File: aiplatform_v1beta1.projects.locations.html

package info (click to toggle)
python-googleapi 2.187.0-1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 562,316 kB
  • sloc: python: 11,087; javascript: 249; sh: 114; makefile: 59
file content (4846 lines) | stat: -rw-r--r-- 608,510 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
<html><body>
<style>

body, h1, h2, h3, div, span, p, pre, a {
  margin: 0;
  padding: 0;
  border: 0;
  font-weight: inherit;
  font-style: inherit;
  font-size: 100%;
  font-family: inherit;
  vertical-align: baseline;
}

body {
  font-size: 13px;
  padding: 1em;
}

h1 {
  font-size: 26px;
  margin-bottom: 1em;
}

h2 {
  font-size: 24px;
  margin-bottom: 1em;
}

h3 {
  font-size: 20px;
  margin-bottom: 1em;
  margin-top: 1em;
}

pre, code {
  line-height: 1.5;
  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}

pre {
  margin-top: 0.5em;
}

h1, h2, h3, p {
  font-family: Arial, sans serif;
}

h1, h2, h3 {
  border-bottom: solid #CCC 1px;
}

.toc_element {
  margin-top: 0.5em;
}

.firstline {
  margin-left: 2 em;
}

.method  {
  margin-top: 1em;
  border: solid 1px #CCC;
  padding: 1em;
  background: #EEE;
}

.details {
  font-weight: bold;
  font-size: 14px;
}

</style>

<h1><a href="aiplatform_v1beta1.html">Vertex AI API</a> . <a href="aiplatform_v1beta1.projects.html">projects</a> . <a href="aiplatform_v1beta1.projects.locations.html">locations</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.agents.html">agents()</a></code>
</p>
<p class="firstline">Returns the agents Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.apps.html">apps()</a></code>
</p>
<p class="firstline">Returns the apps Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.batchPredictionJobs.html">batchPredictionJobs()</a></code>
</p>
<p class="firstline">Returns the batchPredictionJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.cachedContents.html">cachedContents()</a></code>
</p>
<p class="firstline">Returns the cachedContents Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.customJobs.html">customJobs()</a></code>
</p>
<p class="firstline">Returns the customJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.dataLabelingJobs.html">dataLabelingJobs()</a></code>
</p>
<p class="firstline">Returns the dataLabelingJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.datasets.html">datasets()</a></code>
</p>
<p class="firstline">Returns the datasets Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.deploymentResourcePools.html">deploymentResourcePools()</a></code>
</p>
<p class="firstline">Returns the deploymentResourcePools Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.edgeDevices.html">edgeDevices()</a></code>
</p>
<p class="firstline">Returns the edgeDevices Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.endpoints.html">endpoints()</a></code>
</p>
<p class="firstline">Returns the endpoints Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.evaluationItems.html">evaluationItems()</a></code>
</p>
<p class="firstline">Returns the evaluationItems Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.evaluationRuns.html">evaluationRuns()</a></code>
</p>
<p class="firstline">Returns the evaluationRuns Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.evaluationSets.html">evaluationSets()</a></code>
</p>
<p class="firstline">Returns the evaluationSets Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.evaluationTasks.html">evaluationTasks()</a></code>
</p>
<p class="firstline">Returns the evaluationTasks Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.exampleStores.html">exampleStores()</a></code>
</p>
<p class="firstline">Returns the exampleStores Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.extensionControllers.html">extensionControllers()</a></code>
</p>
<p class="firstline">Returns the extensionControllers Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.extensions.html">extensions()</a></code>
</p>
<p class="firstline">Returns the extensions Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.featureGroups.html">featureGroups()</a></code>
</p>
<p class="firstline">Returns the featureGroups Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.featureOnlineStores.html">featureOnlineStores()</a></code>
</p>
<p class="firstline">Returns the featureOnlineStores Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.featurestores.html">featurestores()</a></code>
</p>
<p class="firstline">Returns the featurestores Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.hyperparameterTuningJobs.html">hyperparameterTuningJobs()</a></code>
</p>
<p class="firstline">Returns the hyperparameterTuningJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.indexEndpoints.html">indexEndpoints()</a></code>
</p>
<p class="firstline">Returns the indexEndpoints Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.indexes.html">indexes()</a></code>
</p>
<p class="firstline">Returns the indexes Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.metadataStores.html">metadataStores()</a></code>
</p>
<p class="firstline">Returns the metadataStores Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.migratableResources.html">migratableResources()</a></code>
</p>
<p class="firstline">Returns the migratableResources Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.modelDeploymentMonitoringJobs.html">modelDeploymentMonitoringJobs()</a></code>
</p>
<p class="firstline">Returns the modelDeploymentMonitoringJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.modelMonitors.html">modelMonitors()</a></code>
</p>
<p class="firstline">Returns the modelMonitors Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.models.html">models()</a></code>
</p>
<p class="firstline">Returns the models Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.nasJobs.html">nasJobs()</a></code>
</p>
<p class="firstline">Returns the nasJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.notebookExecutionJobs.html">notebookExecutionJobs()</a></code>
</p>
<p class="firstline">Returns the notebookExecutionJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.notebookRuntimeTemplates.html">notebookRuntimeTemplates()</a></code>
</p>
<p class="firstline">Returns the notebookRuntimeTemplates Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.notebookRuntimes.html">notebookRuntimes()</a></code>
</p>
<p class="firstline">Returns the notebookRuntimes Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.operations.html">operations()</a></code>
</p>
<p class="firstline">Returns the operations Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.persistentResources.html">persistentResources()</a></code>
</p>
<p class="firstline">Returns the persistentResources Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.pipelineJobs.html">pipelineJobs()</a></code>
</p>
<p class="firstline">Returns the pipelineJobs Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.publishers.html">publishers()</a></code>
</p>
<p class="firstline">Returns the publishers Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.ragCorpora.html">ragCorpora()</a></code>
</p>
<p class="firstline">Returns the ragCorpora Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.ragEngineConfig.html">ragEngineConfig()</a></code>
</p>
<p class="firstline">Returns the ragEngineConfig Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.reasoningEngines.html">reasoningEngines()</a></code>
</p>
<p class="firstline">Returns the reasoningEngines Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.schedules.html">schedules()</a></code>
</p>
<p class="firstline">Returns the schedules Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.solvers.html">solvers()</a></code>
</p>
<p class="firstline">Returns the solvers Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.specialistPools.html">specialistPools()</a></code>
</p>
<p class="firstline">Returns the specialistPools Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.studies.html">studies()</a></code>
</p>
<p class="firstline">Returns the studies Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.tensorboards.html">tensorboards()</a></code>
</p>
<p class="firstline">Returns the tensorboards Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.trainingPipelines.html">trainingPipelines()</a></code>
</p>
<p class="firstline">Returns the trainingPipelines Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.tuningJobs.html">tuningJobs()</a></code>
</p>
<p class="firstline">Returns the tuningJobs Resource.</p>

