1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
|
<html><body>
<style>
body, h1, h2, h3, div, span, p, pre, a {
margin: 0;
padding: 0;
border: 0;
font-weight: inherit;
font-style: inherit;
font-size: 100%;
font-family: inherit;
vertical-align: baseline;
}
body {
font-size: 13px;
padding: 1em;
}
h1 {
font-size: 26px;
margin-bottom: 1em;
}
h2 {
font-size: 24px;
margin-bottom: 1em;
}
h3 {
font-size: 20px;
margin-bottom: 1em;
margin-top: 1em;
}
pre, code {
line-height: 1.5;
font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}
pre {
margin-top: 0.5em;
}
h1, h2, h3, p {
font-family: Arial, sans serif;
}
h1, h2, h3 {
border-bottom: solid #CCC 1px;
}
.toc_element {
margin-top: 0.5em;
}
.firstline {
margin-left: 2 em;
}
.method {
margin-top: 1em;
border: solid 1px #CCC;
padding: 1em;
background: #EEE;
}
.details {
font-weight: bold;
font-size: 14px;
}
</style>
<h1><a href="clouddebugger_v2.html">Cloud Debugger API (Deprecated)</a> . <a href="clouddebugger_v2.debugger.html">debugger</a> . <a href="clouddebugger_v2.debugger.debuggees.html">debuggees</a> . <a href="clouddebugger_v2.debugger.debuggees.breakpoints.html">breakpoints</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
<code><a href="#close">close()</a></code></p>
<p class="firstline">Close httplib2 connections.</p>
<p class="toc_element">
<code><a href="#delete">delete(debuggeeId, breakpointId, clientVersion=None, x__xgafv=None)</a></code></p>
<p class="firstline">Deletes the breakpoint from the debuggee.</p>
<p class="toc_element">
<code><a href="#get">get(debuggeeId, breakpointId, clientVersion=None, x__xgafv=None)</a></code></p>
<p class="firstline">Gets breakpoint information.</p>
<p class="toc_element">
<code><a href="#list">list(debuggeeId, action_value=None, clientVersion=None, includeAllUsers=None, includeInactive=None, stripResults=None, waitToken=None, x__xgafv=None)</a></code></p>
<p class="firstline">Lists all breakpoints for the debuggee.</p>
<p class="toc_element">
<code><a href="#set">set(debuggeeId, body=None, canaryOption=None, clientVersion=None, x__xgafv=None)</a></code></p>
<p class="firstline">Sets the breakpoint to the debuggee.</p>
<h3>Method Details</h3>
<div class="method">
<code class="details" id="close">close()</code>
<pre>Close httplib2 connections.</pre>
</div>
<div class="method">
<code class="details" id="delete">delete(debuggeeId, breakpointId, clientVersion=None, x__xgafv=None)</code>
<pre>Deletes the breakpoint from the debuggee.
Args:
debuggeeId: string, Required. ID of the debuggee whose breakpoint to delete. (required)
breakpointId: string, Required. ID of the breakpoint to delete. (required)
clientVersion: string, Required. The client version making the call. Schema: `domain/type/version` (e.g., `google.com/intellij/v1`).
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); }
}</pre>
</div>
<div class="method">
<code class="details" id="get">get(debuggeeId, breakpointId, clientVersion=None, x__xgafv=None)</code>
<pre>Gets breakpoint information.
Args:
debuggeeId: string, Required. ID of the debuggee whose breakpoint to get. (required)
breakpointId: string, Required. ID of the breakpoint to get. (required)
clientVersion: string, Required. The client version making the call. Schema: `domain/type/version` (e.g., `google.com/intellij/v1`).
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # Response for getting breakpoint information.
"breakpoint": { # ------------------------------------------------------------------------------ ## Breakpoint (the resource) Represents the breakpoint specification, status and results. # Complete breakpoint state. The fields `id` and `location` are guaranteed to be set.
