File: aiplatform_v1beta1.projects.locations.html

package info (click to toggle)
python-googleapi 2.182.0-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 533,852 kB
  • sloc: python: 11,076; javascript: 249; sh: 114; makefile: 59
file content (2926 lines) | stat: -rw-r--r-- 315,315 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
<html><body>
<style>

body, h1, h2, h3, div, span, p, pre, a {
  margin: 0;
  padding: 0;
  border: 0;
  font-weight: inherit;
  font-style: inherit;
  font-size: 100%;
  font-family: inherit;
  vertical-align: baseline;
}

body {
  font-size: 13px;
  padding: 1em;
}

h1 {
  font-size: 26px;
  margin-bottom: 1em;
}

h2 {
  font-size: 24px;
  margin-bottom: 1em;
}

h3 {
  font-size: 20px;
  margin-bottom: 1em;
  margin-top: 1em;
}

pre, code {
  line-height: 1.5;
  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}

pre {
  margin-top: 0.5em;
}

h1, h2, h3, p {
  font-family: Arial, sans serif;
}

h1, h2, h3 {
  border-bottom: solid #CCC 1px;
}

.toc_element {
  margin-top: 0.5em;
}

.firstline {
  margin-left: 2 em;
}

.method  {
  margin-top: 1em;
  border: solid 1px #CCC;
  padding: 1em;
  background: #EEE;
}

.details {
  font-weight: bold;
  font-size: 14px;
}

</style>

<h1><a href="aiplatform_v1beta1.html">Vertex AI API</a> . <a href="aiplatform_v1beta1.projects.html">projects</a> . <a href="aiplatform_v1beta1.projects.locations.html">locations</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.agents.html">agents()</a></code>
</p>
<p class="firstline">Returns the agents Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.apps.html">apps()</a></code>
</p>
<p class="firstline">Returns the apps Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.batchPredictionJobs.html">batchPredictionJobs()</a></code>
</p>
<p class="firstline">Returns the batchPredictionJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.cachedContents.html">cachedContents()</a></code>
</p>
<p class="firstline">Returns the cachedContents Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.customJobs.html">customJobs()</a></code>
</p>
<p class="firstline">Returns the customJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.dataLabelingJobs.html">dataLabelingJobs()</a></code>
</p>
<p class="firstline">Returns the dataLabelingJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.datasets.html">datasets()</a></code>
</p>
<p class="firstline">Returns the datasets Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.deploymentResourcePools.html">deploymentResourcePools()</a></code>
</p>
<p class="firstline">Returns the deploymentResourcePools Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.edgeDevices.html">edgeDevices()</a></code>
</p>
<p class="firstline">Returns the edgeDevices Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.endpoints.html">endpoints()</a></code>
</p>
<p class="firstline">Returns the endpoints Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.evaluationItems.html">evaluationItems()</a></code>
</p>
<p class="firstline">Returns the evaluationItems Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.evaluationRuns.html">evaluationRuns()</a></code>
</p>
<p class="firstline">Returns the evaluationRuns Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.evaluationSets.html">evaluationSets()</a></code>
</p>
<p class="firstline">Returns the evaluationSets Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.evaluationTasks.html">evaluationTasks()</a></code>
</p>
<p class="firstline">Returns the evaluationTasks Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.exampleStores.html">exampleStores()</a></code>
</p>
<p class="firstline">Returns the exampleStores Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.extensionControllers.html">extensionControllers()</a></code>
</p>
<p class="firstline">Returns the extensionControllers Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.extensions.html">extensions()</a></code>
</p>
<p class="firstline">Returns the extensions Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.featureGroups.html">featureGroups()</a></code>
</p>
<p class="firstline">Returns the featureGroups Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.featureOnlineStores.html">featureOnlineStores()</a></code>
</p>
<p class="firstline">Returns the featureOnlineStores Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.featurestores.html">featurestores()</a></code>
</p>
<p class="firstline">Returns the featurestores Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.hyperparameterTuningJobs.html">hyperparameterTuningJobs()</a></code>
</p>
<p class="firstline">Returns the hyperparameterTuningJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.indexEndpoints.html">indexEndpoints()</a></code>
</p>
<p class="firstline">Returns the indexEndpoints Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.indexes.html">indexes()</a></code>
</p>
<p class="firstline">Returns the indexes Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.metadataStores.html">metadataStores()</a></code>
</p>
<p class="firstline">Returns the metadataStores Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.migratableResources.html">migratableResources()</a></code>
</p>
<p class="firstline">Returns the migratableResources Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.modelDeploymentMonitoringJobs.html">modelDeploymentMonitoringJobs()</a></code>
</p>
<p class="firstline">Returns the modelDeploymentMonitoringJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.modelMonitors.html">modelMonitors()</a></code>
</p>
<p class="firstline">Returns the modelMonitors Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.models.html">models()</a></code>
</p>
<p class="firstline">Returns the models Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.nasJobs.html">nasJobs()</a></code>
</p>
<p class="firstline">Returns the nasJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.notebookExecutionJobs.html">notebookExecutionJobs()</a></code>
</p>
<p class="firstline">Returns the notebookExecutionJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.notebookRuntimeTemplates.html">notebookRuntimeTemplates()</a></code>
</p>
<p class="firstline">Returns the notebookRuntimeTemplates Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.notebookRuntimes.html">notebookRuntimes()</a></code>
</p>
<p class="firstline">Returns the notebookRuntimes Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.operations.html">operations()</a></code>
</p>
<p class="firstline">Returns the operations Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.persistentResources.html">persistentResources()</a></code>
</p>
<p class="firstline">Returns the persistentResources Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.pipelineJobs.html">pipelineJobs()</a></code>
</p>
<p class="firstline">Returns the pipelineJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.publishers.html">publishers()</a></code>
</p>
<p class="firstline">Returns the publishers Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.ragCorpora.html">ragCorpora()</a></code>
</p>
<p class="firstline">Returns the ragCorpora Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.ragEngineConfig.html">ragEngineConfig()</a></code>
</p>
<p class="firstline">Returns the ragEngineConfig Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.reasoningEngines.html">reasoningEngines()</a></code>
</p>
<p class="firstline">Returns the reasoningEngines Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.schedules.html">schedules()</a></code>
</p>
<p class="firstline">Returns the schedules Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.solvers.html">solvers()</a></code>
</p>
<p class="firstline">Returns the solvers Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.specialistPools.html">specialistPools()</a></code>
</p>
<p class="firstline">Returns the specialistPools Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.studies.html">studies()</a></code>
</p>
<p class="firstline">Returns the studies Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.tensorboards.html">tensorboards()</a></code>
</p>
<p class="firstline">Returns the tensorboards Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.trainingPipelines.html">trainingPipelines()</a></code>
</p>
<p class="firstline">Returns the trainingPipelines Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.tuningJobs.html">tuningJobs()</a></code>
</p>
<p class="firstline">Returns the tuningJobs Resource.</p>

<p class="toc_element">
  <code><a href="#augmentPrompt">augmentPrompt(parent, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Given an input prompt, it returns augmented prompt from vertex rag store to guide LLM towards generating grounded responses.</p>
<p class="toc_element">
  <code><a href="#close">close()</a></code></p>
<p class="firstline">Close httplib2 connections.</p>
<p class="toc_element">
  <code><a href="#corroborateContent">corroborateContent(parent, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Given an input text, it returns a score that evaluates the factuality of the text. It also extracts and returns claims from the text and provides supporting facts.</p>
<p class="toc_element">
  <code><a href="#deploy">deploy(destination, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Deploys a model to a new endpoint.</p>
<p class="toc_element">
  <code><a href="#deployPublisherModel">deployPublisherModel(destination, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Deploys publisher models.</p>
<p class="toc_element">
  <code><a href="#evaluateDataset">evaluateDataset(location, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Evaluates a dataset based on a set of given metrics.</p>
<p class="toc_element">
  <code><a href="#evaluateInstances">evaluateInstances(location, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Evaluates instances based on a given metric.</p>
<p class="toc_element">
  <code><a href="#generateInstanceRubrics">generateInstanceRubrics(location, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Generates rubrics for a given prompt. A rubric represents a single testable criterion for evaluation. One input prompt could have multiple rubrics This RPC allows users to get suggested rubrics based on provided prompt, which can then be reviewed and used for subsequent evaluations.</p>
<p class="toc_element">
  <code><a href="#generateSyntheticData">generateSyntheticData(location, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Generates synthetic data based on the provided configuration.</p>
<p class="toc_element">
  <code><a href="#get">get(name, x__xgafv=None)</a></code></p>
<p class="firstline">Gets information about a location.</p>
<p class="toc_element">
  <code><a href="#getRagEngineConfig">getRagEngineConfig(name, x__xgafv=None)</a></code></p>
<p class="firstline">Gets a RagEngineConfig.</p>
<p class="toc_element">
  <code><a href="#list">list(name, extraLocationTypes=None, filter=None, pageSize=None, pageToken=None, x__xgafv=None)</a></code></p>
<p class="firstline">Lists information about the supported locations for this service.</p>
<p class="toc_element">
  <code><a href="#list_next">list_next()</a></code></p>
<p class="firstline">Retrieves the next page of results.</p>
<p class="toc_element">
  <code><a href="#recommendSpec">recommendSpec(parent, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Gets a Model's spec recommendations. This API is called by UI, SDK, and internal.</p>
<p class="toc_element">
  <code><a href="#retrieveContexts">retrieveContexts(parent, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Retrieves relevant contexts for a query.</p>
<p class="toc_element">
  <code><a href="#updateRagEngineConfig">updateRagEngineConfig(name, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Updates a RagEngineConfig.</p>
<h3>Method Details</h3>
<div class="method">
    <code class="details" id="augmentPrompt">augmentPrompt(parent, body=None, x__xgafv=None)</code>
  <pre>Given an input prompt, it returns augmented prompt from vertex rag store to guide LLM towards generating grounded responses.

Args:
  parent: string, Required. The resource name of the Location from which to augment prompt. The users must have permission to make a call in the project. Format: `projects/{project}/locations/{location}`. (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for AugmentPrompt.
  &quot;contents&quot;: [ # Optional. Input content to augment, only text format is supported for now.
    { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
      &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
        { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
          &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
            &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
            &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
          },
          &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
            &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
            &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
          },
          &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
            &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
            &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
          },
          &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
            &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
            &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
          },
          &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
            &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
          &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
          &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
          &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
            &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
            &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
            &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
          },
        },
      ],
      &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
    },
  ],
  &quot;model&quot;: { # Metadata of the backend deployed model. # Optional. Metadata of the backend deployed model.
    &quot;model&quot;: &quot;A String&quot;, # Optional. The model that the user will send the augmented prompt for content generation.
    &quot;modelVersion&quot;: &quot;A String&quot;, # Optional. The model version of the backend deployed model.
  },
  &quot;vertexRagStore&quot;: { # Retrieve from Vertex RAG Store for grounding. # Optional. Retrieves contexts from the Vertex RagStore.
    &quot;ragCorpora&quot;: [ # Optional. Deprecated. Please use rag_resources instead.
      &quot;A String&quot;,
    ],
    &quot;ragResources&quot;: [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
      { # The definition of the Rag resource.
        &quot;ragCorpus&quot;: &quot;A String&quot;, # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
        &quot;ragFileIds&quot;: [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
          &quot;A String&quot;,
        ],
      },
    ],
    &quot;ragRetrievalConfig&quot;: { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
      &quot;filter&quot;: { # Config for filters. # Optional. Config for filters.
        &quot;metadataFilter&quot;: &quot;A String&quot;, # Optional. String for metadata filtering.
        &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
        &quot;vectorSimilarityThreshold&quot;: 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
      },
      &quot;hybridSearch&quot;: { # Config for Hybrid Search. # Optional. Config for Hybrid Search.
        &quot;alpha&quot;: 3.14, # Optional. Alpha value controls the weight between dense and sparse vector search results. The range is [0, 1], while 0 means sparse vector search only and 1 means dense vector search only. The default value is 0.5 which balances sparse and dense vector search equally.
      },
      &quot;ranking&quot;: { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
        &quot;llmRanker&quot;: { # Config for LlmRanker. # Optional. Config for LlmRanker.
          &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
        },
        &quot;rankService&quot;: { # Config for Rank Service. # Optional. Config for Rank Service.
          &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
        },
      },
      &quot;topK&quot;: 42, # Optional. The number of contexts to retrieve.
    },
    &quot;similarityTopK&quot;: 42, # Optional. Number of top k results to return from the selected corpora.
    &quot;storeContext&quot;: True or False, # Optional. Currently only supported for Gemini Multimodal Live API. In Gemini Multimodal Live API, if `store_context` bool is specified, Gemini will leverage it to automatically memorize the interactions between the client and Gemini, and retrieve context when needed to augment the response generation for users&#x27; ongoing and future interactions.
    &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only return results with vector distance smaller than the threshold.
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for AugmentPrompt.
  &quot;augmentedPrompt&quot;: [ # Augmented prompt, only text format is supported for now.
    { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
      &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
        { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
          &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
            &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
            &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
          },
          &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
            &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
            &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
          },
          &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
            &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
            &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
          },
          &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
            &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
            &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
          },
          &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
            &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
          &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
          &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
          &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
            &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
            &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
            &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
          },
        },
      ],
      &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
    },
  ],
  &quot;facts&quot;: [ # Retrieved facts from RAG data sources.
    { # The fact used in grounding.
      &quot;chunk&quot;: { # A RagChunk includes the content of a chunk of a RagFile, and associated metadata. # If present, chunk properties.
        &quot;pageSpan&quot;: { # Represents where the chunk starts and ends in the document. # If populated, represents where the chunk starts and ends in the document.
          &quot;firstPage&quot;: 42, # Page where chunk starts in the document. Inclusive. 1-indexed.
          &quot;lastPage&quot;: 42, # Page where chunk ends in the document. Inclusive. 1-indexed.
        },
        &quot;text&quot;: &quot;A String&quot;, # The content of the chunk.
      },
      &quot;query&quot;: &quot;A String&quot;, # Query that is used to retrieve this fact.
      &quot;score&quot;: 3.14, # If present, according to the underlying Vector DB and the selected metric type, the score can be either the distance or the similarity between the query and the fact and its range depends on the metric type. For example, if the metric type is COSINE_DISTANCE, it represents the distance between the query and the fact. The larger the distance, the less relevant the fact is to the query. The range is [0, 2], while 0 means the most relevant and 2 means the least relevant.
      &quot;summary&quot;: &quot;A String&quot;, # If present, the summary/snippet of the fact.
      &quot;title&quot;: &quot;A String&quot;, # If present, it refers to the title of this fact.
      &quot;uri&quot;: &quot;A String&quot;, # If present, this uri links to the source of the fact.
      &quot;vectorDistance&quot;: 3.14, # If present, the distance between the query vector and this fact vector.
    },
  ],
}</pre>
</div>

<div class="method">
    <code class="details" id="close">close()</code>
  <pre>Close httplib2 connections.</pre>
</div>

<div class="method">
    <code class="details" id="corroborateContent">corroborateContent(parent, body=None, x__xgafv=None)</code>
  <pre>Given an input text, it returns a score that evaluates the factuality of the text. It also extracts and returns claims from the text and provides supporting facts.

