &quot;storeContext&quot;: True or False, # Optional. Currently only supported for Gemini Multimodal Live API. In Gemini Multimodal Live API, if `store_context` bool is specified, Gemini will leverage it to automatically memorize the interactions between the client and Gemini, and retrieve context when needed to augment the response generation for users&#x27; ongoing and future interactions.
          &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only return results with vector distance smaller than the threshold.
        },
      },
      &quot;urlContext&quot;: { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
      },
    },
  ],
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for [PredictionService.GenerateContent].
  &quot;candidates&quot;: [ # Output only. Generated candidates.
    { # A response candidate generated from the model.
      &quot;avgLogprobs&quot;: 3.14, # Output only. Average log probability score of the candidate.
      &quot;citationMetadata&quot;: { # A collection of source attributions for a piece of content. # Output only. Source attribution of the generated content.
        &quot;citations&quot;: [ # Output only. List of citations.
          { # Source attributions for content.
            &quot;endIndex&quot;: 42, # Output only. End index into the content.
            &quot;license&quot;: &quot;A String&quot;, # Output only. License of the attribution.
            &quot;publicationDate&quot;: { # Represents a whole or partial calendar date, such as a birthday. The time of day and time zone are either specified elsewhere or are insignificant. The date is relative to the Gregorian Calendar. This can represent one of the following: * A full date, with non-zero year, month, and day values. * A month and day, with a zero year (for example, an anniversary). * A year on its own, with a zero month and a zero day. * A year and month, with a zero day (for example, a credit card expiration date). Related types: * google.type.TimeOfDay * google.type.DateTime * google.protobuf.Timestamp # Output only. Publication date of the attribution.
              &quot;day&quot;: 42, # Day of a month. Must be from 1 to 31 and valid for the year and month, or 0 to specify a year by itself or a year and month where the day isn&#x27;t significant.
              &quot;month&quot;: 42, # Month of a year. Must be from 1 to 12, or 0 to specify a year without a month and day.
              &quot;year&quot;: 42, # Year of the date. Must be from 1 to 9999, or 0 to specify a date without a year.
            },
            &quot;startIndex&quot;: 42, # Output only. Start index into the content.
            &quot;title&quot;: &quot;A String&quot;, # Output only. Title of the attribution.
            &quot;uri&quot;: &quot;A String&quot;, # Output only. Url reference of the attribution.
          },
        ],
      },
      &quot;content&quot;: { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Output only. Content parts of the candidate.
        &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
          { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
            &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
              &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
              &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
            },
            &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
              &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
              &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
            },
            &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
              &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
              &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
              &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
            },
            &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
              &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
              },
              &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
              &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
            },
            &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
              &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
              &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
              &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
              },
            },
            &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
              &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
              &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
              &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
            },
            &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
            &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
            &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
            &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
              &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
              &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
              &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
            },
          },
        ],
        &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
      },
      &quot;finishMessage&quot;: &quot;A String&quot;, # Output only. Describes the reason the mode stopped generating tokens in more detail. This is only filled when `finish_reason` is set.
      &quot;finishReason&quot;: &quot;A String&quot;, # Output only. The reason why the model stopped generating tokens. If empty, the model has not stopped generating the tokens.
      &quot;groundingMetadata&quot;: { # Metadata returned to client when grounding is enabled. # Output only. Metadata specifies sources used to ground generated content.
        &quot;googleMapsWidgetContextToken&quot;: &quot;A String&quot;, # Optional. Output only. Resource name of the Google Maps widget context token to be used with the PlacesContextElement widget to render contextual data. This is populated only for Google Maps grounding.
        &quot;groundingChunks&quot;: [ # List of supporting references retrieved from specified grounding source.
          { # Grounding chunk.
            &quot;maps&quot;: { # Chunk from Google Maps. # Grounding chunk from Google Maps.
              &quot;placeAnswerSources&quot;: { # Sources used to generate the place answer. # Sources used to generate the place answer. This includes review snippets and photos that were used to generate the answer, as well as uris to flag content.
                &quot;flagContentUri&quot;: &quot;A String&quot;, # A link where users can flag a problem with the generated answer.