"action": "A String", # Action that the agent should perform when the code at the breakpoint location is hit.
"canaryExpireTime": "A String", # The deadline for the breakpoint to stay in CANARY_ACTIVE state. The value is meaningless when the breakpoint is not in CANARY_ACTIVE state.
"condition": "A String", # Condition that triggers the breakpoint. The condition is a compound boolean expression composed using expressions in a programming language at the source location.
"createTime": "A String", # Time this breakpoint was created by the server in seconds resolution.
"evaluatedExpressions": [ # Values of evaluated expressions at breakpoint time. The evaluated expressions appear in exactly the same order they are listed in the `expressions` field. The `name` field holds the original expression text, the `value` or `members` field holds the result of the evaluated expression. If the expression cannot be evaluated, the `status` inside the `Variable` will indicate an error and contain the error text.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
"expressions": [ # List of read-only expressions to evaluate at the breakpoint location. The expressions are composed using expressions in the programming language at the source location. If the breakpoint action is `LOG`, the evaluated expressions are included in log statements.
"A String",
],
"finalTime": "A String", # Time this breakpoint was finalized as seen by the server in seconds resolution.
"id": "A String", # Breakpoint identifier, unique in the scope of the debuggee.
"isFinalState": True or False, # When true, indicates that this is a final result and the breakpoint state will not change from here on.
"labels": { # A set of custom breakpoint properties, populated by the agent, to be displayed to the user.
"a_key": "A String",
},
"location": { # Represents a location in the source code. # Breakpoint source location.
"column": 42, # Column within a line. The first column in a line as the value `1`. Agents that do not support setting breakpoints on specific columns ignore this field.
"line": 42, # Line inside the file. The first line in the file has the value `1`.
"path": "A String", # Path to the source file within the source context of the target binary.
},
"logLevel": "A String", # Indicates the severity of the log. Only relevant when action is `LOG`.
"logMessageFormat": "A String", # Only relevant when action is `LOG`. Defines the message to log when the breakpoint hits. The message may include parameter placeholders `$0`, `$1`, etc. These placeholders are replaced with the evaluated value of the appropriate expression. Expressions not referenced in `log_message_format` are not logged. Example: `Message received, id = $0, count = $1` with `expressions` = `[ message.id, message.count ]`.
"stackFrames": [ # The stack at breakpoint time, where stack_frames[0] represents the most recently entered function.
{ # Represents a stack frame context.
"arguments": [ # Set of arguments passed to this function. Note that this might not be populated for all stack frames.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
"function": "A String", # Demangled function name at the call site.
"locals": [ # Set of local variables at the stack frame location. Note that this might not be populated for all stack frames.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
"location": { # Represents a location in the source code. # Source location of the call site.
"column": 42, # Column within a line. The first column in a line as the value `1`. Agents that do not support setting breakpoints on specific columns ignore this field.
"line": 42, # Line inside the file. The first line in the file has the value `1`.
"path": "A String", # Path to the source file within the source context of the target binary.
},
},
],
"state": "A String", # The current state of the breakpoint.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Breakpoint status. The status includes an error flag and a human readable message. This field is usually unset. The message can be either informational or an error message. Regardless, clients should always display the text message back to the user. Error status indicates complete failure of the breakpoint. Example (non-final state): `Still loading symbols...` Examples (final state): * `Invalid line number` referring to location * `Field f not found in class C` referring to condition
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"userEmail": "A String", # E-mail address of the user that created this breakpoint
"variableTable": [ # The `variable_table` exists to aid with computation, memory and network traffic optimization. It enables storing a variable once and reference it from multiple variables, including variables stored in the `variable_table` itself. For example, the same `this` object, which may appear at many levels of the stack, can have all of its data stored once in this table. The stack frame variables then would hold only a reference to it. The variable `var_table_index` field is an index into this repeated field. The stored objects are nameless and get their name from the referencing variable. The effective variable is a merge of the referencing variable and the referenced variable.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
},
}</pre>
</div>
<div class="method">
<code class="details" id="list">list(debuggeeId, action_value=None, clientVersion=None, includeAllUsers=None, includeInactive=None, stripResults=None, waitToken=None, x__xgafv=None)</code>
<pre>Lists all breakpoints for the debuggee.