Args:
  parent: string, Required. The resource name of the Location from which to corroborate text. The users must have permission to make a call in the project. Format: `projects/{project}/locations/{location}`. (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for CorroborateContent.
  &quot;content&quot;: { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Optional. Input content to corroborate, only text format is supported for now.
    &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
      { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
        &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
          &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
          &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
        },
        &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
          &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
          &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
        },
        &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
          &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
          &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
          &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
        },
        &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
          &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
          },
          &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
          &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
        },
        &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
          &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
          &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
          &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
          },
        },
        &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
          &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
          &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
          &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
        },
        &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
        &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
        &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
        &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
          &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
          &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
          &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
        },
      },
    ],
    &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
  },
  &quot;facts&quot;: [ # Optional. Facts used to generate the text can also be used to corroborate the text.
    { # The fact used in grounding.
      &quot;chunk&quot;: { # A RagChunk includes the content of a chunk of a RagFile, and associated metadata. # If present, chunk properties.
        &quot;pageSpan&quot;: { # Represents where the chunk starts and ends in the document. # If populated, represents where the chunk starts and ends in the document.
          &quot;firstPage&quot;: 42, # Page where chunk starts in the document. Inclusive. 1-indexed.
          &quot;lastPage&quot;: 42, # Page where chunk ends in the document. Inclusive. 1-indexed.
        },
        &quot;text&quot;: &quot;A String&quot;, # The content of the chunk.
      },
      &quot;query&quot;: &quot;A String&quot;, # Query that is used to retrieve this fact.
      &quot;score&quot;: 3.14, # If present, according to the underlying Vector DB and the selected metric type, the score can be either the distance or the similarity between the query and the fact and its range depends on the metric type. For example, if the metric type is COSINE_DISTANCE, it represents the distance between the query and the fact. The larger the distance, the less relevant the fact is to the query. The range is [0, 2], while 0 means the most relevant and 2 means the least relevant.
      &quot;summary&quot;: &quot;A String&quot;, # If present, the summary/snippet of the fact.
      &quot;title&quot;: &quot;A String&quot;, # If present, it refers to the title of this fact.
      &quot;uri&quot;: &quot;A String&quot;, # If present, this uri links to the source of the fact.
      &quot;vectorDistance&quot;: 3.14, # If present, the distance between the query vector and this fact vector.
    },
  ],
  &quot;parameters&quot;: { # Parameters that can be overrided per request. # Optional. Parameters that can be set to override default settings per request.
    &quot;citationThreshold&quot;: 3.14, # Optional. Only return claims with citation score larger than the threshold.
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for CorroborateContent.
  &quot;claims&quot;: [ # Claims that are extracted from the input content and facts that support the claims.
    { # Claim that is extracted from the input text and facts that support it.
      &quot;endIndex&quot;: 42, # Index in the input text where the claim ends (exclusive).
      &quot;factIndexes&quot;: [ # Indexes of the facts supporting this claim.
        42,
      ],
      &quot;score&quot;: 3.14, # Confidence score of this corroboration.
      &quot;startIndex&quot;: 42, # Index in the input text where the claim starts (inclusive).
    },
  ],
  &quot;corroborationScore&quot;: 3.14, # Confidence score of corroborating content. Value is [0,1] with 1 is the most confidence.
}</pre>
</div>

<div class="method">
    <code class="details" id="deploy">deploy(destination, body=None, x__xgafv=None)</code>
  <pre>Deploys a model to a new endpoint.

Args:
  destination: string, Required. The resource name of the Location to deploy the model in. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for ModelGardenService.Deploy.
  &quot;customModel&quot;: { # The custom model to deploy from model weights in a Google Cloud Storage URI or Model Registry model. # The custom model to deploy from a Google Cloud Storage URI.
    &quot;gcsUri&quot;: &quot;A String&quot;, # Immutable. The Google Cloud Storage URI of the custom model, storing weights and config files (which can be used to infer the base model).
    &quot;modelId&quot;: &quot;A String&quot;, # Optional. Deprecated. Use ModelConfig.model_user_id instead.
  },
  &quot;deployConfig&quot;: { # The deploy config to use for the deployment. # Optional. The deploy config to use for the deployment. If not specified, the default deploy config will be used.
    &quot;dedicatedResources&quot;: { # A description of resources that are dedicated to a DeployedModel or DeployedIndex, and that need a higher degree of manual configuration. # Optional. The dedicated resources to use for the endpoint. If not set, the default resources will be used.
      &quot;autoscalingMetricSpecs&quot;: [ # Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator&#x27;s duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator&#x27;s duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and autoscaling_metric_specs.target to `80`.
        { # The metric specification that defines the target resource utilization (CPU utilization, accelerator&#x27;s duty cycle, and so on) for calculating the desired replica count.
          &quot;metricName&quot;: &quot;A String&quot;, # Required. The resource metric name. Supported metrics: * For Online Prediction: * `aiplatform.googleapis.com/prediction/online/accelerator/duty_cycle` * `aiplatform.googleapis.com/prediction/online/cpu/utilization` * `aiplatform.googleapis.com/prediction/online/request_count`
          &quot;monitoredResourceLabels&quot;: { # Optional. The Cloud Monitoring monitored resource labels as key value pairs used for metrics filtering. See Cloud Monitoring Labels https://cloud.google.com/monitoring/api/v3/metric-model#generic-label-info
            &quot;a_key&quot;: &quot;A String&quot;,
          },
          &quot;target&quot;: 42, # The target resource utilization in percentage (1% - 100%) for the given metric; once the real usage deviates from the target by a certain percentage, the machine replicas change. The default value is 60 (representing 60%) if not provided.
        },
      ],
      &quot;flexStart&quot;: { # FlexStart is used to schedule the deployment workload on DWS resource. It contains the max duration of the deployment. # Optional. Immutable. If set, use DWS resource to schedule the deployment workload. reference: (https://cloud.google.com/blog/products/compute/introducing-dynamic-workload-scheduler)
        &quot;maxRuntimeDuration&quot;: &quot;A String&quot;, # The max duration of the deployment is max_runtime_duration. The deployment will be terminated after the duration. The max_runtime_duration can be set up to 7 days.
      },
      &quot;machineSpec&quot;: { # Specification of a single machine. # Required. Immutable. The specification of a single machine being used.
        &quot;acceleratorCount&quot;: 42, # The number of accelerators to attach to the machine.
        &quot;acceleratorType&quot;: &quot;A String&quot;, # Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
        &quot;gpuPartitionSize&quot;: &quot;A String&quot;, # Optional. Immutable. The Nvidia GPU partition size. When specified, the requested accelerators will be partitioned into smaller GPU partitions. For example, if the request is for 8 units of NVIDIA A100 GPUs, and gpu_partition_size=&quot;1g.10gb&quot;, the service will create 8 * 7 = 56 partitioned MIG instances. The partition size must be a value supported by the requested accelerator. Refer to [Nvidia GPU Partitioning](https://cloud.google.com/kubernetes-engine/docs/how-to/gpus-multi#multi-instance_gpu_partitions) for the available partition sizes. If set, the accelerator_count should be set to 1.
        &quot;machineType&quot;: &quot;A String&quot;, # Immutable. The type of the machine. See the [list of machine types supported for prediction](https://cloud.google.com/vertex-ai/docs/predictions/configure-compute#machine-types) See the [list of machine types supported for custom training](https://cloud.google.com/vertex-ai/docs/training/configure-compute#machine-types). For DeployedModel this field is optional, and the default value is `n1-standard-2`. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
        &quot;multihostGpuNodeCount&quot;: 42, # Optional. Immutable. The number of nodes per replica for multihost GPU deployments.
        &quot;reservationAffinity&quot;: { # A ReservationAffinity can be used to configure a Vertex AI resource (e.g., a DeployedModel) to draw its Compute Engine resources from a Shared Reservation, or exclusively from on-demand capacity. # Optional. Immutable. Configuration controlling how this resource pool consumes reservation.
          &quot;key&quot;: &quot;A String&quot;, # Optional. Corresponds to the label key of a reservation resource. To target a SPECIFIC_RESERVATION by name, use `compute.googleapis.com/reservation-name` as the key and specify the name of your reservation as its value.
          &quot;reservationAffinityType&quot;: &quot;A String&quot;, # Required. Specifies the reservation affinity type.
          &quot;values&quot;: [ # Optional. Corresponds to the label values of a reservation resource. This must be the full resource name of the reservation or reservation block.
            &quot;A String&quot;,
          ],
        },
        &quot;tpuTopology&quot;: &quot;A String&quot;, # Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: &quot;2x2x1&quot;).
      },
      &quot;maxReplicaCount&quot;: 42, # Immutable. The maximum number of replicas that may be deployed on when the traffic against it increases. If the requested value is too large, the deployment will error, but if deployment succeeds then the ability to scale to that many replicas is guaranteed (barring service outages). If traffic increases beyond what its replicas at maximum may handle, a portion of the traffic will be dropped. If this value is not provided, will use min_replica_count as the default value. The value of this field impacts the charge against Vertex CPU and GPU quotas. Specifically, you will be charged for (max_replica_count * number of cores in the selected machine type) and (max_replica_count * number of GPUs per replica in the selected machine type).
      &quot;minReplicaCount&quot;: 42, # Required. Immutable. The minimum number of machine replicas that will be always deployed on. This value must be greater than or equal to 1. If traffic increases, it may dynamically be deployed onto more replicas, and as traffic decreases, some of these extra replicas may be freed.
      &quot;requiredReplicaCount&quot;: 42, # Optional. Number of required available replicas for the deployment to succeed. This field is only needed when partial deployment/mutation is desired. If set, the deploy/mutate operation will succeed once available_replica_count reaches required_replica_count, and the rest of the replicas will be retried. If not set, the default required_replica_count will be min_replica_count.
      &quot;spot&quot;: True or False, # Optional. If true, schedule the deployment workload on [spot VMs](https://cloud.google.com/kubernetes-engine/docs/concepts/spot-vms).
    },
    &quot;fastTryoutEnabled&quot;: True or False, # Optional. If true, enable the QMT fast tryout feature for this model if possible.
    &quot;systemLabels&quot;: { # Optional. System labels for Model Garden deployments. These labels are managed by Google and for tracking purposes only.
      &quot;a_key&quot;: &quot;A String&quot;,
    },
  },
  &quot;endpointConfig&quot;: { # The endpoint config to use for the deployment. # Optional. The endpoint config to use for the deployment. If not specified, the default endpoint config will be used.
    &quot;dedicatedEndpointDisabled&quot;: True or False, # Optional. By default, if dedicated endpoint is enabled, the endpoint will be exposed through a dedicated DNS [Endpoint.dedicated_endpoint_dns]. Your request to the dedicated DNS will be isolated from other users&#x27; traffic and will have better performance and reliability. Note: Once you enabled dedicated endpoint, you won&#x27;t be able to send request to the shared DNS {region}-aiplatform.googleapis.com. The limitations will be removed soon. If this field is set to true, the dedicated endpoint will be disabled and the deployed model will be exposed through the shared DNS {region}-aiplatform.googleapis.com.
    &quot;dedicatedEndpointEnabled&quot;: True or False, # Optional. Deprecated. Use dedicated_endpoint_disabled instead. If true, the endpoint will be exposed through a dedicated DNS [Endpoint.dedicated_endpoint_dns]. Your request to the dedicated DNS will be isolated from other users&#x27; traffic and will have better performance and reliability. Note: Once you enabled dedicated endpoint, you won&#x27;t be able to send request to the shared DNS {region}-aiplatform.googleapis.com. The limitations will be removed soon.
    &quot;endpointDisplayName&quot;: &quot;A String&quot;, # Optional. The user-specified display name of the endpoint. If not set, a default name will be used.
    &quot;endpointUserId&quot;: &quot;A String&quot;, # Optional. Immutable. The ID to use for endpoint, which will become the final component of the endpoint resource name. If not provided, Vertex AI will generate a value for this ID. If the first character is a letter, this value may be up to 63 characters, and valid characters are `[a-z0-9-]`. The last character must be a letter or number. If the first character is a number, this value may be up to 9 characters, and valid characters are `[0-9]` with no leading zeros. When using HTTP/JSON, this field is populated based on a query string argument, such as `?endpoint_id=12345`. This is the fallback for fields that are not included in either the URI or the body.
  },
  &quot;huggingFaceModelId&quot;: &quot;A String&quot;, # The Hugging Face model to deploy. Format: Hugging Face model ID like `google/gemma-2-2b-it`.
  &quot;modelConfig&quot;: { # The model config to use for the deployment. # Optional. The model config to use for the deployment. If not specified, the default model config will be used.
    &quot;acceptEula&quot;: True or False, # Optional. Whether the user accepts the End User License Agreement (EULA) for the model.
    &quot;containerSpec&quot;: { # Specification of a container for serving predictions. Some fields in this message correspond to fields in the [Kubernetes Container v1 core specification](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). # Optional. The specification of the container that is to be used when deploying. If not set, the default container spec will be used.
      &quot;args&quot;: [ # Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container&#x27;s [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify this field as an array of executable and arguments, similar to a Docker `CMD`&#x27;s &quot;default parameters&quot; form. If you don&#x27;t specify this field but do specify the command field, then the command from the `command` field runs without any additional arguments. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container&#x27;s `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). If you don&#x27;t specify this field and don&#x27;t specify the `command` field, then the container&#x27;s [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd) and `CMD` determine what runs based on their default behavior. See the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `args` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
        &quot;A String&quot;,
      ],
      &quot;command&quot;: [ # Immutable. Specifies the command that runs when the container starts. This overrides the container&#x27;s [ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint). Specify this field as an array of executable and arguments, similar to a Docker `ENTRYPOINT`&#x27;s &quot;exec&quot; form, not its &quot;shell&quot; form. If you do not specify this field, then the container&#x27;s `ENTRYPOINT` runs, in conjunction with the args field or the container&#x27;s [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), if either exists. If this field is not specified and the container does not have an `ENTRYPOINT`, then refer to the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). If you specify this field, then you can also specify the `args` field to provide additional arguments for this command. However, if you specify this field, then the container&#x27;s `CMD` is ignored. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container&#x27;s `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `command` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
        &quot;A String&quot;,
      ],
      &quot;deploymentTimeout&quot;: &quot;A String&quot;, # Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
      &quot;env&quot;: [ # Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables. Additionally, the command and args fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable `VAR_2` to have the value `foo bar`: ```json [ { &quot;name&quot;: &quot;VAR_1&quot;, &quot;value&quot;: &quot;foo&quot; }, { &quot;name&quot;: &quot;VAR_2&quot;, &quot;value&quot;: &quot;$(VAR_1) bar&quot; } ] ``` If you switch the order of the variables in the example, then the expansion does not occur. This field corresponds to the `env` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
        { # Represents an environment variable present in a Container or Python Module.
          &quot;name&quot;: &quot;A String&quot;, # Required. Name of the environment variable. Must be a valid C identifier.
          &quot;value&quot;: &quot;A String&quot;, # Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not.
        },
      ],
      &quot;grpcPorts&quot;: [ # Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, gRPC requests to the container will be disabled. Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers v1 core API.
        { # Represents a network port in a container.
          &quot;containerPort&quot;: 42, # The number of the port to expose on the pod&#x27;s IP address. Must be a valid port number, between 1 and 65535 inclusive.
        },
      ],
      &quot;healthProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes readiness probe.
        &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
          &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
            &quot;A String&quot;,
          ],
        },
        &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
        &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
          &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
          &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
        },
        &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
          &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
          &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
            { # HttpHeader describes a custom header to be used in HTTP probes
              &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
              &quot;value&quot;: &quot;A String&quot;, # The header field value
            },
          ],
          &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
          &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
          &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
        },
        &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
        &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
        &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
        &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
          &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
          &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
        },
        &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
      },
      &quot;healthRoute&quot;: &quot;A String&quot;, # Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container&#x27;s IP address and port to check that the container is healthy. Read more about [health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#health). For example, if you set this field to `/bar`, then Vertex AI intermittently sends a GET request to the `/bar` path on the port of your container specified by the first value of this `ModelContainerSpec`&#x27;s ports field. If you don&#x27;t specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
      &quot;imageUri&quot;: &quot;A String&quot;, # Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the [container publishing requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#publishing), including permissions requirements for the Vertex AI Service Agent. The container image is ingested upon ModelService.UploadModel, stored internally, and this original path is afterwards not used. To learn about the requirements for the Docker image itself, see [Custom container requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#). You can use the URI to one of Vertex AI&#x27;s [pre-built container images for prediction](https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers) in this field.
      &quot;invokeRoutePrefix&quot;: &quot;A String&quot;, # Immutable. Invoke route prefix for the custom container. &quot;/*&quot; is the only supported value right now. By setting this field, any non-root route on this model will be accessible with invoke http call eg: &quot;/invoke/foo/bar&quot;, however the [PredictionService.Invoke] RPC is not supported yet. Only one of `predict_route` or `invoke_route_prefix` can be set, and we default to using `predict_route` if this field is not set. If this field is set, the Model can only be deployed to dedicated endpoint.
      &quot;livenessProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes liveness probe.
        &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
          &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
            &quot;A String&quot;,
          ],
        },
        &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
        &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
          &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
          &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
        },
        &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
          &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
          &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
            { # HttpHeader describes a custom header to be used in HTTP probes
              &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
              &quot;value&quot;: &quot;A String&quot;, # The header field value
            },
          ],
          &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
          &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
          &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
        },
        &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
        &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
        &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
        &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
          &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
          &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
        },
        &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
      },
      &quot;ports&quot;: [ # Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends [liveness and health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#liveness) to this port. If you do not specify this field, it defaults to following value: ```json [ { &quot;containerPort&quot;: 8080 } ] ``` Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
        { # Represents a network port in a container.
          &quot;containerPort&quot;: 42, # The number of the port to expose on the pod&#x27;s IP address. Must be a valid port number, between 1 and 65535 inclusive.
        },
      ],
      &quot;predictRoute&quot;: &quot;A String&quot;, # Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using projects.locations.endpoints.predict to this path on the container&#x27;s IP address and port. Vertex AI then returns the container&#x27;s response in the API response. For example, if you set this field to `/foo`, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the `/foo` path on the port of your container specified by the first value of this `ModelContainerSpec`&#x27;s ports field. If you don&#x27;t specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
      &quot;sharedMemorySizeMb&quot;: &quot;A String&quot;, # Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.
      &quot;startupProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes startup probe.
        &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
          &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
            &quot;A String&quot;,
          ],
        },
        &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
        &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
          &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
          &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
        },
        &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
          &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
          &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
            { # HttpHeader describes a custom header to be used in HTTP probes
              &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
              &quot;value&quot;: &quot;A String&quot;, # The header field value
            },
          ],
          &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
          &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
          &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
        },
        &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
        &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
        &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
        &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
          &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
          &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
        },
        &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
      },
    },
    &quot;huggingFaceAccessToken&quot;: &quot;A String&quot;, # Optional. The Hugging Face read access token used to access the model artifacts of gated models.
    &quot;huggingFaceCacheEnabled&quot;: True or False, # Optional. If true, the model will deploy with a cached version instead of directly downloading the model artifacts from Hugging Face. This is suitable for VPC-SC users with limited internet access.
    &quot;modelDisplayName&quot;: &quot;A String&quot;, # Optional. The user-specified display name of the uploaded model. If not set, a default name will be used.
    &quot;modelUserId&quot;: &quot;A String&quot;, # Optional. The ID to use for the uploaded Model, which will become the final component of the model resource name. When not provided, Vertex AI will generate a value for this ID. When Model Registry model is provided, this field will be ignored. This value may be up to 63 characters, and valid characters are `[a-z0-9_-]`. The first character cannot be a number or hyphen.
  },
  &quot;publisherModelName&quot;: &quot;A String&quot;, # The Model Garden model to deploy. Format: `publishers/{publisher}/models/{publisher_model}@{version_id}`, or `publishers/hf-{hugging-face-author}/models/{hugging-face-model-name}@001`.
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # This resource represents a long-running operation that is the result of a network API call.
  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  &quot;response&quot;: { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="deployPublisherModel">deployPublisherModel(destination, body=None, x__xgafv=None)</code>
  <pre>Deploys publisher models.