<p class="toc_element">
  <code><a href="#augmentPrompt">augmentPrompt(parent, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Given an input prompt, it returns augmented prompt from vertex rag store to guide LLM towards generating grounded responses.</p>
<p class="toc_element">
  <code><a href="#close">close()</a></code></p>
<p class="firstline">Close httplib2 connections.</p>
<p class="toc_element">
  <code><a href="#corroborateContent">corroborateContent(parent, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Given an input text, it returns a score that evaluates the factuality of the text. It also extracts and returns claims from the text and provides supporting facts.</p>
<p class="toc_element">
  <code><a href="#deploy">deploy(destination, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Deploys a model to a new endpoint.</p>
<p class="toc_element">
  <code><a href="#deployPublisherModel">deployPublisherModel(destination, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Deploys publisher models.</p>
<p class="toc_element">
  <code><a href="#evaluateDataset">evaluateDataset(location, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Evaluates a dataset based on a set of given metrics.</p>
<p class="toc_element">
  <code><a href="#evaluateInstances">evaluateInstances(location, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Evaluates instances based on a given metric.</p>
<p class="toc_element">
  <code><a href="#generateInstanceRubrics">generateInstanceRubrics(location, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Generates rubrics for a given prompt. A rubric represents a single testable criterion for evaluation. One input prompt could have multiple rubrics This RPC allows users to get suggested rubrics based on provided prompt, which can then be reviewed and used for subsequent evaluations.</p>
<p class="toc_element">
  <code><a href="#generateSyntheticData">generateSyntheticData(location, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Generates synthetic data based on the provided configuration.</p>
<p class="toc_element">
  <code><a href="#get">get(name, x__xgafv=None)</a></code></p>
<p class="firstline">Gets information about a location.</p>
<p class="toc_element">
  <code><a href="#getRagEngineConfig">getRagEngineConfig(name, x__xgafv=None)</a></code></p>
<p class="firstline">Gets a RagEngineConfig.</p>
<p class="toc_element">
  <code><a href="#list">list(name, extraLocationTypes=None, filter=None, pageSize=None, pageToken=None, x__xgafv=None)</a></code></p>
<p class="firstline">Lists information about the supported locations for this service.</p>
<p class="toc_element">
  <code><a href="#list_next">list_next()</a></code></p>
<p class="firstline">Retrieves the next page of results.</p>
<p class="toc_element">
  <code><a href="#recommendSpec">recommendSpec(parent, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Gets a Model's spec recommendations. This API is called by UI, SDK, and internal.</p>
<p class="toc_element">
  <code><a href="#retrieveContexts">retrieveContexts(parent, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Retrieves relevant contexts for a query.</p>
<p class="toc_element">
  <code><a href="#updateRagEngineConfig">updateRagEngineConfig(name, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Updates a RagEngineConfig.</p>
<h3>Method Details</h3>
<div class="method">
    <code class="details" id="augmentPrompt">augmentPrompt(parent, body=None, x__xgafv=None)</code>
  <pre>Given an input prompt, it returns augmented prompt from vertex rag store to guide LLM towards generating grounded responses.