Args:
debuggeeId: string, Required. ID of the debuggee whose breakpoints to list. (required)
action_value: string, Only breakpoints with the specified action will pass the filter.
Allowed values
CAPTURE - Capture stack frame and variables and update the breakpoint. The data is only captured once. After that the breakpoint is set in a final state.
LOG - Log each breakpoint hit. The breakpoint remains active until deleted or expired.
clientVersion: string, Required. The client version making the call. Schema: `domain/type/version` (e.g., `google.com/intellij/v1`).
includeAllUsers: boolean, When set to `true`, the response includes the list of breakpoints set by any user. Otherwise, it includes only breakpoints set by the caller.
includeInactive: boolean, When set to `true`, the response includes active and inactive breakpoints. Otherwise, it includes only active breakpoints.
stripResults: boolean, This field is deprecated. The following fields are always stripped out of the result: `stack_frames`, `evaluated_expressions` and `variable_table`.
waitToken: string, A wait token that, if specified, blocks the call until the breakpoints list has changed, or a server selected timeout has expired. The value should be set from the last response. The error code `google.rpc.Code.ABORTED` (RPC) is returned on wait timeout, which should be called again with the same `wait_token`.
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # Response for listing breakpoints.
"breakpoints": [ # List of breakpoints matching the request. The fields `id` and `location` are guaranteed to be set on each breakpoint. The fields: `stack_frames`, `evaluated_expressions` and `variable_table` are cleared on each breakpoint regardless of its status.
{ # ------------------------------------------------------------------------------ ## Breakpoint (the resource) Represents the breakpoint specification, status and results.
"action": "A String", # Action that the agent should perform when the code at the breakpoint location is hit.
"canaryExpireTime": "A String", # The deadline for the breakpoint to stay in CANARY_ACTIVE state. The value is meaningless when the breakpoint is not in CANARY_ACTIVE state.
"condition": "A String", # Condition that triggers the breakpoint. The condition is a compound boolean expression composed using expressions in a programming language at the source location.
"createTime": "A String", # Time this breakpoint was created by the server in seconds resolution.
"evaluatedExpressions": [ # Values of evaluated expressions at breakpoint time. The evaluated expressions appear in exactly the same order they are listed in the `expressions` field. The `name` field holds the original expression text, the `value` or `members` field holds the result of the evaluated expression. If the expression cannot be evaluated, the `status` inside the `Variable` will indicate an error and contain the error text.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
"expressions": [ # List of read-only expressions to evaluate at the breakpoint location. The expressions are composed using expressions in the programming language at the source location. If the breakpoint action is `LOG`, the evaluated expressions are included in log statements.
"A String",
],
"finalTime": "A String", # Time this breakpoint was finalized as seen by the server in seconds resolution.
"id": "A String", # Breakpoint identifier, unique in the scope of the debuggee.
"isFinalState": True or False, # When true, indicates that this is a final result and the breakpoint state will not change from here on.
"labels": { # A set of custom breakpoint properties, populated by the agent, to be displayed to the user.
"a_key": "A String",
},
"location": { # Represents a location in the source code. # Breakpoint source location.
"column": 42, # Column within a line. The first column in a line as the value `1`. Agents that do not support setting breakpoints on specific columns ignore this field.
"line": 42, # Line inside the file. The first line in the file has the value `1`.
"path": "A String", # Path to the source file within the source context of the target binary.
},
"logLevel": "A String", # Indicates the severity of the log. Only relevant when action is `LOG`.