                &quot;reviewSnippets&quot;: [ # Snippets of reviews that are used to generate the answer.
                  { # Encapsulates a review snippet.
                    &quot;authorAttribution&quot;: { # Author attribution for a photo or review. # This review&#x27;s author.
                      &quot;displayName&quot;: &quot;A String&quot;, # Name of the author of the Photo or Review.
                      &quot;photoUri&quot;: &quot;A String&quot;, # Profile photo URI of the author of the Photo or Review.
                      &quot;uri&quot;: &quot;A String&quot;, # URI of the author of the Photo or Review.
                    },
                    &quot;flagContentUri&quot;: &quot;A String&quot;, # A link where users can flag a problem with the review.
                    &quot;googleMapsUri&quot;: &quot;A String&quot;, # A link to show the review on Google Maps.
                    &quot;relativePublishTimeDescription&quot;: &quot;A String&quot;, # A string of formatted recent time, expressing the review time relative to the current time in a form appropriate for the language and country.
                    &quot;review&quot;: &quot;A String&quot;, # A reference representing this place review which may be used to look up this place review again.
                  },
                ],
              },
              &quot;placeId&quot;: &quot;A String&quot;, # This Place&#x27;s resource name, in `places/{place_id}` format. Can be used to look up the Place.
              &quot;text&quot;: &quot;A String&quot;, # Text of the chunk.
              &quot;title&quot;: &quot;A String&quot;, # Title of the chunk.
              &quot;uri&quot;: &quot;A String&quot;, # URI reference of the chunk.
            },
            &quot;retrievedContext&quot;: { # Chunk from context retrieved by the retrieval tools. # Grounding chunk from context retrieved by the retrieval tools.
              &quot;documentName&quot;: &quot;A String&quot;, # Output only. The full document name for the referenced Vertex AI Search document.
              &quot;ragChunk&quot;: { # A RagChunk includes the content of a chunk of a RagFile, and associated metadata. # Additional context for the RAG retrieval result. This is only populated when using the RAG retrieval tool.
                &quot;pageSpan&quot;: { # Represents where the chunk starts and ends in the document. # If populated, represents where the chunk starts and ends in the document.
                  &quot;firstPage&quot;: 42, # Page where chunk starts in the document. Inclusive. 1-indexed.
                  &quot;lastPage&quot;: 42, # Page where chunk ends in the document. Inclusive. 1-indexed.
                },
                &quot;text&quot;: &quot;A String&quot;, # The content of the chunk.
              },
              &quot;text&quot;: &quot;A String&quot;, # Text of the attribution.
              &quot;title&quot;: &quot;A String&quot;, # Title of the attribution.
              &quot;uri&quot;: &quot;A String&quot;, # URI reference of the attribution.
            },
            &quot;web&quot;: { # Chunk from the web. # Grounding chunk from the web.
              &quot;domain&quot;: &quot;A String&quot;, # Domain of the (original) URI.
              &quot;title&quot;: &quot;A String&quot;, # Title of the chunk.
              &quot;uri&quot;: &quot;A String&quot;, # URI reference of the chunk.
            },
          },
        ],
        &quot;groundingSupports&quot;: [ # Optional. List of grounding support.
          { # Grounding support.
            &quot;confidenceScores&quot;: [ # Confidence score of the support references. Ranges from 0 to 1. 1 is the most confident. For Gemini 2.0 and before, this list must have the same size as the grounding_chunk_indices. For Gemini 2.5 and after, this list will be empty and should be ignored.
              3.14,
            ],
            &quot;groundingChunkIndices&quot;: [ # A list of indices (into &#x27;grounding_chunk&#x27;) specifying the citations associated with the claim. For instance [1,3,4] means that grounding_chunk[1], grounding_chunk[3], grounding_chunk[4] are the retrieved content attributed to the claim.
              42,
            ],
            &quot;segment&quot;: { # Segment of the content. # Segment of the content this support belongs to.
              &quot;endIndex&quot;: 42, # Output only. End index in the given Part, measured in bytes. Offset from the start of the Part, exclusive, starting at zero.
              &quot;partIndex&quot;: 42, # Output only. The index of a Part object within its parent Content object.
