1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
#!/usr/bin/python
# -*- coding: utf-8 -*-
#
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Example for using the Google Search Analytics API (part of Search Console API).
A basic python command-line example that uses the searchAnalytics.query method
of the Google Search Console API. This example demonstrates how to query Google
search results data for your property. Learn more at
https://developers.google.com/webmaster-tools/
To use:
1) Install the Google Python client library, as shown at https://developers.google.com/webmaster-tools/v3/libraries.
2) Sign up for a new project in the Google APIs console at https://code.google.com/apis/console.
3) Register the project to use OAuth2.0 for installed applications.
4) Copy your client ID, client secret, and redirect URL into the client_secrets.json file included in this package.
5) Run the app in the command-line as shown below.
Sample usage:
$ python search_analytics_api_sample.py 'https://www.example.com/' '2015-05-01' '2015-05-30'
"""
from __future__ import print_function
import argparse
import sys
from googleapiclient import sample_tools
# Declare command-line flags.
argparser = argparse.ArgumentParser(add_help=False)
argparser.add_argument(
"property_uri",
type=str,
help=("Site or app URI to query data for (including " "trailing slash)."),
)
argparser.add_argument(
"start_date",
type=str,
help=("Start date of the requested date range in " "YYYY-MM-DD format."),
)
argparser.add_argument(
"end_date",
type=str,
help=("End date of the requested date range in " "YYYY-MM-DD format."),
)
def main(argv):
service, flags = sample_tools.init(
argv,
"searchconsole",
"v1",
__doc__,
__file__,
parents=[argparser],
scope="https://www.googleapis.com/auth/webmasters.readonly",
)
# First run a query to learn which dates we have data for. You should always
# check which days in a date range have data before running your main query.
# This query shows data for the entire range, grouped and sorted by day,
# descending; any days without data will be missing from the results.
request = {
"startDate": flags.start_date,
"endDate": flags.end_date,
"dimensions": ["date"],
}
response = execute_request(service, flags.property_uri, request)
print_table(response, "Available dates")
# Get totals for the date range.
request = {"startDate": flags.start_date, "endDate": flags.end_date}
response = execute_request(service, flags.property_uri, request)
print_table(response, "Totals")
# Get top 10 queries for the date range, sorted by click count, descending.
request = {
"startDate": flags.start_date,
"endDate": flags.end_date,
"dimensions": ["query"],
"rowLimit": 10,
}
response = execute_request(service, flags.property_uri, request)
print_table(response, "Top Queries")
# Get top 11-20 mobile queries for the date range, sorted by click count, descending.
request = {
"startDate": flags.start_date,
"endDate": flags.end_date,
"dimensions": ["query"],
"dimensionFilterGroups": [
{"filters": [{"dimension": "device", "expression": "mobile"}]}
],
"rowLimit": 10,
"startRow": 10,
}
response = execute_request(service, flags.property_uri, request)
print_table(response, "Top 11-20 Mobile Queries")
# Get top 10 pages for the date range, sorted by click count, descending.
request = {
"startDate": flags.start_date,
"endDate": flags.end_date,
"dimensions": ["page"],
"rowLimit": 10,
}
response = execute_request(service, flags.property_uri, request)
print_table(response, "Top Pages")
# Get the top 10 queries in India, sorted by click count, descending.
request = {
"startDate": flags.start_date,
"endDate": flags.end_date,
"dimensions": ["query"],
"dimensionFilterGroups": [
{"filters": [{"dimension": "country", "expression": "ind"}]}
],
"rowLimit": 10,
}
response = execute_request(service, flags.property_uri, request)
print_table(response, "Top queries in India")
# Group by both country and device.
request = {
"startDate": flags.start_date,
"endDate": flags.end_date,
"dimensions": ["country", "device"],
"rowLimit": 10,
}
response = execute_request(service, flags.property_uri, request)
print_table(response, "Group by country and device")
# Group by total number of Search Appearance count.
# Note: It is not possible to use searchAppearance with other
# dimensions.
request = {
"startDate": flags.start_date,
"endDate": flags.end_date,
"dimensions": ["searchAppearance"],
"rowLimit": 10,
}
response = execute_request(service, flags.property_uri, request)
print_table(response, "Search Appearance Features")
def execute_request(service, property_uri, request):
"""Executes a searchAnalytics.query request.
Args:
service: The searchconsole service to use when executing the query.
property_uri: The site or app URI to request data for.
request: The request to be executed.
Returns:
An array of response rows.
"""
return service.searchanalytics().query(siteUrl=property_uri, body=request).execute()
def print_table(response, title):
"""Prints out a response table.
Each row contains key(s), clicks, impressions, CTR, and average position.
Args:
response: The server response to be printed as a table.
title: The title of the table.
"""
print("\n --" + title + ":")
if "rows" not in response:
print("Empty response")
return
rows = response["rows"]
row_format = "{:<20}" + "{:>20}" * 4
print(row_format.format("Keys", "Clicks", "Impressions", "CTR", "Position"))
for row in rows:
keys = ""
# Keys are returned only if one or more dimensions are requested.
if "keys" in row:
keys = ",".join(row["keys"]).encode("utf-8").decode()
print(
row_format.format(
keys, row["clicks"], row["impressions"], row["ctr"], row["position"]
)
)
if __name__ == "__main__":
main(sys.argv)
|