"logMessageFormat": "A String", # Only relevant when action is `LOG`. Defines the message to log when the breakpoint hits. The message may include parameter placeholders `$0`, `$1`, etc. These placeholders are replaced with the evaluated value of the appropriate expression. Expressions not referenced in `log_message_format` are not logged. Example: `Message received, id = $0, count = $1` with `expressions` = `[ message.id, message.count ]`.
"stackFrames": [ # The stack at breakpoint time, where stack_frames[0] represents the most recently entered function.
{ # Represents a stack frame context.
"arguments": [ # Set of arguments passed to this function. Note that this might not be populated for all stack frames.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
"function": "A String", # Demangled function name at the call site.
"locals": [ # Set of local variables at the stack frame location. Note that this might not be populated for all stack frames.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
"location": { # Represents a location in the source code. # Source location of the call site.
"column": 42, # Column within a line. The first column in a line as the value `1`. Agents that do not support setting breakpoints on specific columns ignore this field.
"line": 42, # Line inside the file. The first line in the file has the value `1`.
"path": "A String", # Path to the source file within the source context of the target binary.
},
},
],
"state": "A String", # The current state of the breakpoint.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Breakpoint status. The status includes an error flag and a human readable message. This field is usually unset. The message can be either informational or an error message. Regardless, clients should always display the text message back to the user. Error status indicates complete failure of the breakpoint. Example (non-final state): `Still loading symbols...` Examples (final state): * `Invalid line number` referring to location * `Field f not found in class C` referring to condition
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"userEmail": "A String", # E-mail address of the user that created this breakpoint
"variableTable": [ # The `variable_table` exists to aid with computation, memory and network traffic optimization. It enables storing a variable once and reference it from multiple variables, including variables stored in the `variable_table` itself. For example, the same `this` object, which may appear at many levels of the stack, can have all of its data stored once in this table. The stack frame variables then would hold only a reference to it. The variable `var_table_index` field is an index into this repeated field. The stored objects are nameless and get their name from the referencing variable. The effective variable is a merge of the referencing variable and the referenced variable.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
},
],
"nextWaitToken": "A String", # A wait token that can be used in the next call to `list` (REST) or `ListBreakpoints` (RPC) to block until the list of breakpoints has changes.
}</pre>
</div>
<div class="method">
<code class="details" id="set">set(debuggeeId, body=None, canaryOption=None, clientVersion=None, x__xgafv=None)</code>
<pre>Sets the breakpoint to the debuggee.
Args:
debuggeeId: string, Required. ID of the debuggee where the breakpoint is to be set. (required)
body: object, The request body.
The object takes the form of:
{ # ------------------------------------------------------------------------------ ## Breakpoint (the resource) Represents the breakpoint specification, status and results.
"action": "A String", # Action that the agent should perform when the code at the breakpoint location is hit.
"canaryExpireTime": "A String", # The deadline for the breakpoint to stay in CANARY_ACTIVE state. The value is meaningless when the breakpoint is not in CANARY_ACTIVE state.
"condition": "A String", # Condition that triggers the breakpoint. The condition is a compound boolean expression composed using expressions in a programming language at the source location.
"createTime": "A String", # Time this breakpoint was created by the server in seconds resolution.
"evaluatedExpressions": [ # Values of evaluated expressions at breakpoint time. The evaluated expressions appear in exactly the same order they are listed in the `expressions` field. The `name` field holds the original expression text, the `value` or `members` field holds the result of the evaluated expression. If the expression cannot be evaluated, the `status` inside the `Variable` will indicate an error and contain the error text.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
"expressions": [ # List of read-only expressions to evaluate at the breakpoint location. The expressions are composed using expressions in the programming language at the source location. If the breakpoint action is `LOG`, the evaluated expressions are included in log statements.
"A String",
],
"finalTime": "A String", # Time this breakpoint was finalized as seen by the server in seconds resolution.
"id": "A String", # Breakpoint identifier, unique in the scope of the debuggee.
"isFinalState": True or False, # When true, indicates that this is a final result and the breakpoint state will not change from here on.