              &quot;startIndex&quot;: 42, # Output only. Start index in the given Part, measured in bytes. Offset from the start of the Part, inclusive, starting at zero.
              &quot;text&quot;: &quot;A String&quot;, # Output only. The text corresponding to the segment from the response.
            },
          },
        ],
        &quot;retrievalMetadata&quot;: { # Metadata related to retrieval in the grounding flow. # Optional. Output only. Retrieval metadata.
          &quot;googleSearchDynamicRetrievalScore&quot;: 3.14, # Optional. Score indicating how likely information from Google Search could help answer the prompt. The score is in the range `[0, 1]`, where 0 is the least likely and 1 is the most likely. This score is only populated when Google Search grounding and dynamic retrieval is enabled. It will be compared to the threshold to determine whether to trigger Google Search.
        },
        &quot;retrievalQueries&quot;: [ # Optional. Queries executed by the retrieval tools.
          &quot;A String&quot;,
        ],
        &quot;searchEntryPoint&quot;: { # Google search entry point. # Optional. Google search entry for the following-up web searches.
          &quot;renderedContent&quot;: &quot;A String&quot;, # Optional. Web content snippet that can be embedded in a web page or an app webview.
          &quot;sdkBlob&quot;: &quot;A String&quot;, # Optional. Base64 encoded JSON representing array of tuple.
        },
        &quot;webSearchQueries&quot;: [ # Optional. Web search queries for the following-up web search.
          &quot;A String&quot;,
        ],
      },
      &quot;index&quot;: 42, # Output only. Index of the candidate.
      &quot;logprobsResult&quot;: { # Logprobs Result # Output only. Log-likelihood scores for the response tokens and top tokens
        &quot;chosenCandidates&quot;: [ # Length = total number of decoding steps. The chosen candidates may or may not be in top_candidates.
          { # Candidate for the logprobs token and score.
            &quot;logProbability&quot;: 3.14, # The candidate&#x27;s log probability.
            &quot;token&quot;: &quot;A String&quot;, # The candidate&#x27;s token string value.
            &quot;tokenId&quot;: 42, # The candidate&#x27;s token id value.
          },
        ],
        &quot;topCandidates&quot;: [ # Length = total number of decoding steps.
          { # Candidates with top log probabilities at each decoding step.
            &quot;candidates&quot;: [ # Sorted by log probability in descending order.
              { # Candidate for the logprobs token and score.
                &quot;logProbability&quot;: 3.14, # The candidate&#x27;s log probability.
                &quot;token&quot;: &quot;A String&quot;, # The candidate&#x27;s token string value.
                &quot;tokenId&quot;: 42, # The candidate&#x27;s token id value.
              },
            ],
          },
        ],
      },
      &quot;safetyRatings&quot;: [ # Output only. List of ratings for the safety of a response candidate. There is at most one rating per category.
        { # Safety rating corresponding to the generated content.
          &quot;blocked&quot;: True or False, # Output only. Indicates whether the content was filtered out because of this rating.
          &quot;category&quot;: &quot;A String&quot;, # Output only. Harm category.
          &quot;overwrittenThreshold&quot;: &quot;A String&quot;, # Output only. The overwritten threshold for the safety category of Gemini 2.0 image out. If minors are detected in the output image, the threshold of each safety category will be overwritten if user sets a lower threshold.
          &quot;probability&quot;: &quot;A String&quot;, # Output only. Harm probability levels in the content.
          &quot;probabilityScore&quot;: 3.14, # Output only. Harm probability score.
          &quot;severity&quot;: &quot;A String&quot;, # Output only. Harm severity levels in the content.
          &quot;severityScore&quot;: 3.14, # Output only. Harm severity score.
        },
      ],
      &quot;urlContextMetadata&quot;: { # Metadata related to url context retrieval tool. # Output only. Metadata related to url context retrieval tool.
        &quot;urlMetadata&quot;: [ # Output only. List of url context.
          { # Context of the a single url retrieval.
            &quot;retrievedUrl&quot;: &quot;A String&quot;, # Retrieved url by the tool.
            &quot;urlRetrievalStatus&quot;: &quot;A String&quot;, # Status of the url retrieval.