Args:
  destination: string, Required. The resource name of the Location to deploy the model in. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for ModelGardenService.DeployPublisherModel.
  &quot;acceptEula&quot;: True or False, # Optional. Whether the user accepts the End User License Agreement (EULA) for the model.
  &quot;dedicatedResources&quot;: { # A description of resources that are dedicated to a DeployedModel or DeployedIndex, and that need a higher degree of manual configuration. # Optional. The dedicated resources to use for the endpoint. If not set, the default resources will be used.
    &quot;autoscalingMetricSpecs&quot;: [ # Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator&#x27;s duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator&#x27;s duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and autoscaling_metric_specs.target to `80`.
      { # The metric specification that defines the target resource utilization (CPU utilization, accelerator&#x27;s duty cycle, and so on) for calculating the desired replica count.
        &quot;metricName&quot;: &quot;A String&quot;, # Required. The resource metric name. Supported metrics: * For Online Prediction: * `aiplatform.googleapis.com/prediction/online/accelerator/duty_cycle` * `aiplatform.googleapis.com/prediction/online/cpu/utilization` * `aiplatform.googleapis.com/prediction/online/request_count`
        &quot;monitoredResourceLabels&quot;: { # Optional. The Cloud Monitoring monitored resource labels as key value pairs used for metrics filtering. See Cloud Monitoring Labels https://cloud.google.com/monitoring/api/v3/metric-model#generic-label-info
          &quot;a_key&quot;: &quot;A String&quot;,
        },
        &quot;target&quot;: 42, # The target resource utilization in percentage (1% - 100%) for the given metric; once the real usage deviates from the target by a certain percentage, the machine replicas change. The default value is 60 (representing 60%) if not provided.
      },
    ],
    &quot;flexStart&quot;: { # FlexStart is used to schedule the deployment workload on DWS resource. It contains the max duration of the deployment. # Optional. Immutable. If set, use DWS resource to schedule the deployment workload. reference: (https://cloud.google.com/blog/products/compute/introducing-dynamic-workload-scheduler)
      &quot;maxRuntimeDuration&quot;: &quot;A String&quot;, # The max duration of the deployment is max_runtime_duration. The deployment will be terminated after the duration. The max_runtime_duration can be set up to 7 days.
    },
    &quot;machineSpec&quot;: { # Specification of a single machine. # Required. Immutable. The specification of a single machine being used.
      &quot;acceleratorCount&quot;: 42, # The number of accelerators to attach to the machine.
      &quot;acceleratorType&quot;: &quot;A String&quot;, # Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
      &quot;gpuPartitionSize&quot;: &quot;A String&quot;, # Optional. Immutable. The Nvidia GPU partition size. When specified, the requested accelerators will be partitioned into smaller GPU partitions. For example, if the request is for 8 units of NVIDIA A100 GPUs, and gpu_partition_size=&quot;1g.10gb&quot;, the service will create 8 * 7 = 56 partitioned MIG instances. The partition size must be a value supported by the requested accelerator. Refer to [Nvidia GPU Partitioning](https://cloud.google.com/kubernetes-engine/docs/how-to/gpus-multi#multi-instance_gpu_partitions) for the available partition sizes. If set, the accelerator_count should be set to 1.
      &quot;machineType&quot;: &quot;A String&quot;, # Immutable. The type of the machine. See the [list of machine types supported for prediction](https://cloud.google.com/vertex-ai/docs/predictions/configure-compute#machine-types) See the [list of machine types supported for custom training](https://cloud.google.com/vertex-ai/docs/training/configure-compute#machine-types). For DeployedModel this field is optional, and the default value is `n1-standard-2`. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
      &quot;multihostGpuNodeCount&quot;: 42, # Optional. Immutable. The number of nodes per replica for multihost GPU deployments.
      &quot;reservationAffinity&quot;: { # A ReservationAffinity can be used to configure a Vertex AI resource (e.g., a DeployedModel) to draw its Compute Engine resources from a Shared Reservation, or exclusively from on-demand capacity. # Optional. Immutable. Configuration controlling how this resource pool consumes reservation.
        &quot;key&quot;: &quot;A String&quot;, # Optional. Corresponds to the label key of a reservation resource. To target a SPECIFIC_RESERVATION by name, use `compute.googleapis.com/reservation-name` as the key and specify the name of your reservation as its value.
        &quot;reservationAffinityType&quot;: &quot;A String&quot;, # Required. Specifies the reservation affinity type.
        &quot;values&quot;: [ # Optional. Corresponds to the label values of a reservation resource. This must be the full resource name of the reservation or reservation block.
          &quot;A String&quot;,
        ],
      },
      &quot;tpuTopology&quot;: &quot;A String&quot;, # Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: &quot;2x2x1&quot;).
    },
    &quot;maxReplicaCount&quot;: 42, # Immutable. The maximum number of replicas that may be deployed on when the traffic against it increases. If the requested value is too large, the deployment will error, but if deployment succeeds then the ability to scale to that many replicas is guaranteed (barring service outages). If traffic increases beyond what its replicas at maximum may handle, a portion of the traffic will be dropped. If this value is not provided, will use min_replica_count as the default value. The value of this field impacts the charge against Vertex CPU and GPU quotas. Specifically, you will be charged for (max_replica_count * number of cores in the selected machine type) and (max_replica_count * number of GPUs per replica in the selected machine type).
    &quot;minReplicaCount&quot;: 42, # Required. Immutable. The minimum number of machine replicas that will be always deployed on. This value must be greater than or equal to 1. If traffic increases, it may dynamically be deployed onto more replicas, and as traffic decreases, some of these extra replicas may be freed.
    &quot;requiredReplicaCount&quot;: 42, # Optional. Number of required available replicas for the deployment to succeed. This field is only needed when partial deployment/mutation is desired. If set, the deploy/mutate operation will succeed once available_replica_count reaches required_replica_count, and the rest of the replicas will be retried. If not set, the default required_replica_count will be min_replica_count.
    &quot;spot&quot;: True or False, # Optional. If true, schedule the deployment workload on [spot VMs](https://cloud.google.com/kubernetes-engine/docs/concepts/spot-vms).
  },
  &quot;endpointDisplayName&quot;: &quot;A String&quot;, # Optional. The user-specified display name of the endpoint. If not set, a default name will be used.
  &quot;huggingFaceAccessToken&quot;: &quot;A String&quot;, # Optional. The Hugging Face read access token used to access the model artifacts of gated models.
  &quot;model&quot;: &quot;A String&quot;, # Required. The model to deploy. Format: 1. `publishers/{publisher}/models/{publisher_model}@{version_id}`, or `publishers/hf-{hugging-face-author}/models/{hugging-face-model-name}@001`. 2. Hugging Face model ID like `google/gemma-2-2b-it`. 3. Custom model Google Cloud Storage URI like `gs://bucket`. 4. Custom model zip file like `https://example.com/a.zip`.
  &quot;modelDisplayName&quot;: &quot;A String&quot;, # Optional. The user-specified display name of the uploaded model. If not set, a default name will be used.
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # This resource represents a long-running operation that is the result of a network API call.
  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  &quot;response&quot;: { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="evaluateDataset">evaluateDataset(location, body=None, x__xgafv=None)</code>
  <pre>Evaluates a dataset based on a set of given metrics.

Args:
  location: string, Required. The resource name of the Location to evaluate the dataset. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for EvaluationService.EvaluateDataset.
  &quot;autoraterConfig&quot;: { # The configs for autorater. This is applicable to both EvaluateInstances and EvaluateDataset. # Optional. Autorater config used for evaluation. Currently only publisher Gemini models are supported. Format: `projects/{PROJECT}/locations/{LOCATION}/publishers/google/models/{MODEL}.`
    &quot;autoraterModel&quot;: &quot;A String&quot;, # Optional. The fully qualified name of the publisher model or tuned autorater endpoint to use. Publisher model format: `projects/{project}/locations/{location}/publishers/*/models/*` Tuned model endpoint format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
    &quot;flipEnabled&quot;: True or False, # Optional. Default is true. Whether to flip the candidate and baseline responses. This is only applicable to the pairwise metric. If enabled, also provide PairwiseMetricSpec.candidate_response_field_name and PairwiseMetricSpec.baseline_response_field_name. When rendering PairwiseMetricSpec.metric_prompt_template, the candidate and baseline fields will be flipped for half of the samples to reduce bias.
    &quot;samplingCount&quot;: 42, # Optional. Number of samples for each instance in the dataset. If not specified, the default is 4. Minimum value is 1, maximum value is 32.
  },
  &quot;dataset&quot;: { # The dataset used for evaluation. # Required. The dataset used for evaluation.
    &quot;bigquerySource&quot;: { # The BigQuery location for the input content. # BigQuery source holds the dataset.
      &quot;inputUri&quot;: &quot;A String&quot;, # Required. BigQuery URI to a table, up to 2000 characters long. Accepted forms: * BigQuery path. For example: `bq://projectId.bqDatasetId.bqTableId`.
    },
    &quot;gcsSource&quot;: { # The Google Cloud Storage location for the input content. # Cloud storage source holds the dataset. Currently only one Cloud Storage file path is supported.
      &quot;uris&quot;: [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
        &quot;A String&quot;,
      ],
    },
  },
  &quot;metrics&quot;: [ # Required. The metrics used for evaluation.
    { # The metric used for running evaluations.
      &quot;aggregationMetrics&quot;: [ # Optional. The aggregation metrics to use.
        &quot;A String&quot;,
      ],
      &quot;bleuSpec&quot;: { # Spec for bleu score metric - calculates the precision of n-grams in the prediction as compared to reference - returns a score ranging between 0 to 1. # Spec for bleu metric.
        &quot;useEffectiveOrder&quot;: True or False, # Optional. Whether to use_effective_order to compute bleu score.
      },
      &quot;exactMatchSpec&quot;: { # Spec for exact match metric - returns 1 if prediction and reference exactly matches, otherwise 0. # Spec for exact match metric.
      },
      &quot;pairwiseMetricSpec&quot;: { # Spec for pairwise metric. # Spec for pairwise metric.
        &quot;baselineResponseFieldName&quot;: &quot;A String&quot;, # Optional. The field name of the baseline response.
        &quot;candidateResponseFieldName&quot;: &quot;A String&quot;, # Optional. The field name of the candidate response.
        &quot;customOutputFormatConfig&quot;: { # Spec for custom output format configuration. # Optional. CustomOutputFormatConfig allows customization of metric output. When this config is set, the default output is replaced with the raw output string. If a custom format is chosen, the `pairwise_choice` and `explanation` fields in the corresponding metric result will be empty.
          &quot;returnRawOutput&quot;: True or False, # Optional. Whether to return raw output.
        },
        &quot;metricPromptTemplate&quot;: &quot;A String&quot;, # Required. Metric prompt template for pairwise metric.
        &quot;systemInstruction&quot;: &quot;A String&quot;, # Optional. System instructions for pairwise metric.
      },
      &quot;pointwiseMetricSpec&quot;: { # Spec for pointwise metric. # Spec for pointwise metric.
        &quot;customOutputFormatConfig&quot;: { # Spec for custom output format configuration. # Optional. CustomOutputFormatConfig allows customization of metric output. By default, metrics return a score and explanation. When this config is set, the default output is replaced with either: - The raw output string. - A parsed output based on a user-defined schema. If a custom format is chosen, the `score` and `explanation` fields in the corresponding metric result will be empty.
          &quot;returnRawOutput&quot;: True or False, # Optional. Whether to return raw output.
        },
        &quot;metricPromptTemplate&quot;: &quot;A String&quot;, # Required. Metric prompt template for pointwise metric.
        &quot;systemInstruction&quot;: &quot;A String&quot;, # Optional. System instructions for pointwise metric.
      },
      &quot;predefinedMetricSpec&quot;: { # The spec for a pre-defined metric. # The spec for a pre-defined metric.
        &quot;metricSpecName&quot;: &quot;A String&quot;, # Required. The name of a pre-defined metric, such as &quot;instruction_following_v1&quot; or &quot;text_quality_v1&quot;.
        &quot;metricSpecParameters&quot;: { # Optional. The parameters needed to run the pre-defined metric.
          &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
        },
      },
      &quot;rougeSpec&quot;: { # Spec for rouge score metric - calculates the recall of n-grams in prediction as compared to reference - returns a score ranging between 0 and 1. # Spec for rouge metric.
        &quot;rougeType&quot;: &quot;A String&quot;, # Optional. Supported rouge types are rougen[1-9], rougeL, and rougeLsum.
        &quot;splitSummaries&quot;: True or False, # Optional. Whether to split summaries while using rougeLsum.
        &quot;useStemmer&quot;: True or False, # Optional. Whether to use stemmer to compute rouge score.
      },
    },
  ],
  &quot;outputConfig&quot;: { # Config for evaluation output. # Required. Config for evaluation output.
    &quot;gcsDestination&quot;: { # The Google Cloud Storage location where the output is to be written to. # Cloud storage destination for evaluation output.
      &quot;outputUriPrefix&quot;: &quot;A String&quot;, # Required. Google Cloud Storage URI to output directory. If the uri doesn&#x27;t end with &#x27;/&#x27;, a &#x27;/&#x27; will be automatically appended. The directory is created if it doesn&#x27;t exist.
    },
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # This resource represents a long-running operation that is the result of a network API call.
  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  &quot;response&quot;: { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="evaluateInstances">evaluateInstances(location, body=None, x__xgafv=None)</code>
  <pre>Evaluates instances based on a given metric.