"labels": { # A set of custom breakpoint properties, populated by the agent, to be displayed to the user.
"a_key": "A String",
},
"location": { # Represents a location in the source code. # Breakpoint source location.
"column": 42, # Column within a line. The first column in a line as the value `1`. Agents that do not support setting breakpoints on specific columns ignore this field.
"line": 42, # Line inside the file. The first line in the file has the value `1`.
"path": "A String", # Path to the source file within the source context of the target binary.
},
"logLevel": "A String", # Indicates the severity of the log. Only relevant when action is `LOG`.
"logMessageFormat": "A String", # Only relevant when action is `LOG`. Defines the message to log when the breakpoint hits. The message may include parameter placeholders `$0`, `$1`, etc. These placeholders are replaced with the evaluated value of the appropriate expression. Expressions not referenced in `log_message_format` are not logged. Example: `Message received, id = $0, count = $1` with `expressions` = `[ message.id, message.count ]`.
"stackFrames": [ # The stack at breakpoint time, where stack_frames[0] represents the most recently entered function.
{ # Represents a stack frame context.
"arguments": [ # Set of arguments passed to this function. Note that this might not be populated for all stack frames.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
"function": "A String", # Demangled function name at the call site.
"locals": [ # Set of local variables at the stack frame location. Note that this might not be populated for all stack frames.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
"location": { # Represents a location in the source code. # Source location of the call site.
"column": 42, # Column within a line. The first column in a line as the value `1`. Agents that do not support setting breakpoints on specific columns ignore this field.
"line": 42, # Line inside the file. The first line in the file has the value `1`.
"path": "A String", # Path to the source file within the source context of the target binary.
},
},
],
"state": "A String", # The current state of the breakpoint.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Breakpoint status. The status includes an error flag and a human readable message. This field is usually unset. The message can be either informational or an error message. Regardless, clients should always display the text message back to the user. Error status indicates complete failure of the breakpoint. Example (non-final state): `Still loading symbols...` Examples (final state): * `Invalid line number` referring to location * `Field f not found in class C` referring to condition
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"userEmail": "A String", # E-mail address of the user that created this breakpoint
"variableTable": [ # The `variable_table` exists to aid with computation, memory and network traffic optimization. It enables storing a variable once and reference it from multiple variables, including variables stored in the `variable_table` itself. For example, the same `this` object, which may appear at many levels of the stack, can have all of its data stored once in this table. The stack frame variables then would hold only a reference to it. The variable `var_table_index` field is an index into this repeated field. The stored objects are nameless and get their name from the referencing variable. The effective variable is a merge of the referencing variable and the referenced variable.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
}
canaryOption: string, The canary option set by the user upon setting breakpoint.
Allowed values
CANARY_OPTION_UNSPECIFIED - Depends on the canary_mode of the debuggee.
CANARY_OPTION_TRY_ENABLE - Enable the canary for this breakpoint if the canary_mode of the debuggee is not CANARY_MODE_ALWAYS_ENABLED or CANARY_MODE_ALWAYS_DISABLED.
CANARY_OPTION_TRY_DISABLE - Disable the canary for this breakpoint if the canary_mode of the debuggee is not CANARY_MODE_ALWAYS_ENABLED or CANARY_MODE_ALWAYS_DISABLED.
clientVersion: string, Required. The client version making the call. Schema: `domain/type/version` (e.g., `google.com/intellij/v1`).
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # Response for setting a breakpoint.
"breakpoint": { # ------------------------------------------------------------------------------ ## Breakpoint (the resource) Represents the breakpoint specification, status and results. # Breakpoint resource. The field `id` is guaranteed to be set (in addition to the echoed fields).
"action": "A String", # Action that the agent should perform when the code at the breakpoint location is hit.
"canaryExpireTime": "A String", # The deadline for the breakpoint to stay in CANARY_ACTIVE state. The value is meaningless when the breakpoint is not in CANARY_ACTIVE state.