          },
        ],
      },
    },
  ],
  &quot;createTime&quot;: &quot;A String&quot;, # Output only. Timestamp when the request is made to the server.
  &quot;modelVersion&quot;: &quot;A String&quot;, # Output only. The model version used to generate the response.
  &quot;promptFeedback&quot;: { # Content filter results for a prompt sent in the request. # Output only. Content filter results for a prompt sent in the request. Note: Sent only in the first stream chunk. Only happens when no candidates were generated due to content violations.
    &quot;blockReason&quot;: &quot;A String&quot;, # Output only. Blocked reason.
    &quot;blockReasonMessage&quot;: &quot;A String&quot;, # Output only. A readable block reason message.
    &quot;safetyRatings&quot;: [ # Output only. Safety ratings.
      { # Safety rating corresponding to the generated content.
        &quot;blocked&quot;: True or False, # Output only. Indicates whether the content was filtered out because of this rating.
        &quot;category&quot;: &quot;A String&quot;, # Output only. Harm category.
        &quot;overwrittenThreshold&quot;: &quot;A String&quot;, # Output only. The overwritten threshold for the safety category of Gemini 2.0 image out. If minors are detected in the output image, the threshold of each safety category will be overwritten if user sets a lower threshold.
        &quot;probability&quot;: &quot;A String&quot;, # Output only. Harm probability levels in the content.
        &quot;probabilityScore&quot;: 3.14, # Output only. Harm probability score.
        &quot;severity&quot;: &quot;A String&quot;, # Output only. Harm severity levels in the content.
        &quot;severityScore&quot;: 3.14, # Output only. Harm severity score.
      },
    ],
  },
  &quot;responseId&quot;: &quot;A String&quot;, # Output only. response_id is used to identify each response. It is the encoding of the event_id.
  &quot;usageMetadata&quot;: { # Usage metadata about response(s). # Usage metadata about the response(s).
    &quot;cacheTokensDetails&quot;: [ # Output only. List of modalities of the cached content in the request input.
      { # Represents token counting info for a single modality.
        &quot;modality&quot;: &quot;A String&quot;, # The modality associated with this token count.
        &quot;tokenCount&quot;: 42, # Number of tokens.
      },
    ],
    &quot;cachedContentTokenCount&quot;: 42, # Output only. Number of tokens in the cached part in the input (the cached content).
    &quot;candidatesTokenCount&quot;: 42, # Number of tokens in the response(s).
    &quot;candidatesTokensDetails&quot;: [ # Output only. List of modalities that were returned in the response.
      { # Represents token counting info for a single modality.
        &quot;modality&quot;: &quot;A String&quot;, # The modality associated with this token count.
        &quot;tokenCount&quot;: 42, # Number of tokens.
      },
    ],
    &quot;promptTokenCount&quot;: 42, # Number of tokens in the request. When `cached_content` is set, this is still the total effective prompt size meaning this includes the number of tokens in the cached content.
    &quot;promptTokensDetails&quot;: [ # Output only. List of modalities that were processed in the request input.
      { # Represents token counting info for a single modality.
        &quot;modality&quot;: &quot;A String&quot;, # The modality associated with this token count.
        &quot;tokenCount&quot;: 42, # Number of tokens.
      },
    ],
    &quot;thoughtsTokenCount&quot;: 42, # Output only. Number of tokens present in thoughts output.
    &quot;toolUsePromptTokenCount&quot;: 42, # Output only. Number of tokens present in tool-use prompt(s).
    &quot;toolUsePromptTokensDetails&quot;: [ # Output only. List of modalities that were processed for tool-use request inputs.
      { # Represents token counting info for a single modality.
        &quot;modality&quot;: &quot;A String&quot;, # The modality associated with this token count.
        &quot;tokenCount&quot;: 42, # Number of tokens.
      },
    ],
    &quot;totalTokenCount&quot;: 42, # Total token count for prompt, response candidates, and tool-use prompts (if present).
    &quot;trafficType&quot;: &quot;A String&quot;, # Output only. Traffic type. This shows whether a request consumes Pay-As-You-Go or Provisioned Throughput quota.
  },
}</pre>
</div>

</body></html>