Args:
  location: string, Required. The resource name of the Location to evaluate the instances. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for EvaluationService.EvaluateInstances.
  &quot;autoraterConfig&quot;: { # The configs for autorater. This is applicable to both EvaluateInstances and EvaluateDataset. # Optional. Autorater config used for evaluation.
    &quot;autoraterModel&quot;: &quot;A String&quot;, # Optional. The fully qualified name of the publisher model or tuned autorater endpoint to use. Publisher model format: `projects/{project}/locations/{location}/publishers/*/models/*` Tuned model endpoint format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
    &quot;flipEnabled&quot;: True or False, # Optional. Default is true. Whether to flip the candidate and baseline responses. This is only applicable to the pairwise metric. If enabled, also provide PairwiseMetricSpec.candidate_response_field_name and PairwiseMetricSpec.baseline_response_field_name. When rendering PairwiseMetricSpec.metric_prompt_template, the candidate and baseline fields will be flipped for half of the samples to reduce bias.
    &quot;samplingCount&quot;: 42, # Optional. Number of samples for each instance in the dataset. If not specified, the default is 4. Minimum value is 1, maximum value is 32.
  },
  &quot;bleuInput&quot;: { # Input for bleu metric. # Instances and metric spec for bleu metric.
    &quot;instances&quot;: [ # Required. Repeated bleu instances.
      { # Spec for bleu instance.
        &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
        &quot;reference&quot;: &quot;A String&quot;, # Required. Ground truth used to compare against the prediction.
      },
    ],
    &quot;metricSpec&quot;: { # Spec for bleu score metric - calculates the precision of n-grams in the prediction as compared to reference - returns a score ranging between 0 to 1. # Required. Spec for bleu score metric.
      &quot;useEffectiveOrder&quot;: True or False, # Optional. Whether to use_effective_order to compute bleu score.
    },
  },
  &quot;coherenceInput&quot;: { # Input for coherence metric. # Input for coherence metric.
    &quot;instance&quot;: { # Spec for coherence instance. # Required. Coherence instance.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
    },
    &quot;metricSpec&quot;: { # Spec for coherence score metric. # Required. Spec for coherence score metric.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;cometInput&quot;: { # Input for Comet metric. # Translation metrics. Input for Comet metric.
    &quot;instance&quot;: { # Spec for Comet instance - The fields used for evaluation are dependent on the comet version. # Required. Comet instance.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
      &quot;source&quot;: &quot;A String&quot;, # Optional. Source text in original language.
    },
    &quot;metricSpec&quot;: { # Spec for Comet metric. # Required. Spec for comet metric.
      &quot;sourceLanguage&quot;: &quot;A String&quot;, # Optional. Source language in BCP-47 format.
      &quot;targetLanguage&quot;: &quot;A String&quot;, # Optional. Target language in BCP-47 format. Covers both prediction and reference.
      &quot;version&quot;: &quot;A String&quot;, # Required. Which version to use for evaluation.
    },
  },
  &quot;exactMatchInput&quot;: { # Input for exact match metric. # Auto metric instances. Instances and metric spec for exact match metric.
    &quot;instances&quot;: [ # Required. Repeated exact match instances.
      { # Spec for exact match instance.
        &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
        &quot;reference&quot;: &quot;A String&quot;, # Required. Ground truth used to compare against the prediction.
      },
    ],
    &quot;metricSpec&quot;: { # Spec for exact match metric - returns 1 if prediction and reference exactly matches, otherwise 0. # Required. Spec for exact match metric.
    },
  },
  &quot;fluencyInput&quot;: { # Input for fluency metric. # LLM-based metric instance. General text generation metrics, applicable to other categories. Input for fluency metric.
    &quot;instance&quot;: { # Spec for fluency instance. # Required. Fluency instance.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
    },
    &quot;metricSpec&quot;: { # Spec for fluency score metric. # Required. Spec for fluency score metric.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;fulfillmentInput&quot;: { # Input for fulfillment metric. # Input for fulfillment metric.
    &quot;instance&quot;: { # Spec for fulfillment instance. # Required. Fulfillment instance.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. Inference instruction prompt to compare prediction with.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
    },
    &quot;metricSpec&quot;: { # Spec for fulfillment metric. # Required. Spec for fulfillment score metric.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;groundednessInput&quot;: { # Input for groundedness metric. # Input for groundedness metric.
    &quot;instance&quot;: { # Spec for groundedness instance. # Required. Groundedness instance.
      &quot;context&quot;: &quot;A String&quot;, # Required. Background information provided in context used to compare against the prediction.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
    },
    &quot;metricSpec&quot;: { # Spec for groundedness metric. # Required. Spec for groundedness metric.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;instance&quot;: { # A single instance to be evaluated. Instances are used to specify the input data for evaluation, from simple string comparisons to complex, multi-turn model evaluations # The instance to be evaluated.
    &quot;otherData&quot;: { # Instance data specified as a map. # Optional. Other data used to populate placeholders based on their key.
      &quot;mapInstance&quot;: { # Optional. Map of instance data.
        &quot;a_key&quot;: { # Instance data used to populate placeholders in a metric prompt template.
          &quot;contents&quot;: { # List of standard Content messages from Gemini API. # List of Gemini content data.
            &quot;contents&quot;: [ # Optional. Repeated contents.
              { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
                &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
                  { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                    &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
                      &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                      &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                    },
                    &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
                      &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                      &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                    },
                    &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
                      &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                      &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                      &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                    },
                    &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
                      &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                        &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                      },
                      &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                      &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
                    },
                    &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
                      &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                      &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                      &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                        &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                      },
                    },
                    &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
                      &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                      &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                      &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                    },
                    &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
                    &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
                    &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                    &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                      &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                      &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
                      &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                    },
                  },
                ],
                &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
              },
            ],
          },
          &quot;text&quot;: &quot;A String&quot;, # Text data.
        },
      },
    },
    &quot;prompt&quot;: { # Instance data used to populate placeholders in a metric prompt template. # Optional. Data used to populate placeholder `prompt` in a metric prompt template.
      &quot;contents&quot;: { # List of standard Content messages from Gemini API. # List of Gemini content data.
        &quot;contents&quot;: [ # Optional. Repeated contents.
          { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
            &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
              { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
                  &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                  &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                },
                &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
                  &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                  &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                },
                &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
                  &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
                },
                &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                  &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                },
                &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
                  &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
                &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
                &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                  &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                  &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
                  &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                },
              },
            ],
            &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
          },
        ],
      },
      &quot;text&quot;: &quot;A String&quot;, # Text data.
    },
    &quot;reference&quot;: { # Instance data used to populate placeholders in a metric prompt template. # Optional. Data used to populate placeholder `reference` in a metric prompt template.
      &quot;contents&quot;: { # List of standard Content messages from Gemini API. # List of Gemini content data.
        &quot;contents&quot;: [ # Optional. Repeated contents.
          { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
            &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
              { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
                  &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                  &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                },
                &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
                  &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                  &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                },
                &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
                  &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
                },
                &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                  &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                },
                &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
                  &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
                &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
                &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                  &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                  &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
                  &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                },
              },
            ],
            &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
          },
        ],
      },
      &quot;text&quot;: &quot;A String&quot;, # Text data.
    },
    &quot;response&quot;: { # Instance data used to populate placeholders in a metric prompt template. # Required. Data used to populate placeholder `response` in a metric prompt template.
      &quot;contents&quot;: { # List of standard Content messages from Gemini API. # List of Gemini content data.
        &quot;contents&quot;: [ # Optional. Repeated contents.
          { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
            &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
              { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
                  &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                  &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                },
                &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
                  &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                  &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                },
                &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
                  &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
                },
                &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                  &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                },
                &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
                  &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
                &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
                &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                  &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                  &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
                  &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                },
              },
            ],
            &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
          },
        ],
      },
      &quot;text&quot;: &quot;A String&quot;, # Text data.
    },
    &quot;rubricGroups&quot;: { # Optional. Named groups of rubrics associated with the prompt. This is used for rubric-based evaluations where rubrics can be referenced by a key. The key could represent versions, associated metrics, etc.
      &quot;a_key&quot;: { # A group of rubrics, used for grouping rubrics based on a metric or a version.
        &quot;displayName&quot;: &quot;A String&quot;, # Human-readable name for the group. This should be unique within a given context if used for display or selection. Example: &quot;Instruction Following V1&quot;, &quot;Content Quality - Summarization Task&quot;.
        &quot;groupId&quot;: &quot;A String&quot;, # Unique identifier for the group.
        &quot;rubrics&quot;: [ # Rubrics that are part of this group.
          { # Message representing a single testable criterion for evaluation. One input prompt could have multiple rubrics.
            &quot;content&quot;: { # Content of the rubric, defining the testable criteria. # Required. The actual testable criteria for the rubric.
              &quot;property&quot;: { # Defines criteria based on a specific property. # Evaluation criteria based on a specific property.
                &quot;description&quot;: &quot;A String&quot;, # Description of the property being evaluated. Example: &quot;The model&#x27;s response is grammatically correct.&quot;
              },
            },
            &quot;importance&quot;: &quot;A String&quot;, # Optional. The relative importance of this rubric.
            &quot;rubricId&quot;: &quot;A String&quot;, # Unique identifier for the rubric. This ID is used to refer to this rubric, e.g., in RubricVerdict.
            &quot;type&quot;: &quot;A String&quot;, # Optional. A type designator for the rubric, which can inform how it&#x27;s evaluated or interpreted by systems or users. It&#x27;s recommended to use consistent, well-defined, upper snake_case strings. Examples: &quot;SUMMARIZATION_QUALITY&quot;, &quot;SAFETY_HARMFUL_CONTENT&quot;, &quot;INSTRUCTION_ADHERENCE&quot;.
          },
        ],
      },
    },
  },
  &quot;metrics&quot;: [ # The metrics used for evaluation. Currently, we only support evaluating a single metric. If multiple metrics are provided, only the first one will be evaluated.
    { # The metric used for running evaluations.
      &quot;aggregationMetrics&quot;: [ # Optional. The aggregation metrics to use.
        &quot;A String&quot;,
      ],
      &quot;bleuSpec&quot;: { # Spec for bleu score metric - calculates the precision of n-grams in the prediction as compared to reference - returns a score ranging between 0 to 1. # Spec for bleu metric.
        &quot;useEffectiveOrder&quot;: True or False, # Optional. Whether to use_effective_order to compute bleu score.
      },
      &quot;exactMatchSpec&quot;: { # Spec for exact match metric - returns 1 if prediction and reference exactly matches, otherwise 0. # Spec for exact match metric.
      },
      &quot;pairwiseMetricSpec&quot;: { # Spec for pairwise metric. # Spec for pairwise metric.
        &quot;baselineResponseFieldName&quot;: &quot;A String&quot;, # Optional. The field name of the baseline response.
        &quot;candidateResponseFieldName&quot;: &quot;A String&quot;, # Optional. The field name of the candidate response.
        &quot;customOutputFormatConfig&quot;: { # Spec for custom output format configuration. # Optional. CustomOutputFormatConfig allows customization of metric output. When this config is set, the default output is replaced with the raw output string. If a custom format is chosen, the `pairwise_choice` and `explanation` fields in the corresponding metric result will be empty.
          &quot;returnRawOutput&quot;: True or False, # Optional. Whether to return raw output.
        },
        &quot;metricPromptTemplate&quot;: &quot;A String&quot;, # Required. Metric prompt template for pairwise metric.
        &quot;systemInstruction&quot;: &quot;A String&quot;, # Optional. System instructions for pairwise metric.
      },
      &quot;pointwiseMetricSpec&quot;: { # Spec for pointwise metric. # Spec for pointwise metric.
        &quot;customOutputFormatConfig&quot;: { # Spec for custom output format configuration. # Optional. CustomOutputFormatConfig allows customization of metric output. By default, metrics return a score and explanation. When this config is set, the default output is replaced with either: - The raw output string. - A parsed output based on a user-defined schema. If a custom format is chosen, the `score` and `explanation` fields in the corresponding metric result will be empty.
          &quot;returnRawOutput&quot;: True or False, # Optional. Whether to return raw output.
        },
        &quot;metricPromptTemplate&quot;: &quot;A String&quot;, # Required. Metric prompt template for pointwise metric.
        &quot;systemInstruction&quot;: &quot;A String&quot;, # Optional. System instructions for pointwise metric.
      },
      &quot;predefinedMetricSpec&quot;: { # The spec for a pre-defined metric. # The spec for a pre-defined metric.
        &quot;metricSpecName&quot;: &quot;A String&quot;, # Required. The name of a pre-defined metric, such as &quot;instruction_following_v1&quot; or &quot;text_quality_v1&quot;.
        &quot;metricSpecParameters&quot;: { # Optional. The parameters needed to run the pre-defined metric.
          &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
        },
      },
      &quot;rougeSpec&quot;: { # Spec for rouge score metric - calculates the recall of n-grams in prediction as compared to reference - returns a score ranging between 0 and 1. # Spec for rouge metric.
        &quot;rougeType&quot;: &quot;A String&quot;, # Optional. Supported rouge types are rougen[1-9], rougeL, and rougeLsum.
        &quot;splitSummaries&quot;: True or False, # Optional. Whether to split summaries while using rougeLsum.
        &quot;useStemmer&quot;: True or False, # Optional. Whether to use stemmer to compute rouge score.
      },
    },
  ],
  &quot;metricxInput&quot;: { # Input for MetricX metric. # Input for Metricx metric.
    &quot;instance&quot;: { # Spec for MetricX instance - The fields used for evaluation are dependent on the MetricX version. # Required. Metricx instance.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
      &quot;source&quot;: &quot;A String&quot;, # Optional. Source text in original language.
    },
    &quot;metricSpec&quot;: { # Spec for MetricX metric. # Required. Spec for Metricx metric.
      &quot;sourceLanguage&quot;: &quot;A String&quot;, # Optional. Source language in BCP-47 format.
      &quot;targetLanguage&quot;: &quot;A String&quot;, # Optional. Target language in BCP-47 format. Covers both prediction and reference.
      &quot;version&quot;: &quot;A String&quot;, # Required. Which version to use for evaluation.
    },
  },
  &quot;pairwiseMetricInput&quot;: { # Input for pairwise metric. # Input for pairwise metric.
    &quot;instance&quot;: { # Pairwise metric instance. Usually one instance corresponds to one row in an evaluation dataset. # Required. Pairwise metric instance.
      &quot;contentMapInstance&quot;: { # Map of placeholder in metric prompt template to contents of model input. # Key-value contents for the mutlimodality input, including text, image, video, audio, and pdf, etc. The key is placeholder in metric prompt template, and the value is the multimodal content.
        &quot;values&quot;: { # Optional. Map of placeholder to contents.
          &quot;a_key&quot;: { # Repeated Content type.
            &quot;contents&quot;: [ # Optional. Repeated contents.
              { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
                &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
                  { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                    &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
                      &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                      &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                    },
                    &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
                      &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                      &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                    },
                    &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
                      &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                      &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                      &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                    },
                    &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
                      &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                        &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                      },
                      &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                      &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
                    },
                    &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
                      &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                      &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                      &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                        &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                      },
                    },
                    &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
                      &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                      &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                      &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                    },
                    &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
                    &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
                    &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                    &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                      &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                      &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
                      &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                    },
                  },
                ],
                &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
              },
            ],
          },
        },
      },
      &quot;jsonInstance&quot;: &quot;A String&quot;, # Instance specified as a json string. String key-value pairs are expected in the json_instance to render PairwiseMetricSpec.instance_prompt_template.
    },
    &quot;metricSpec&quot;: { # Spec for pairwise metric. # Required. Spec for pairwise metric.
      &quot;baselineResponseFieldName&quot;: &quot;A String&quot;, # Optional. The field name of the baseline response.
      &quot;candidateResponseFieldName&quot;: &quot;A String&quot;, # Optional. The field name of the candidate response.
      &quot;customOutputFormatConfig&quot;: { # Spec for custom output format configuration. # Optional. CustomOutputFormatConfig allows customization of metric output. When this config is set, the default output is replaced with the raw output string. If a custom format is chosen, the `pairwise_choice` and `explanation` fields in the corresponding metric result will be empty.
        &quot;returnRawOutput&quot;: True or False, # Optional. Whether to return raw output.
      },
      &quot;metricPromptTemplate&quot;: &quot;A String&quot;, # Required. Metric prompt template for pairwise metric.
      &quot;systemInstruction&quot;: &quot;A String&quot;, # Optional. System instructions for pairwise metric.
    },
  },
  &quot;pairwiseQuestionAnsweringQualityInput&quot;: { # Input for pairwise question answering quality metric. # Input for pairwise question answering quality metric.
    &quot;instance&quot;: { # Spec for pairwise question answering quality instance. # Required. Pairwise question answering quality instance.
      &quot;baselinePrediction&quot;: &quot;A String&quot;, # Required. Output of the baseline model.
      &quot;context&quot;: &quot;A String&quot;, # Required. Text to answer the question.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. Question Answering prompt for LLM.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the candidate model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for pairwise question answering quality score metric. # Required. Spec for pairwise question answering quality score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute question answering quality.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;pairwiseSummarizationQualityInput&quot;: { # Input for pairwise summarization quality metric. # Input for pairwise summarization quality metric.
    &quot;instance&quot;: { # Spec for pairwise summarization quality instance. # Required. Pairwise summarization quality instance.
      &quot;baselinePrediction&quot;: &quot;A String&quot;, # Required. Output of the baseline model.
      &quot;context&quot;: &quot;A String&quot;, # Required. Text to be summarized.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. Summarization prompt for LLM.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the candidate model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for pairwise summarization quality score metric. # Required. Spec for pairwise summarization quality score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute pairwise summarization quality.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;pointwiseMetricInput&quot;: { # Input for pointwise metric. # Input for pointwise metric.
    &quot;instance&quot;: { # Pointwise metric instance. Usually one instance corresponds to one row in an evaluation dataset. # Required. Pointwise metric instance.
      &quot;contentMapInstance&quot;: { # Map of placeholder in metric prompt template to contents of model input. # Key-value contents for the mutlimodality input, including text, image, video, audio, and pdf, etc. The key is placeholder in metric prompt template, and the value is the multimodal content.
        &quot;values&quot;: { # Optional. Map of placeholder to contents.
          &quot;a_key&quot;: { # Repeated Content type.
            &quot;contents&quot;: [ # Optional. Repeated contents.
              { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
                &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
                  { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                    &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
                      &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                      &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                    },
                    &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
                      &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                      &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                    },
                    &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
                      &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                      &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                      &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                    },
                    &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
                      &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                        &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                      },
                      &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                      &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
                    },
                    &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
                      &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                      &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                      &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                        &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                      },
                    },
                    &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
                      &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                      &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                      &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                    },
                    &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
                    &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
                    &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                    &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                      &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                      &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