"condition": "A String", # Condition that triggers the breakpoint. The condition is a compound boolean expression composed using expressions in a programming language at the source location.
"createTime": "A String", # Time this breakpoint was created by the server in seconds resolution.
"evaluatedExpressions": [ # Values of evaluated expressions at breakpoint time. The evaluated expressions appear in exactly the same order they are listed in the `expressions` field. The `name` field holds the original expression text, the `value` or `members` field holds the result of the evaluated expression. If the expression cannot be evaluated, the `status` inside the `Variable` will indicate an error and contain the error text.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
"expressions": [ # List of read-only expressions to evaluate at the breakpoint location. The expressions are composed using expressions in the programming language at the source location. If the breakpoint action is `LOG`, the evaluated expressions are included in log statements.
"A String",
],
"finalTime": "A String", # Time this breakpoint was finalized as seen by the server in seconds resolution.
"id": "A String", # Breakpoint identifier, unique in the scope of the debuggee.
"isFinalState": True or False, # When true, indicates that this is a final result and the breakpoint state will not change from here on.
"labels": { # A set of custom breakpoint properties, populated by the agent, to be displayed to the user.
"a_key": "A String",
},
"location": { # Represents a location in the source code. # Breakpoint source location.
"column": 42, # Column within a line. The first column in a line as the value `1`. Agents that do not support setting breakpoints on specific columns ignore this field.
"line": 42, # Line inside the file. The first line in the file has the value `1`.
"path": "A String", # Path to the source file within the source context of the target binary.
},
"logLevel": "A String", # Indicates the severity of the log. Only relevant when action is `LOG`.
"logMessageFormat": "A String", # Only relevant when action is `LOG`. Defines the message to log when the breakpoint hits. The message may include parameter placeholders `$0`, `$1`, etc. These placeholders are replaced with the evaluated value of the appropriate expression. Expressions not referenced in `log_message_format` are not logged. Example: `Message received, id = $0, count = $1` with `expressions` = `[ message.id, message.count ]`.
"stackFrames": [ # The stack at breakpoint time, where stack_frames[0] represents the most recently entered function.
{ # Represents a stack frame context.
"arguments": [ # Set of arguments passed to this function. Note that this might not be populated for all stack frames.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
"function": "A String", # Demangled function name at the call site.
"locals": [ # Set of local variables at the stack frame location. Note that this might not be populated for all stack frames.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
"location": { # Represents a location in the source code. # Source location of the call site.
"column": 42, # Column within a line. The first column in a line as the value `1`. Agents that do not support setting breakpoints on specific columns ignore this field.
"line": 42, # Line inside the file. The first line in the file has the value `1`.
"path": "A String", # Path to the source file within the source context of the target binary.
},
},
],
"state": "A String", # The current state of the breakpoint.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Breakpoint status. The status includes an error flag and a human readable message. This field is usually unset. The message can be either informational or an error message. Regardless, clients should always display the text message back to the user. Error status indicates complete failure of the breakpoint. Example (non-final state): `Still loading symbols...` Examples (final state): * `Invalid line number` referring to location * `Field f not found in class C` referring to condition
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"userEmail": "A String", # E-mail address of the user that created this breakpoint
"variableTable": [ # The `variable_table` exists to aid with computation, memory and network traffic optimization. It enables storing a variable once and reference it from multiple variables, including variables stored in the `variable_table` itself. For example, the same `this` object, which may appear at many levels of the stack, can have all of its data stored once in this table. The stack frame variables then would hold only a reference to it. The variable `var_table_index` field is an index into this repeated field. The stored objects are nameless and get their name from the referencing variable. The effective variable is a merge of the referencing variable and the referenced variable.