                      &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                    },
                  },
                ],
                &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
              },
            ],
          },
        },
      },
      &quot;jsonInstance&quot;: &quot;A String&quot;, # Instance specified as a json string. String key-value pairs are expected in the json_instance to render PointwiseMetricSpec.instance_prompt_template.
    },
    &quot;metricSpec&quot;: { # Spec for pointwise metric. # Required. Spec for pointwise metric.
      &quot;customOutputFormatConfig&quot;: { # Spec for custom output format configuration. # Optional. CustomOutputFormatConfig allows customization of metric output. By default, metrics return a score and explanation. When this config is set, the default output is replaced with either: - The raw output string. - A parsed output based on a user-defined schema. If a custom format is chosen, the `score` and `explanation` fields in the corresponding metric result will be empty.
        &quot;returnRawOutput&quot;: True or False, # Optional. Whether to return raw output.
      },
      &quot;metricPromptTemplate&quot;: &quot;A String&quot;, # Required. Metric prompt template for pointwise metric.
      &quot;systemInstruction&quot;: &quot;A String&quot;, # Optional. System instructions for pointwise metric.
    },
  },
  &quot;questionAnsweringCorrectnessInput&quot;: { # Input for question answering correctness metric. # Input for question answering correctness metric.
    &quot;instance&quot;: { # Spec for question answering correctness instance. # Required. Question answering correctness instance.
      &quot;context&quot;: &quot;A String&quot;, # Optional. Text provided as context to answer the question.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. The question asked and other instruction in the inference prompt.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for question answering correctness metric. # Required. Spec for question answering correctness score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute question answering correctness.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;questionAnsweringHelpfulnessInput&quot;: { # Input for question answering helpfulness metric. # Input for question answering helpfulness metric.
    &quot;instance&quot;: { # Spec for question answering helpfulness instance. # Required. Question answering helpfulness instance.
      &quot;context&quot;: &quot;A String&quot;, # Optional. Text provided as context to answer the question.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. The question asked and other instruction in the inference prompt.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for question answering helpfulness metric. # Required. Spec for question answering helpfulness score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute question answering helpfulness.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;questionAnsweringQualityInput&quot;: { # Input for question answering quality metric. # Input for question answering quality metric.
    &quot;instance&quot;: { # Spec for question answering quality instance. # Required. Question answering quality instance.
      &quot;context&quot;: &quot;A String&quot;, # Required. Text to answer the question.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. Question Answering prompt for LLM.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for question answering quality score metric. # Required. Spec for question answering quality score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute question answering quality.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;questionAnsweringRelevanceInput&quot;: { # Input for question answering relevance metric. # Input for question answering relevance metric.
    &quot;instance&quot;: { # Spec for question answering relevance instance. # Required. Question answering relevance instance.
      &quot;context&quot;: &quot;A String&quot;, # Optional. Text provided as context to answer the question.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. The question asked and other instruction in the inference prompt.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for question answering relevance metric. # Required. Spec for question answering relevance score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute question answering relevance.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;rougeInput&quot;: { # Input for rouge metric. # Instances and metric spec for rouge metric.
    &quot;instances&quot;: [ # Required. Repeated rouge instances.
      { # Spec for rouge instance.
        &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
        &quot;reference&quot;: &quot;A String&quot;, # Required. Ground truth used to compare against the prediction.
      },
    ],
    &quot;metricSpec&quot;: { # Spec for rouge score metric - calculates the recall of n-grams in prediction as compared to reference - returns a score ranging between 0 and 1. # Required. Spec for rouge score metric.
      &quot;rougeType&quot;: &quot;A String&quot;, # Optional. Supported rouge types are rougen[1-9], rougeL, and rougeLsum.
      &quot;splitSummaries&quot;: True or False, # Optional. Whether to split summaries while using rougeLsum.
      &quot;useStemmer&quot;: True or False, # Optional. Whether to use stemmer to compute rouge score.
    },
  },
  &quot;rubricBasedInstructionFollowingInput&quot;: { # Instance and metric spec for RubricBasedInstructionFollowing metric. # Rubric Based Instruction Following metric.
    &quot;instance&quot;: { # Instance for RubricBasedInstructionFollowing metric - one instance corresponds to one row in an evaluation dataset. # Required. Instance for RubricBasedInstructionFollowing metric.
      &quot;jsonInstance&quot;: &quot;A String&quot;, # Required. Instance specified as a json string. String key-value pairs are expected in the json_instance to render RubricBasedInstructionFollowing prompt templates.
    },
    &quot;metricSpec&quot;: { # Spec for RubricBasedInstructionFollowing metric - returns rubrics and verdicts corresponding to rubrics along with overall score. # Required. Spec for RubricBasedInstructionFollowing metric.
    },
  },
  &quot;safetyInput&quot;: { # Input for safety metric. # Input for safety metric.
    &quot;instance&quot;: { # Spec for safety instance. # Required. Safety instance.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
    },
    &quot;metricSpec&quot;: { # Spec for safety metric. # Required. Spec for safety metric.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;summarizationHelpfulnessInput&quot;: { # Input for summarization helpfulness metric. # Input for summarization helpfulness metric.
    &quot;instance&quot;: { # Spec for summarization helpfulness instance. # Required. Summarization helpfulness instance.
      &quot;context&quot;: &quot;A String&quot;, # Required. Text to be summarized.
      &quot;instruction&quot;: &quot;A String&quot;, # Optional. Summarization prompt for LLM.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for summarization helpfulness score metric. # Required. Spec for summarization helpfulness score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute summarization helpfulness.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;summarizationQualityInput&quot;: { # Input for summarization quality metric. # Input for summarization quality metric.
    &quot;instance&quot;: { # Spec for summarization quality instance. # Required. Summarization quality instance.
      &quot;context&quot;: &quot;A String&quot;, # Required. Text to be summarized.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. Summarization prompt for LLM.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for summarization quality score metric. # Required. Spec for summarization quality score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute summarization quality.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;summarizationVerbosityInput&quot;: { # Input for summarization verbosity metric. # Input for summarization verbosity metric.
    &quot;instance&quot;: { # Spec for summarization verbosity instance. # Required. Summarization verbosity instance.
      &quot;context&quot;: &quot;A String&quot;, # Required. Text to be summarized.
      &quot;instruction&quot;: &quot;A String&quot;, # Optional. Summarization prompt for LLM.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for summarization verbosity score metric. # Required. Spec for summarization verbosity score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute summarization verbosity.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;toolCallValidInput&quot;: { # Input for tool call valid metric. # Tool call metric instances. Input for tool call valid metric.
    &quot;instances&quot;: [ # Required. Repeated tool call valid instances.
      { # Spec for tool call valid instance.
        &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
        &quot;reference&quot;: &quot;A String&quot;, # Required. Ground truth used to compare against the prediction.
      },
    ],
    &quot;metricSpec&quot;: { # Spec for tool call valid metric. # Required. Spec for tool call valid metric.
    },
  },
  &quot;toolNameMatchInput&quot;: { # Input for tool name match metric. # Input for tool name match metric.
    &quot;instances&quot;: [ # Required. Repeated tool name match instances.
      { # Spec for tool name match instance.
        &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
        &quot;reference&quot;: &quot;A String&quot;, # Required. Ground truth used to compare against the prediction.
      },
    ],
    &quot;metricSpec&quot;: { # Spec for tool name match metric. # Required. Spec for tool name match metric.
    },
  },
  &quot;toolParameterKeyMatchInput&quot;: { # Input for tool parameter key match metric. # Input for tool parameter key match metric.
    &quot;instances&quot;: [ # Required. Repeated tool parameter key match instances.
      { # Spec for tool parameter key match instance.
        &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
        &quot;reference&quot;: &quot;A String&quot;, # Required. Ground truth used to compare against the prediction.
      },
    ],
    &quot;metricSpec&quot;: { # Spec for tool parameter key match metric. # Required. Spec for tool parameter key match metric.
    },
  },
  &quot;toolParameterKvMatchInput&quot;: { # Input for tool parameter key value match metric. # Input for tool parameter key value match metric.
    &quot;instances&quot;: [ # Required. Repeated tool parameter key value match instances.
      { # Spec for tool parameter key value match instance.
        &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
        &quot;reference&quot;: &quot;A String&quot;, # Required. Ground truth used to compare against the prediction.
      },
    ],
    &quot;metricSpec&quot;: { # Spec for tool parameter key value match metric. # Required. Spec for tool parameter key value match metric.
      &quot;useStrictStringMatch&quot;: True or False, # Optional. Whether to use STRICT string match on parameter values.
    },
  },
  &quot;trajectoryAnyOrderMatchInput&quot;: { # Instances and metric spec for TrajectoryAnyOrderMatch metric. # Input for trajectory match any order metric.
    &quot;instances&quot;: [ # Required. Repeated TrajectoryAnyOrderMatch instance.
      { # Spec for TrajectoryAnyOrderMatch instance.
        &quot;predictedTrajectory&quot;: { # Spec for trajectory. # Required. Spec for predicted tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
        &quot;referenceTrajectory&quot;: { # Spec for trajectory. # Required. Spec for reference tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
      },
    ],
    &quot;metricSpec&quot;: { # Spec for TrajectoryAnyOrderMatch metric - returns 1 if all tool calls in the reference trajectory appear in the predicted trajectory in any order, else 0. # Required. Spec for TrajectoryAnyOrderMatch metric.
    },
  },
  &quot;trajectoryExactMatchInput&quot;: { # Instances and metric spec for TrajectoryExactMatch metric. # Input for trajectory exact match metric.
    &quot;instances&quot;: [ # Required. Repeated TrajectoryExactMatch instance.
      { # Spec for TrajectoryExactMatch instance.
        &quot;predictedTrajectory&quot;: { # Spec for trajectory. # Required. Spec for predicted tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
        &quot;referenceTrajectory&quot;: { # Spec for trajectory. # Required. Spec for reference tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
      },
    ],
    &quot;metricSpec&quot;: { # Spec for TrajectoryExactMatch metric - returns 1 if tool calls in the reference trajectory exactly match the predicted trajectory, else 0. # Required. Spec for TrajectoryExactMatch metric.
    },
  },
  &quot;trajectoryInOrderMatchInput&quot;: { # Instances and metric spec for TrajectoryInOrderMatch metric. # Input for trajectory in order match metric.
    &quot;instances&quot;: [ # Required. Repeated TrajectoryInOrderMatch instance.
      { # Spec for TrajectoryInOrderMatch instance.
        &quot;predictedTrajectory&quot;: { # Spec for trajectory. # Required. Spec for predicted tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
        &quot;referenceTrajectory&quot;: { # Spec for trajectory. # Required. Spec for reference tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
      },
    ],
    &quot;metricSpec&quot;: { # Spec for TrajectoryInOrderMatch metric - returns 1 if tool calls in the reference trajectory appear in the predicted trajectory in the same order, else 0. # Required. Spec for TrajectoryInOrderMatch metric.
    },
  },
  &quot;trajectoryPrecisionInput&quot;: { # Instances and metric spec for TrajectoryPrecision metric. # Input for trajectory precision metric.
    &quot;instances&quot;: [ # Required. Repeated TrajectoryPrecision instance.
      { # Spec for TrajectoryPrecision instance.
        &quot;predictedTrajectory&quot;: { # Spec for trajectory. # Required. Spec for predicted tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
        &quot;referenceTrajectory&quot;: { # Spec for trajectory. # Required. Spec for reference tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
      },
    ],
    &quot;metricSpec&quot;: { # Spec for TrajectoryPrecision metric - returns a float score based on average precision of individual tool calls. # Required. Spec for TrajectoryPrecision metric.
    },
  },
  &quot;trajectoryRecallInput&quot;: { # Instances and metric spec for TrajectoryRecall metric. # Input for trajectory recall metric.
    &quot;instances&quot;: [ # Required. Repeated TrajectoryRecall instance.
      { # Spec for TrajectoryRecall instance.
        &quot;predictedTrajectory&quot;: { # Spec for trajectory. # Required. Spec for predicted tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
        &quot;referenceTrajectory&quot;: { # Spec for trajectory. # Required. Spec for reference tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
      },
    ],
    &quot;metricSpec&quot;: { # Spec for TrajectoryRecall metric - returns a float score based on average recall of individual tool calls. # Required. Spec for TrajectoryRecall metric.
    },
  },
  &quot;trajectorySingleToolUseInput&quot;: { # Instances and metric spec for TrajectorySingleToolUse metric. # Input for trajectory single tool use metric.
    &quot;instances&quot;: [ # Required. Repeated TrajectorySingleToolUse instance.
      { # Spec for TrajectorySingleToolUse instance.
        &quot;predictedTrajectory&quot;: { # Spec for trajectory. # Required. Spec for predicted tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
      },
    ],
    &quot;metricSpec&quot;: { # Spec for TrajectorySingleToolUse metric - returns 1 if tool is present in the predicted trajectory, else 0. # Required. Spec for TrajectorySingleToolUse metric.
      &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name to be checked for in the predicted trajectory.
    },
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for EvaluationService.EvaluateInstances.
  &quot;bleuResults&quot;: { # Results for bleu metric. # Results for bleu metric.
    &quot;bleuMetricValues&quot;: [ # Output only. Bleu metric values.
      { # Bleu metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. Bleu score.
      },
    ],
  },
  &quot;coherenceResult&quot;: { # Spec for coherence result. # Result for coherence metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for coherence score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for coherence score.
    &quot;score&quot;: 3.14, # Output only. Coherence score.
  },
  &quot;cometResult&quot;: { # Spec for Comet result - calculates the comet score for the given instance using the version specified in the spec. # Translation metrics. Result for Comet metric.
    &quot;score&quot;: 3.14, # Output only. Comet score. Range depends on version.
  },
  &quot;exactMatchResults&quot;: { # Results for exact match metric. # Auto metric evaluation results. Results for exact match metric.
    &quot;exactMatchMetricValues&quot;: [ # Output only. Exact match metric values.
      { # Exact match metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. Exact match score.
      },
    ],
  },
  &quot;fluencyResult&quot;: { # Spec for fluency result. # LLM-based metric evaluation result. General text generation metrics, applicable to other categories. Result for fluency metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for fluency score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for fluency score.
    &quot;score&quot;: 3.14, # Output only. Fluency score.
  },
  &quot;fulfillmentResult&quot;: { # Spec for fulfillment result. # Result for fulfillment metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for fulfillment score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for fulfillment score.
    &quot;score&quot;: 3.14, # Output only. Fulfillment score.
  },
  &quot;groundednessResult&quot;: { # Spec for groundedness result. # Result for groundedness metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for groundedness score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for groundedness score.
    &quot;score&quot;: 3.14, # Output only. Groundedness score.
  },
  &quot;metricResults&quot;: [ # Metric results for each instance. The order of the metric results is guaranteed to be the same as the order of the instances in the request.
    { # Result for a single metric on a single instance.
      &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # Output only. The error status for the metric result.
        &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
        &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
          {
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
          },
        ],
        &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
      },
      &quot;explanation&quot;: &quot;A String&quot;, # Output only. The explanation for the metric result.
      &quot;rubricVerdicts&quot;: [ # Output only. For rubric-based metrics, the verdicts for each rubric.
        { # Represents the verdict of an evaluation against a single rubric.
          &quot;evaluatedRubric&quot;: { # Message representing a single testable criterion for evaluation. One input prompt could have multiple rubrics. # Required. The full rubric definition that was evaluated. Storing this ensures the verdict is self-contained and understandable, especially if the original rubric definition changes or was dynamically generated.
            &quot;content&quot;: { # Content of the rubric, defining the testable criteria. # Required. The actual testable criteria for the rubric.
              &quot;property&quot;: { # Defines criteria based on a specific property. # Evaluation criteria based on a specific property.
                &quot;description&quot;: &quot;A String&quot;, # Description of the property being evaluated. Example: &quot;The model&#x27;s response is grammatically correct.&quot;
              },
            },
            &quot;importance&quot;: &quot;A String&quot;, # Optional. The relative importance of this rubric.
            &quot;rubricId&quot;: &quot;A String&quot;, # Unique identifier for the rubric. This ID is used to refer to this rubric, e.g., in RubricVerdict.
            &quot;type&quot;: &quot;A String&quot;, # Optional. A type designator for the rubric, which can inform how it&#x27;s evaluated or interpreted by systems or users. It&#x27;s recommended to use consistent, well-defined, upper snake_case strings. Examples: &quot;SUMMARIZATION_QUALITY&quot;, &quot;SAFETY_HARMFUL_CONTENT&quot;, &quot;INSTRUCTION_ADHERENCE&quot;.
          },
          &quot;reasoning&quot;: &quot;A String&quot;, # Optional. Human-readable reasoning or explanation for the verdict. This can include specific examples or details from the evaluated content that justify the given verdict.
          &quot;verdict&quot;: True or False, # Required. Outcome of the evaluation against the rubric, represented as a boolean. `true` indicates a &quot;Pass&quot;, `false` indicates a &quot;Fail&quot;.
        },
      ],
      &quot;score&quot;: 3.14, # Output only. The score for the metric. Please refer to each metric&#x27;s documentation for the meaning of the score.
    },
  ],
  &quot;metricxResult&quot;: { # Spec for MetricX result - calculates the MetricX score for the given instance using the version specified in the spec. # Result for Metricx metric.
    &quot;score&quot;: 3.14, # Output only. MetricX score. Range depends on version.
  },
  &quot;pairwiseMetricResult&quot;: { # Spec for pairwise metric result. # Result for pairwise metric.
    &quot;customOutput&quot;: { # Spec for custom output. # Output only. Spec for custom output.
      &quot;rawOutputs&quot;: { # Raw output. # Output only. List of raw output strings.
        &quot;rawOutput&quot;: [ # Output only. Raw output string.
          &quot;A String&quot;,
        ],
      },
    },
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for pairwise metric score.
    &quot;pairwiseChoice&quot;: &quot;A String&quot;, # Output only. Pairwise metric choice.
  },
  &quot;pairwiseQuestionAnsweringQualityResult&quot;: { # Spec for pairwise question answering quality result. # Result for pairwise question answering quality metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for question answering quality score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for question answering quality score.
    &quot;pairwiseChoice&quot;: &quot;A String&quot;, # Output only. Pairwise question answering prediction choice.
  },
  &quot;pairwiseSummarizationQualityResult&quot;: { # Spec for pairwise summarization quality result. # Result for pairwise summarization quality metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for summarization quality score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for summarization quality score.
    &quot;pairwiseChoice&quot;: &quot;A String&quot;, # Output only. Pairwise summarization prediction choice.
  },
  &quot;pointwiseMetricResult&quot;: { # Spec for pointwise metric result. # Generic metrics. Result for pointwise metric.
    &quot;customOutput&quot;: { # Spec for custom output. # Output only. Spec for custom output.
      &quot;rawOutputs&quot;: { # Raw output. # Output only. List of raw output strings.
        &quot;rawOutput&quot;: [ # Output only. Raw output string.
          &quot;A String&quot;,
        ],
      },
    },
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for pointwise metric score.
    &quot;score&quot;: 3.14, # Output only. Pointwise metric score.
  },
  &quot;questionAnsweringCorrectnessResult&quot;: { # Spec for question answering correctness result. # Result for question answering correctness metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for question answering correctness score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for question answering correctness score.
    &quot;score&quot;: 3.14, # Output only. Question Answering Correctness score.
  },
  &quot;questionAnsweringHelpfulnessResult&quot;: { # Spec for question answering helpfulness result. # Result for question answering helpfulness metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for question answering helpfulness score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for question answering helpfulness score.
    &quot;score&quot;: 3.14, # Output only. Question Answering Helpfulness score.
  },
  &quot;questionAnsweringQualityResult&quot;: { # Spec for question answering quality result. # Question answering only metrics. Result for question answering quality metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for question answering quality score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for question answering quality score.
    &quot;score&quot;: 3.14, # Output only. Question Answering Quality score.
  },
  &quot;questionAnsweringRelevanceResult&quot;: { # Spec for question answering relevance result. # Result for question answering relevance metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for question answering relevance score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for question answering relevance score.
    &quot;score&quot;: 3.14, # Output only. Question Answering Relevance score.
  },
  &quot;rougeResults&quot;: { # Results for rouge metric. # Results for rouge metric.
    &quot;rougeMetricValues&quot;: [ # Output only. Rouge metric values.
      { # Rouge metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. Rouge score.
      },
    ],
  },
  &quot;rubricBasedInstructionFollowingResult&quot;: { # Result for RubricBasedInstructionFollowing metric. # Result for rubric based instruction following metric.
    &quot;rubricCritiqueResults&quot;: [ # Output only. List of per rubric critique results.
      { # Rubric critique result.
        &quot;rubric&quot;: &quot;A String&quot;, # Output only. Rubric to be evaluated.
        &quot;verdict&quot;: True or False, # Output only. Verdict for the rubric - true if the rubric is met, false otherwise.
      },
    ],
    &quot;score&quot;: 3.14, # Output only. Overall score for the instruction following.
  },
  &quot;safetyResult&quot;: { # Spec for safety result. # Result for safety metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for safety score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for safety score.
    &quot;score&quot;: 3.14, # Output only. Safety score.
  },
  &quot;summarizationHelpfulnessResult&quot;: { # Spec for summarization helpfulness result. # Result for summarization helpfulness metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for summarization helpfulness score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for summarization helpfulness score.
    &quot;score&quot;: 3.14, # Output only. Summarization Helpfulness score.
  },
  &quot;summarizationQualityResult&quot;: { # Spec for summarization quality result. # Summarization only metrics. Result for summarization quality metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for summarization quality score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for summarization quality score.
    &quot;score&quot;: 3.14, # Output only. Summarization Quality score.
  },
  &quot;summarizationVerbosityResult&quot;: { # Spec for summarization verbosity result. # Result for summarization verbosity metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for summarization verbosity score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for summarization verbosity score.
    &quot;score&quot;: 3.14, # Output only. Summarization Verbosity score.
  },
  &quot;toolCallValidResults&quot;: { # Results for tool call valid metric. # Tool call metrics. Results for tool call valid metric.
    &quot;toolCallValidMetricValues&quot;: [ # Output only. Tool call valid metric values.
      { # Tool call valid metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. Tool call valid score.
      },
    ],
  },
  &quot;toolNameMatchResults&quot;: { # Results for tool name match metric. # Results for tool name match metric.
    &quot;toolNameMatchMetricValues&quot;: [ # Output only. Tool name match metric values.
      { # Tool name match metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. Tool name match score.
      },
    ],
  },
  &quot;toolParameterKeyMatchResults&quot;: { # Results for tool parameter key match metric. # Results for tool parameter key match metric.
    &quot;toolParameterKeyMatchMetricValues&quot;: [ # Output only. Tool parameter key match metric values.
      { # Tool parameter key match metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. Tool parameter key match score.
      },
    ],
  },
  &quot;toolParameterKvMatchResults&quot;: { # Results for tool parameter key value match metric. # Results for tool parameter key value match metric.
    &quot;toolParameterKvMatchMetricValues&quot;: [ # Output only. Tool parameter key value match metric values.
      { # Tool parameter key value match metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. Tool parameter key value match score.
      },
    ],
  },
  &quot;trajectoryAnyOrderMatchResults&quot;: { # Results for TrajectoryAnyOrderMatch metric. # Result for trajectory any order match metric.
    &quot;trajectoryAnyOrderMatchMetricValues&quot;: [ # Output only. TrajectoryAnyOrderMatch metric values.
      { # TrajectoryAnyOrderMatch metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. TrajectoryAnyOrderMatch score.
      },
    ],
  },
  &quot;trajectoryExactMatchResults&quot;: { # Results for TrajectoryExactMatch metric. # Result for trajectory exact match metric.
    &quot;trajectoryExactMatchMetricValues&quot;: [ # Output only. TrajectoryExactMatch metric values.
      { # TrajectoryExactMatch metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. TrajectoryExactMatch score.
      },
    ],
  },
  &quot;trajectoryInOrderMatchResults&quot;: { # Results for TrajectoryInOrderMatch metric. # Result for trajectory in order match metric.
    &quot;trajectoryInOrderMatchMetricValues&quot;: [ # Output only. TrajectoryInOrderMatch metric values.
      { # TrajectoryInOrderMatch metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. TrajectoryInOrderMatch score.
      },
    ],
  },
  &quot;trajectoryPrecisionResults&quot;: { # Results for TrajectoryPrecision metric. # Result for trajectory precision metric.
    &quot;trajectoryPrecisionMetricValues&quot;: [ # Output only. TrajectoryPrecision metric values.
      { # TrajectoryPrecision metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. TrajectoryPrecision score.
      },
    ],
  },
  &quot;trajectoryRecallResults&quot;: { # Results for TrajectoryRecall metric. # Results for trajectory recall metric.
    &quot;trajectoryRecallMetricValues&quot;: [ # Output only. TrajectoryRecall metric values.
      { # TrajectoryRecall metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. TrajectoryRecall score.
      },
    ],
  },
  &quot;trajectorySingleToolUseResults&quot;: { # Results for TrajectorySingleToolUse metric. # Results for trajectory single tool use metric.
    &quot;trajectorySingleToolUseMetricValues&quot;: [ # Output only. TrajectorySingleToolUse metric values.
      { # TrajectorySingleToolUse metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. TrajectorySingleToolUse score.
      },
    ],
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="generateInstanceRubrics">generateInstanceRubrics(location, body=None, x__xgafv=None)</code>
  <pre>Generates rubrics for a given prompt. A rubric represents a single testable criterion for evaluation. One input prompt could have multiple rubrics This RPC allows users to get suggested rubrics based on provided prompt, which can then be reviewed and used for subsequent evaluations.

Args:
  location: string, Required. The resource name of the Location to generate rubrics from. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for EvaluationService.GenerateInstanceRubrics.
  &quot;contents&quot;: [ # Required. The prompt to generate rubrics from. For single-turn queries, this is a single instance. For multi-turn queries, this is a repeated field that contains conversation history + latest request.
    { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn.
      &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
        { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
          &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
            &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
            &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
          },
          &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
            &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
            &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
          },
          &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
            &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
            &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
          },
          &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
            &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
            &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
          },
          &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
            &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
          &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
          &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
          &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
            &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
            &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
            &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
          },
        },
      ],
      &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
    },
  ],
  &quot;predefinedRubricGenerationSpec&quot;: { # The spec for a pre-defined metric. # Optional. Specification for using the rubric generation configs of a pre-defined metric, e.g. &quot;generic_quality_v1&quot; and &quot;instruction_following_v1&quot;. Some of the configs may be only used in rubric generation and not supporting evaluation, e.g. &quot;fully_customized_generic_quality_v1&quot;. If this field is set, the `rubric_generation_spec` field will be ignored.
    &quot;metricSpecName&quot;: &quot;A String&quot;, # Required. The name of a pre-defined metric, such as &quot;instruction_following_v1&quot; or &quot;text_quality_v1&quot;.
    &quot;metricSpecParameters&quot;: { # Optional. The parameters needed to run the pre-defined metric.
      &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
    },
  },
  &quot;rubricGenerationSpec&quot;: { # Specification for how rubrics should be generated. # Optional. Specification for how the rubrics should be generated.
    &quot;modelConfig&quot;: { # The configs for autorater. This is applicable to both EvaluateInstances and EvaluateDataset. # Configuration for the model used in rubric generation. Configs including sampling count and base model can be specified here. Flipping is not supported for rubric generation.
      &quot;autoraterModel&quot;: &quot;A String&quot;, # Optional. The fully qualified name of the publisher model or tuned autorater endpoint to use. Publisher model format: `projects/{project}/locations/{location}/publishers/*/models/*` Tuned model endpoint format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
      &quot;flipEnabled&quot;: True or False, # Optional. Default is true. Whether to flip the candidate and baseline responses. This is only applicable to the pairwise metric. If enabled, also provide PairwiseMetricSpec.candidate_response_field_name and PairwiseMetricSpec.baseline_response_field_name. When rendering PairwiseMetricSpec.metric_prompt_template, the candidate and baseline fields will be flipped for half of the samples to reduce bias.
      &quot;samplingCount&quot;: 42, # Optional. Number of samples for each instance in the dataset. If not specified, the default is 4. Minimum value is 1, maximum value is 32.
    },
    &quot;promptTemplate&quot;: &quot;A String&quot;, # Template for the prompt used to generate rubrics. The details should be updated based on the most-recent recipe requirements.
    &quot;rubricContentType&quot;: &quot;A String&quot;, # The type of rubric content to be generated.
    &quot;rubricTypeOntology&quot;: [ # Optional. An optional, pre-defined list of allowed types for generated rubrics. If this field is provided, it implies `include_rubric_type` should be true, and the generated rubric types should be chosen from this ontology.
      &quot;A String&quot;,
    ],
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for EvaluationService.GenerateInstanceRubrics.
  &quot;generatedRubrics&quot;: [ # Output only. A list of generated rubrics.
    { # Message representing a single testable criterion for evaluation. One input prompt could have multiple rubrics.
      &quot;content&quot;: { # Content of the rubric, defining the testable criteria. # Required. The actual testable criteria for the rubric.
        &quot;property&quot;: { # Defines criteria based on a specific property. # Evaluation criteria based on a specific property.
          &quot;description&quot;: &quot;A String&quot;, # Description of the property being evaluated. Example: &quot;The model&#x27;s response is grammatically correct.&quot;
        },
      },
      &quot;importance&quot;: &quot;A String&quot;, # Optional. The relative importance of this rubric.
      &quot;rubricId&quot;: &quot;A String&quot;, # Unique identifier for the rubric. This ID is used to refer to this rubric, e.g., in RubricVerdict.
      &quot;type&quot;: &quot;A String&quot;, # Optional. A type designator for the rubric, which can inform how it&#x27;s evaluated or interpreted by systems or users. It&#x27;s recommended to use consistent, well-defined, upper snake_case strings. Examples: &quot;SUMMARIZATION_QUALITY&quot;, &quot;SAFETY_HARMFUL_CONTENT&quot;, &quot;INSTRUCTION_ADHERENCE&quot;.
    },
  ],
}</pre>
</div>