{ # Represents a variable or an argument possibly of a compound object type. Note how the following variables are represented: 1) A simple variable: int x = 5 { name: "x", value: "5", type: "int" } // Captured variable 2) A compound object: struct T { int m1; int m2; }; T x = { 3, 7 }; { // Captured variable name: "x", type: "T", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 3) A pointer where the pointee was captured: T x = { 3, 7 }; T* p = &x; { // Captured variable name: "p", type: "T*", value: "0x00500500", members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } 4) A pointer where the pointee was not captured: T* p = new T; { // Captured variable name: "p", type: "T*", value: "0x00400400" status { is_error: true, description { format: "unavailable" } } } The status should describe the reason for the missing value, such as ``, ``, ``. Note that a null pointer should not have members. 5) An unnamed value: int* p = new int(7); { // Captured variable name: "p", value: "0x00500500", type: "int*", members { value: "7", type: "int" } } 6) An unnamed pointer where the pointee was not captured: int* p = new int(7); int** pp = &p; { // Captured variable name: "pp", value: "0x00500500", type: "int**", members { value: "0x00400400", type: "int*" status { is_error: true, description: { format: "unavailable" } } } } } To optimize computation, memory and network traffic, variables that repeat in the output multiple times can be stored once in a shared variable table and be referenced using the `var_table_index` field. The variables stored in the shared table are nameless and are essentially a partition of the complete variable. To reconstruct the complete variable, merge the referencing variable with the referenced variable. When using the shared variable table, the following variables: T x = { 3, 7 }; T* p = &x; T& r = x; { name: "x", var_table_index: 3, type: "T" } // Captured variables { name: "p", value "0x00500500", type="T*", var_table_index: 3 } { name: "r", type="T&", var_table_index: 3 } { // Shared variable table entry #3: members { name: "m1", value: "3", type: "int" }, members { name: "m2", value: "7", type: "int" } } Note that the pointer address is stored with the referencing variable and not with the referenced variable. This allows the referenced variable to be shared between pointers and references. The type field is optional. The debugger agent may or may not support it.
"members": [ # Members contained or pointed to by the variable.
# Object with schema name: Variable
],
"name": "A String", # Name of the variable, if any.
"status": { # Represents a contextual status message. The message can indicate an error or informational status, and refer to specific parts of the containing object. For example, the `Breakpoint.status` field can indicate an error referring to the `BREAKPOINT_SOURCE_LOCATION` with the message `Location not found`. # Status associated with the variable. This field will usually stay unset. A status of a single variable only applies to that variable or expression. The rest of breakpoint data still remains valid. Variables might be reported in error state even when breakpoint is not in final state. The message may refer to variable name with `refers_to` set to `VARIABLE_NAME`. Alternatively `refers_to` will be set to `VARIABLE_VALUE`. In either case variable value and members will be unset. Example of error message applied to name: `Invalid expression syntax`. Example of information message applied to value: `Not captured`. Examples of error message applied to value: * `Malformed string`, * `Field f not found in class C` * `Null pointer dereference`
"description": { # Represents a message with parameters. # Status message text.
"format": "A String", # Format template for the message. The `format` uses placeholders `$0`, `$1`, etc. to reference parameters. `$$` can be used to denote the `$` character. Examples: * `Failed to load '$0' which helps debug $1 the first time it is loaded. Again, $0 is very important.` * `Please pay $$10 to use $0 instead of $1.`
"parameters": [ # Optional parameters to be embedded into the message.
"A String",
],
},
"isError": True or False, # Distinguishes errors from informational messages.
"refersTo": "A String", # Reference to which the message applies.
},
"type": "A String", # Variable type (e.g. `MyClass`). If the variable is split with `var_table_index`, `type` goes next to `value`. The interpretation of a type is agent specific. It is recommended to include the dynamic type rather than a static type of an object.
"value": "A String", # Simple value of the variable.
"varTableIndex": 42, # Reference to a variable in the shared variable table. More than one variable can reference the same variable in the table. The `var_table_index` field is an index into `variable_table` in Breakpoint.
},
],
},
}</pre>
</div>
</body></html>
|