<div class="method">
    <code class="details" id="generateSyntheticData">generateSyntheticData(location, body=None, x__xgafv=None)</code>
  <pre>Generates synthetic data based on the provided configuration.

Args:
  location: string, Required. The resource name of the Location to run the job. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for DataFoundryService.GenerateSyntheticData.
  &quot;count&quot;: 42, # Required. The number of synthetic examples to generate. For this stateless API, the count is limited to a small number.
  &quot;examples&quot;: [ # Optional. A list of few-shot examples to guide the model&#x27;s output style and format.
    { # Represents a single synthetic example, composed of multiple fields. Used for providing few-shot examples in the request and for returning generated examples in the response.
      &quot;fields&quot;: [ # Required. A list of fields that constitute an example.
        { # Represents a single named field within a SyntheticExample.
          &quot;content&quot;: { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Required. The content of the field.
            &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
              { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
                  &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                  &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                },
                &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
                  &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                  &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                },
                &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
                  &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
                },
                &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                  &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                },
                &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
                  &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
                &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
                &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                  &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                  &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
                  &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                },
              },
            ],
            &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
          },
          &quot;fieldName&quot;: &quot;A String&quot;, # Optional. The name of the field.
        },
      ],
    },
  ],
  &quot;outputFieldSpecs&quot;: [ # Required. The schema of the desired output, defined by a list of fields.
    { # Defines a specification for a single output field.
      &quot;fieldName&quot;: &quot;A String&quot;, # Required. The name of the output field.
      &quot;fieldType&quot;: &quot;A String&quot;, # Optional. The data type of the field. Defaults to CONTENT if not set.
      &quot;guidance&quot;: &quot;A String&quot;, # Optional. Optional, but recommended. Additional guidance specific to this field to provide targeted instructions for the LLM to generate the content of a single output field. While the LLM can sometimes infer content from the field name, providing explicit guidance is preferred.
    },
  ],
  &quot;taskDescription&quot;: { # Defines a generation strategy based on a high-level task description. # Generate data from a high-level task description.
    &quot;taskDescription&quot;: &quot;A String&quot;, # Required. A high-level description of the synthetic data to be generated.
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # The response containing the generated data.
  &quot;syntheticExamples&quot;: [ # A list of generated synthetic examples.
    { # Represents a single synthetic example, composed of multiple fields. Used for providing few-shot examples in the request and for returning generated examples in the response.
      &quot;fields&quot;: [ # Required. A list of fields that constitute an example.
        { # Represents a single named field within a SyntheticExample.
          &quot;content&quot;: { # The base structured datatype containing multi-part content of a message. A `Content` includes a `role` field designating the producer of the `Content` and a `parts` field containing multi-part data that contains the content of the message turn. # Required. The content of the field.
            &quot;parts&quot;: [ # Required. Ordered `Parts` that constitute a single message. Parts may have different IANA MIME types.
              { # A datatype containing media that is part of a multi-part `Content` message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. A `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. Result of executing the [ExecutableCode].
                  &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                  &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                },
                &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is meant to be executed.
                  &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                  &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                },
                &quot;fileData&quot;: { # URI based data. # Optional. URI based data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] with the parameters and their values.
                  &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name].
                },
                &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result output of a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function call. It is used as context to the model.
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                  &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                },
                &quot;inlineData&quot;: { # Content blob. # Optional. Inlined bytes data.
                  &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;text&quot;: &quot;A String&quot;, # Optional. Text part (can be code).
                &quot;thought&quot;: True or False, # Optional. Indicates if the part is thought from the model.
                &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                &quot;videoMetadata&quot;: { # Metadata describes the input video content. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                  &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                  &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value will be 1.0. The fps range is (0.0, 24.0].
                  &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                },
              },
            ],
            &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. Useful to set for multi-turn conversations, otherwise can be left blank or unset.
          },
          &quot;fieldName&quot;: &quot;A String&quot;, # Optional. The name of the field.
        },
      ],
    },
  ],
}</pre>
</div>

<div class="method">
    <code class="details" id="get">get(name, x__xgafv=None)</code>
  <pre>Gets information about a location.

Args:
  name: string, Resource name for the location. (required)
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # A resource that represents a Google Cloud location.
  &quot;displayName&quot;: &quot;A String&quot;, # The friendly name for this location, typically a nearby city name. For example, &quot;Tokyo&quot;.
  &quot;labels&quot;: { # Cross-service attributes for the location. For example {&quot;cloud.googleapis.com/region&quot;: &quot;us-east1&quot;}
    &quot;a_key&quot;: &quot;A String&quot;,
  },
  &quot;locationId&quot;: &quot;A String&quot;, # The canonical id for this location. For example: `&quot;us-east1&quot;`.
  &quot;metadata&quot;: { # Service-specific metadata. For example the available capacity at the given location.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # Resource name for the location, which may vary between implementations. For example: `&quot;projects/example-project/locations/us-east1&quot;`
}</pre>
</div>

<div class="method">
    <code class="details" id="getRagEngineConfig">getRagEngineConfig(name, x__xgafv=None)</code>
  <pre>Gets a RagEngineConfig.

Args:
  name: string, Required. The name of the RagEngineConfig resource. Format: `projects/{project}/locations/{location}/ragEngineConfig` (required)
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Config for RagEngine.
  &quot;name&quot;: &quot;A String&quot;, # Identifier. The name of the RagEngineConfig. Format: `projects/{project}/locations/{location}/ragEngineConfig`
  &quot;ragManagedDbConfig&quot;: { # Configuration message for RagManagedDb used by RagEngine. # The config of the RagManagedDb used by RagEngine.
    &quot;basic&quot;: { # Basic tier is a cost-effective and low compute tier suitable for the following cases: * Experimenting with RagManagedDb. * Small data size. * Latency insensitive workload. * Only using RAG Engine with external vector DBs. NOTE: This is the default tier if not explicitly chosen. # Sets the RagManagedDb to the Basic tier.
    },
    &quot;enterprise&quot;: { # Enterprise tier offers production grade performance along with autoscaling functionality. It is suitable for customers with large amounts of data or performance sensitive workloads. # Sets the RagManagedDb to the Enterprise tier. This is the default tier if not explicitly chosen.
    },
    &quot;scaled&quot;: { # Scaled tier offers production grade performance along with autoscaling functionality. It is suitable for customers with large amounts of data or performance sensitive workloads. # Sets the RagManagedDb to the Scaled tier.
    },
    &quot;unprovisioned&quot;: { # Disables the RAG Engine service and deletes all your data held within this service. This will halt the billing of the service. NOTE: Once deleted the data cannot be recovered. To start using RAG Engine again, you will need to update the tier by calling the UpdateRagEngineConfig API. # Sets the RagManagedDb to the Unprovisioned tier.
    },
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="list">list(name, extraLocationTypes=None, filter=None, pageSize=None, pageToken=None, x__xgafv=None)</code>
  <pre>Lists information about the supported locations for this service.

Args:
  name: string, The resource that owns the locations collection, if applicable. (required)
  extraLocationTypes: string, Optional. Do not use this field. It is unsupported and is ignored unless explicitly documented otherwise. This is primarily for internal usage. (repeated)
  filter: string, A filter to narrow down results to a preferred subset. The filtering language accepts strings like `&quot;displayName=tokyo&quot;`, and is documented in more detail in [AIP-160](https://google.aip.dev/160).
  pageSize: integer, The maximum number of results to return. If not set, the service selects a default.
  pageToken: string, A page token received from the `next_page_token` field in the response. Send that page token to receive the subsequent page.
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # The response message for Locations.ListLocations.
  &quot;locations&quot;: [ # A list of locations that matches the specified filter in the request.
    { # A resource that represents a Google Cloud location.
      &quot;displayName&quot;: &quot;A String&quot;, # The friendly name for this location, typically a nearby city name. For example, &quot;Tokyo&quot;.
      &quot;labels&quot;: { # Cross-service attributes for the location. For example {&quot;cloud.googleapis.com/region&quot;: &quot;us-east1&quot;}
        &quot;a_key&quot;: &quot;A String&quot;,
      },
      &quot;locationId&quot;: &quot;A String&quot;, # The canonical id for this location. For example: `&quot;us-east1&quot;`.
      &quot;metadata&quot;: { # Service-specific metadata. For example the available capacity at the given location.
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
      &quot;name&quot;: &quot;A String&quot;, # Resource name for the location, which may vary between implementations. For example: `&quot;projects/example-project/locations/us-east1&quot;`
    },
  ],
  &quot;nextPageToken&quot;: &quot;A String&quot;, # The standard List next-page token.
}</pre>
</div>

<div class="method">
    <code class="details" id="list_next">list_next()</code>
  <pre>Retrieves the next page of results.

        Args:
          previous_request: The request for the previous page. (required)
          previous_response: The response from the request for the previous page. (required)

        Returns:
          A request object that you can call &#x27;execute()&#x27; on to request the next
          page. Returns None if there are no more items in the collection.
        </pre>
</div>

<div class="method">
    <code class="details" id="recommendSpec">recommendSpec(parent, body=None, x__xgafv=None)</code>
  <pre>Gets a Model&#x27;s spec recommendations. This API is called by UI, SDK, and internal.

Args:
  parent: string, Required. The resource name of the Location from which to recommend specs. The users must have permission to make a call in the project. Format: `projects/{project}/locations/{location}`. (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for ModelService.RecommendSpec.
  &quot;checkMachineAvailability&quot;: True or False, # Optional. If true, check machine availability for the recommended regions. Only return the machine spec in regions where the machine is available.
  &quot;checkUserQuota&quot;: True or False, # Optional. If true, check user quota for the recommended regions. Returns all the machine spec in regions they are available, and also the user quota state for each machine type in each region.
  &quot;gcsUri&quot;: &quot;A String&quot;, # Required. The Google Cloud Storage URI of the custom model, storing weights and config files (which can be used to infer the base model).
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for ModelService.RecommendSpec.
  &quot;baseModel&quot;: &quot;A String&quot;, # Output only. The base model used to finetune the custom model.
  &quot;recommendations&quot;: [ # Output only. Recommendations of deployment options for the given custom weights model.
    { # Recommendation of one deployment option for the given custom weights model in one region. Contains the machine and container spec, and user accelerator quota state.
      &quot;region&quot;: &quot;A String&quot;, # The region for the deployment spec (machine).
      &quot;spec&quot;: { # A machine and model container spec. # Output only. The machine and model container specs.
        &quot;containerSpec&quot;: { # Specification of a container for serving predictions. Some fields in this message correspond to fields in the [Kubernetes Container v1 core specification](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). # Output only. The model container spec.
          &quot;args&quot;: [ # Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container&#x27;s [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify this field as an array of executable and arguments, similar to a Docker `CMD`&#x27;s &quot;default parameters&quot; form. If you don&#x27;t specify this field but do specify the command field, then the command from the `command` field runs without any additional arguments. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container&#x27;s `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). If you don&#x27;t specify this field and don&#x27;t specify the `command` field, then the container&#x27;s [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd) and `CMD` determine what runs based on their default behavior. See the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `args` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
            &quot;A String&quot;,
          ],
          &quot;command&quot;: [ # Immutable. Specifies the command that runs when the container starts. This overrides the container&#x27;s [ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint). Specify this field as an array of executable and arguments, similar to a Docker `ENTRYPOINT`&#x27;s &quot;exec&quot; form, not its &quot;shell&quot; form. If you do not specify this field, then the container&#x27;s `ENTRYPOINT` runs, in conjunction with the args field or the container&#x27;s [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), if either exists. If this field is not specified and the container does not have an `ENTRYPOINT`, then refer to the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). If you specify this field, then you can also specify the `args` field to provide additional arguments for this command. However, if you specify this field, then the container&#x27;s `CMD` is ignored. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container&#x27;s `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `command` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
            &quot;A String&quot;,
          ],
          &quot;deploymentTimeout&quot;: &quot;A String&quot;, # Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
          &quot;env&quot;: [ # Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables. Additionally, the command and args fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable `VAR_2` to have the value `foo bar`: ```json [ { &quot;name&quot;: &quot;VAR_1&quot;, &quot;value&quot;: &quot;foo&quot; }, { &quot;name&quot;: &quot;VAR_2&quot;, &quot;value&quot;: &quot;$(VAR_1) bar&quot; } ] ``` If you switch the order of the variables in the example, then the expansion does not occur. This field corresponds to the `env` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
            { # Represents an environment variable present in a Container or Python Module.
              &quot;name&quot;: &quot;A String&quot;, # Required. Name of the environment variable. Must be a valid C identifier.
              &quot;value&quot;: &quot;A String&quot;, # Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not.
            },
          ],
          &quot;grpcPorts&quot;: [ # Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, gRPC requests to the container will be disabled. Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers v1 core API.
            { # Represents a network port in a container.
              &quot;containerPort&quot;: 42, # The number of the port to expose on the pod&#x27;s IP address. Must be a valid port number, between 1 and 65535 inclusive.
            },
          ],
          &quot;healthProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes readiness probe.
            &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
              &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
                &quot;A String&quot;,
              ],
            },
            &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
            &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
              &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
              &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
            },
            &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
              &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
              &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
                { # HttpHeader describes a custom header to be used in HTTP probes
                  &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
                  &quot;value&quot;: &quot;A String&quot;, # The header field value
                },
              ],
              &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
              &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
              &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
            },
            &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
            &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
            &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
            &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
              &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
              &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
            },
            &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
          },
          &quot;healthRoute&quot;: &quot;A String&quot;, # Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container&#x27;s IP address and port to check that the container is healthy. Read more about [health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#health). For example, if you set this field to `/bar`, then Vertex AI intermittently sends a GET request to the `/bar` path on the port of your container specified by the first value of this `ModelContainerSpec`&#x27;s ports field. If you don&#x27;t specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
          &quot;imageUri&quot;: &quot;A String&quot;, # Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the [container publishing requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#publishing), including permissions requirements for the Vertex AI Service Agent. The container image is ingested upon ModelService.UploadModel, stored internally, and this original path is afterwards not used. To learn about the requirements for the Docker image itself, see [Custom container requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#). You can use the URI to one of Vertex AI&#x27;s [pre-built container images for prediction](https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers) in this field.
          &quot;invokeRoutePrefix&quot;: &quot;A String&quot;, # Immutable. Invoke route prefix for the custom container. &quot;/*&quot; is the only supported value right now. By setting this field, any non-root route on this model will be accessible with invoke http call eg: &quot;/invoke/foo/bar&quot;, however the [PredictionService.Invoke] RPC is not supported yet. Only one of `predict_route` or `invoke_route_prefix` can be set, and we default to using `predict_route` if this field is not set. If this field is set, the Model can only be deployed to dedicated endpoint.
          &quot;livenessProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes liveness probe.
            &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
              &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
                &quot;A String&quot;,
              ],
            },
            &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
            &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
              &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
              &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
            },
            &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
              &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
              &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
                { # HttpHeader describes a custom header to be used in HTTP probes
                  &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
                  &quot;value&quot;: &quot;A String&quot;, # The header field value
                },
              ],
              &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
              &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
              &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
            },
            &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
            &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
            &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
            &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
              &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
              &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
            },
            &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
          },
          &quot;ports&quot;: [ # Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends [liveness and health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#liveness) to this port. If you do not specify this field, it defaults to following value: ```json [ { &quot;containerPort&quot;: 8080 } ] ``` Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
            { # Represents a network port in a container.
              &quot;containerPort&quot;: 42, # The number of the port to expose on the pod&#x27;s IP address. Must be a valid port number, between 1 and 65535 inclusive.
            },
          ],
          &quot;predictRoute&quot;: &quot;A String&quot;, # Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using projects.locations.endpoints.predict to this path on the container&#x27;s IP address and port. Vertex AI then returns the container&#x27;s response in the API response. For example, if you set this field to `/foo`, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the `/foo` path on the port of your container specified by the first value of this `ModelContainerSpec`&#x27;s ports field. If you don&#x27;t specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
          &quot;sharedMemorySizeMb&quot;: &quot;A String&quot;, # Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.
          &quot;startupProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes startup probe.
            &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
              &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
                &quot;A String&quot;,
              ],
            },
            &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
            &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
              &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
              &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
            },
            &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
              &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
              &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
                { # HttpHeader describes a custom header to be used in HTTP probes
                  &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
                  &quot;value&quot;: &quot;A String&quot;, # The header field value
                },
              ],
              &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
              &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
              &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
            },
            &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
            &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
            &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
            &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
              &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
              &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
            },
            &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
          },
        },
        &quot;machineSpec&quot;: { # Specification of a single machine. # Output only. The machine spec.
          &quot;acceleratorCount&quot;: 42, # The number of accelerators to attach to the machine.
          &quot;acceleratorType&quot;: &quot;A String&quot;, # Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
          &quot;gpuPartitionSize&quot;: &quot;A String&quot;, # Optional. Immutable. The Nvidia GPU partition size. When specified, the requested accelerators will be partitioned into smaller GPU partitions. For example, if the request is for 8 units of NVIDIA A100 GPUs, and gpu_partition_size=&quot;1g.10gb&quot;, the service will create 8 * 7 = 56 partitioned MIG instances. The partition size must be a value supported by the requested accelerator. Refer to [Nvidia GPU Partitioning](https://cloud.google.com/kubernetes-engine/docs/how-to/gpus-multi#multi-instance_gpu_partitions) for the available partition sizes. If set, the accelerator_count should be set to 1.
          &quot;machineType&quot;: &quot;A String&quot;, # Immutable. The type of the machine. See the [list of machine types supported for prediction](https://cloud.google.com/vertex-ai/docs/predictions/configure-compute#machine-types) See the [list of machine types supported for custom training](https://cloud.google.com/vertex-ai/docs/training/configure-compute#machine-types). For DeployedModel this field is optional, and the default value is `n1-standard-2`. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
          &quot;multihostGpuNodeCount&quot;: 42, # Optional. Immutable. The number of nodes per replica for multihost GPU deployments.
          &quot;reservationAffinity&quot;: { # A ReservationAffinity can be used to configure a Vertex AI resource (e.g., a DeployedModel) to draw its Compute Engine resources from a Shared Reservation, or exclusively from on-demand capacity. # Optional. Immutable. Configuration controlling how this resource pool consumes reservation.
            &quot;key&quot;: &quot;A String&quot;, # Optional. Corresponds to the label key of a reservation resource. To target a SPECIFIC_RESERVATION by name, use `compute.googleapis.com/reservation-name` as the key and specify the name of your reservation as its value.
            &quot;reservationAffinityType&quot;: &quot;A String&quot;, # Required. Specifies the reservation affinity type.
            &quot;values&quot;: [ # Optional. Corresponds to the label values of a reservation resource. This must be the full resource name of the reservation or reservation block.
              &quot;A String&quot;,
            ],
          },
          &quot;tpuTopology&quot;: &quot;A String&quot;, # Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: &quot;2x2x1&quot;).
        },
      },
      &quot;userQuotaState&quot;: &quot;A String&quot;, # Output only. The user accelerator quota state.
    },
  ],
  &quot;specs&quot;: [ # Output only. The machine and model container specs.
    { # A machine and model container spec.
      &quot;containerSpec&quot;: { # Specification of a container for serving predictions. Some fields in this message correspond to fields in the [Kubernetes Container v1 core specification](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). # Output only. The model container spec.
        &quot;args&quot;: [ # Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container&#x27;s [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify this field as an array of executable and arguments, similar to a Docker `CMD`&#x27;s &quot;default parameters&quot; form. If you don&#x27;t specify this field but do specify the command field, then the command from the `command` field runs without any additional arguments. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container&#x27;s `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). If you don&#x27;t specify this field and don&#x27;t specify the `command` field, then the container&#x27;s [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd) and `CMD` determine what runs based on their default behavior. See the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `args` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
          &quot;A String&quot;,
        ],
        &quot;command&quot;: [ # Immutable. Specifies the command that runs when the container starts. This overrides the container&#x27;s [ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint). Specify this field as an array of executable and arguments, similar to a Docker `ENTRYPOINT`&#x27;s &quot;exec&quot; form, not its &quot;shell&quot; form. If you do not specify this field, then the container&#x27;s `ENTRYPOINT` runs, in conjunction with the args field or the container&#x27;s [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), if either exists. If this field is not specified and the container does not have an `ENTRYPOINT`, then refer to the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). If you specify this field, then you can also specify the `args` field to provide additional arguments for this command. However, if you specify this field, then the container&#x27;s `CMD` is ignored. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container&#x27;s `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `command` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
          &quot;A String&quot;,
        ],
        &quot;deploymentTimeout&quot;: &quot;A String&quot;, # Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
        &quot;env&quot;: [ # Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables. Additionally, the command and args fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable `VAR_2` to have the value `foo bar`: ```json [ { &quot;name&quot;: &quot;VAR_1&quot;, &quot;value&quot;: &quot;foo&quot; }, { &quot;name&quot;: &quot;VAR_2&quot;, &quot;value&quot;: &quot;$(VAR_1) bar&quot; } ] ``` If you switch the order of the variables in the example, then the expansion does not occur. This field corresponds to the `env` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
          { # Represents an environment variable present in a Container or Python Module.
            &quot;name&quot;: &quot;A String&quot;, # Required. Name of the environment variable. Must be a valid C identifier.
            &quot;value&quot;: &quot;A String&quot;, # Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not.
          },
        ],
        &quot;grpcPorts&quot;: [ # Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, gRPC requests to the container will be disabled. Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers v1 core API.
          { # Represents a network port in a container.
            &quot;containerPort&quot;: 42, # The number of the port to expose on the pod&#x27;s IP address. Must be a valid port number, between 1 and 65535 inclusive.
          },
        ],
        &quot;healthProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes readiness probe.
          &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
            &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
              &quot;A String&quot;,
            ],
          },
          &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
          &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
            &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
            &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
          },
          &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
            &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
            &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
              { # HttpHeader describes a custom header to be used in HTTP probes
                &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
                &quot;value&quot;: &quot;A String&quot;, # The header field value
              },
            ],
            &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
            &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
            &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
          },
          &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
          &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
          &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
          &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
            &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
            &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
          },
          &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
        },
        &quot;healthRoute&quot;: &quot;A String&quot;, # Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container&#x27;s IP address and port to check that the container is healthy. Read more about [health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#health). For example, if you set this field to `/bar`, then Vertex AI intermittently sends a GET request to the `/bar` path on the port of your container specified by the first value of this `ModelContainerSpec`&#x27;s ports field. If you don&#x27;t specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
        &quot;imageUri&quot;: &quot;A String&quot;, # Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the [container publishing requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#publishing), including permissions requirements for the Vertex AI Service Agent. The container image is ingested upon ModelService.UploadModel, stored internally, and this original path is afterwards not used. To learn about the requirements for the Docker image itself, see [Custom container requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#). You can use the URI to one of Vertex AI&#x27;s [pre-built container images for prediction](https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers) in this field.
        &quot;invokeRoutePrefix&quot;: &quot;A String&quot;, # Immutable. Invoke route prefix for the custom container. &quot;/*&quot; is the only supported value right now. By setting this field, any non-root route on this model will be accessible with invoke http call eg: &quot;/invoke/foo/bar&quot;, however the [PredictionService.Invoke] RPC is not supported yet. Only one of `predict_route` or `invoke_route_prefix` can be set, and we default to using `predict_route` if this field is not set. If this field is set, the Model can only be deployed to dedicated endpoint.
        &quot;livenessProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes liveness probe.
          &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
            &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
              &quot;A String&quot;,
            ],
          },
          &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
          &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
            &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
            &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
          },
          &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
            &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
            &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
              { # HttpHeader describes a custom header to be used in HTTP probes
                &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
                &quot;value&quot;: &quot;A String&quot;, # The header field value
              },
            ],
            &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
            &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
            &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
          },
          &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
          &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
          &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
          &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
            &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
            &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
          },
          &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
        },
        &quot;ports&quot;: [ # Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends [liveness and health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#liveness) to this port. If you do not specify this field, it defaults to following value: ```json [ { &quot;containerPort&quot;: 8080 } ] ``` Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
          { # Represents a network port in a container.
            &quot;containerPort&quot;: 42, # The number of the port to expose on the pod&#x27;s IP address. Must be a valid port number, between 1 and 65535 inclusive.
          },
        ],
        &quot;predictRoute&quot;: &quot;A String&quot;, # Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using projects.locations.endpoints.predict to this path on the container&#x27;s IP address and port. Vertex AI then returns the container&#x27;s response in the API response. For example, if you set this field to `/foo`, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the `/foo` path on the port of your container specified by the first value of this `ModelContainerSpec`&#x27;s ports field. If you don&#x27;t specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
        &quot;sharedMemorySizeMb&quot;: &quot;A String&quot;, # Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.
        &quot;startupProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes startup probe.
          &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
            &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
              &quot;A String&quot;,
            ],
          },
          &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
          &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
            &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
            &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
          },
          &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
            &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
            &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
              { # HttpHeader describes a custom header to be used in HTTP probes
                &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
                &quot;value&quot;: &quot;A String&quot;, # The header field value
              },
            ],
            &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
            &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
            &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
          },
          &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
          &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
          &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
          &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
            &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
            &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
          },
          &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
        },
      },
      &quot;machineSpec&quot;: { # Specification of a single machine. # Output only. The machine spec.
        &quot;acceleratorCount&quot;: 42, # The number of accelerators to attach to the machine.
        &quot;acceleratorType&quot;: &quot;A String&quot;, # Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
        &quot;gpuPartitionSize&quot;: &quot;A String&quot;, # Optional. Immutable. The Nvidia GPU partition size. When specified, the requested accelerators will be partitioned into smaller GPU partitions. For example, if the request is for 8 units of NVIDIA A100 GPUs, and gpu_partition_size=&quot;1g.10gb&quot;, the service will create 8 * 7 = 56 partitioned MIG instances. The partition size must be a value supported by the requested accelerator. Refer to [Nvidia GPU Partitioning](https://cloud.google.com/kubernetes-engine/docs/how-to/gpus-multi#multi-instance_gpu_partitions) for the available partition sizes. If set, the accelerator_count should be set to 1.
        &quot;machineType&quot;: &quot;A String&quot;, # Immutable. The type of the machine. See the [list of machine types supported for prediction](https://cloud.google.com/vertex-ai/docs/predictions/configure-compute#machine-types) See the [list of machine types supported for custom training](https://cloud.google.com/vertex-ai/docs/training/configure-compute#machine-types). For DeployedModel this field is optional, and the default value is `n1-standard-2`. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
        &quot;multihostGpuNodeCount&quot;: 42, # Optional. Immutable. The number of nodes per replica for multihost GPU deployments.
        &quot;reservationAffinity&quot;: { # A ReservationAffinity can be used to configure a Vertex AI resource (e.g., a DeployedModel) to draw its Compute Engine resources from a Shared Reservation, or exclusively from on-demand capacity. # Optional. Immutable. Configuration controlling how this resource pool consumes reservation.
          &quot;key&quot;: &quot;A String&quot;, # Optional. Corresponds to the label key of a reservation resource. To target a SPECIFIC_RESERVATION by name, use `compute.googleapis.com/reservation-name` as the key and specify the name of your reservation as its value.
          &quot;reservationAffinityType&quot;: &quot;A String&quot;, # Required. Specifies the reservation affinity type.
          &quot;values&quot;: [ # Optional. Corresponds to the label values of a reservation resource. This must be the full resource name of the reservation or reservation block.
            &quot;A String&quot;,
          ],
        },
        &quot;tpuTopology&quot;: &quot;A String&quot;, # Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: &quot;2x2x1&quot;).
      },
    },
  ],
}</pre>
</div>

<div class="method">
    <code class="details" id="retrieveContexts">retrieveContexts(parent, body=None, x__xgafv=None)</code>
  <pre>Retrieves relevant contexts for a query.

Args:
  parent: string, Required. The resource name of the Location from which to retrieve RagContexts. The users must have permission to make a call in the project. Format: `projects/{project}/locations/{location}`. (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for VertexRagService.RetrieveContexts.
  &quot;query&quot;: { # A query to retrieve relevant contexts. # Required. Single RAG retrieve query.
    &quot;ragRetrievalConfig&quot;: { # Specifies the context retrieval config. # Optional. The retrieval config for the query.
      &quot;filter&quot;: { # Config for filters. # Optional. Config for filters.
        &quot;metadataFilter&quot;: &quot;A String&quot;, # Optional. String for metadata filtering.
        &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
        &quot;vectorSimilarityThreshold&quot;: 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
      },
      &quot;hybridSearch&quot;: { # Config for Hybrid Search. # Optional. Config for Hybrid Search.
        &quot;alpha&quot;: 3.14, # Optional. Alpha value controls the weight between dense and sparse vector search results. The range is [0, 1], while 0 means sparse vector search only and 1 means dense vector search only. The default value is 0.5 which balances sparse and dense vector search equally.
      },
      &quot;ranking&quot;: { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
        &quot;llmRanker&quot;: { # Config for LlmRanker. # Optional. Config for LlmRanker.
          &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
        },
        &quot;rankService&quot;: { # Config for Rank Service. # Optional. Config for Rank Service.
          &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
        },
      },
      &quot;topK&quot;: 42, # Optional. The number of contexts to retrieve.
    },
    &quot;ranking&quot;: { # Configurations for hybrid search results ranking. # Optional. Configurations for hybrid search results ranking.
      &quot;alpha&quot;: 3.14, # Optional. Alpha value controls the weight between dense and sparse vector search results. The range is [0, 1], while 0 means sparse vector search only and 1 means dense vector search only. The default value is 0.5 which balances sparse and dense vector search equally.
    },
    &quot;similarityTopK&quot;: 42, # Optional. The number of contexts to retrieve.
    &quot;text&quot;: &quot;A String&quot;, # Optional. The query in text format to get relevant contexts.
  },
  &quot;vertexRagStore&quot;: { # The data source for Vertex RagStore. # The data source for Vertex RagStore.
    &quot;ragCorpora&quot;: [ # Optional. Deprecated. Please use rag_resources to specify the data source.
      &quot;A String&quot;,
    ],
    &quot;ragResources&quot;: [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
      { # The definition of the Rag resource.
        &quot;ragCorpus&quot;: &quot;A String&quot;, # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
        &quot;ragFileIds&quot;: [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
          &quot;A String&quot;,
        ],
      },
    ],
    &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only return contexts with vector distance smaller than the threshold.
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for VertexRagService.RetrieveContexts.
  &quot;contexts&quot;: { # Relevant contexts for one query. # The contexts of the query.
    &quot;contexts&quot;: [ # All its contexts.
      { # A context of the query.
        &quot;chunk&quot;: { # A RagChunk includes the content of a chunk of a RagFile, and associated metadata. # Context of the retrieved chunk.
          &quot;pageSpan&quot;: { # Represents where the chunk starts and ends in the document. # If populated, represents where the chunk starts and ends in the document.
            &quot;firstPage&quot;: 42, # Page where chunk starts in the document. Inclusive. 1-indexed.
            &quot;lastPage&quot;: 42, # Page where chunk ends in the document. Inclusive. 1-indexed.
          },
          &quot;text&quot;: &quot;A String&quot;, # The content of the chunk.
        },
        &quot;distance&quot;: 3.14, # The distance between the query dense embedding vector and the context text vector.
        &quot;score&quot;: 3.14, # According to the underlying Vector DB and the selected metric type, the score can be either the distance or the similarity between the query and the context and its range depends on the metric type. For example, if the metric type is COSINE_DISTANCE, it represents the distance between the query and the context. The larger the distance, the less relevant the context is to the query. The range is [0, 2], while 0 means the most relevant and 2 means the least relevant.
        &quot;sourceDisplayName&quot;: &quot;A String&quot;, # The file display name.
        &quot;sourceUri&quot;: &quot;A String&quot;, # If the file is imported from Cloud Storage or Google Drive, source_uri will be original file URI in Cloud Storage or Google Drive; if file is uploaded, source_uri will be file display name.
        &quot;sparseDistance&quot;: 3.14, # The distance between the query sparse embedding vector and the context text vector.
        &quot;text&quot;: &quot;A String&quot;, # The text chunk.
      },
    ],
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="updateRagEngineConfig">updateRagEngineConfig(name, body=None, x__xgafv=None)</code>
  <pre>Updates a RagEngineConfig.

Args:
  name: string, Identifier. The name of the RagEngineConfig. Format: `projects/{project}/locations/{location}/ragEngineConfig` (required)
  body: object, The request body.
    The object takes the form of:

{ # Config for RagEngine.
  &quot;name&quot;: &quot;A String&quot;, # Identifier. The name of the RagEngineConfig. Format: `projects/{project}/locations/{location}/ragEngineConfig`
  &quot;ragManagedDbConfig&quot;: { # Configuration message for RagManagedDb used by RagEngine. # The config of the RagManagedDb used by RagEngine.
    &quot;basic&quot;: { # Basic tier is a cost-effective and low compute tier suitable for the following cases: * Experimenting with RagManagedDb. * Small data size. * Latency insensitive workload. * Only using RAG Engine with external vector DBs. NOTE: This is the default tier if not explicitly chosen. # Sets the RagManagedDb to the Basic tier.
    },
    &quot;enterprise&quot;: { # Enterprise tier offers production grade performance along with autoscaling functionality. It is suitable for customers with large amounts of data or performance sensitive workloads. # Sets the RagManagedDb to the Enterprise tier. This is the default tier if not explicitly chosen.
    },
    &quot;scaled&quot;: { # Scaled tier offers production grade performance along with autoscaling functionality. It is suitable for customers with large amounts of data or performance sensitive workloads. # Sets the RagManagedDb to the Scaled tier.
    },
    &quot;unprovisioned&quot;: { # Disables the RAG Engine service and deletes all your data held within this service. This will halt the billing of the service. NOTE: Once deleted the data cannot be recovered. To start using RAG Engine again, you will need to update the tier by calling the UpdateRagEngineConfig API. # Sets the RagManagedDb to the Unprovisioned tier.
    },
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # This resource represents a long-running operation that is the result of a network API call.
  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  &quot;response&quot;: { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>

</body></html>