Args:
  parent: string, Required. The resource name of the Location from which to augment prompt. The users must have permission to make a call in the project. Format: `projects/{project}/locations/{location}`. (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for AugmentPrompt.
  &quot;contents&quot;: [ # Optional. Input content to augment, only text format is supported for now.
    { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message.
      &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
        { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
          &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
            &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
            &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
          },
          &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
            &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
            &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
          },
          &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
            &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
            &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
            &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
            &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
          },
          &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
            &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
            &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
              { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                  &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
              },
            ],
            &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
          },
          &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
            &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
          &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
          &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
          &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
            &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
            &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
            &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
          },
        },
      ],
      &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
    },
  ],
  &quot;model&quot;: { # Metadata of the backend deployed model. # Optional. Metadata of the backend deployed model.
    &quot;model&quot;: &quot;A String&quot;, # Optional. The model that the user will send the augmented prompt for content generation.
    &quot;modelVersion&quot;: &quot;A String&quot;, # Optional. The model version of the backend deployed model.
  },
  &quot;vertexRagStore&quot;: { # Retrieve from Vertex RAG Store for grounding. # Optional. Retrieves contexts from the Vertex RagStore.
    &quot;ragCorpora&quot;: [ # Optional. Deprecated. Please use rag_resources instead.
      &quot;A String&quot;,
    ],
    &quot;ragResources&quot;: [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
      { # The definition of the Rag resource.
        &quot;ragCorpus&quot;: &quot;A String&quot;, # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
        &quot;ragFileIds&quot;: [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
          &quot;A String&quot;,
        ],
      },
    ],
    &quot;ragRetrievalConfig&quot;: { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
      &quot;filter&quot;: { # Config for filters. # Optional. Config for filters.
        &quot;metadataFilter&quot;: &quot;A String&quot;, # Optional. String for metadata filtering.
        &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
        &quot;vectorSimilarityThreshold&quot;: 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
      },
      &quot;hybridSearch&quot;: { # Config for Hybrid Search. # Optional. Config for Hybrid Search.
        &quot;alpha&quot;: 3.14, # Optional. Alpha value controls the weight between dense and sparse vector search results. The range is [0, 1], while 0 means sparse vector search only and 1 means dense vector search only. The default value is 0.5 which balances sparse and dense vector search equally.
      },
      &quot;ranking&quot;: { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
        &quot;llmRanker&quot;: { # Config for LlmRanker. # Optional. Config for LlmRanker.
          &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
        },
        &quot;rankService&quot;: { # Config for Rank Service. # Optional. Config for Rank Service.
          &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
        },
      },
      &quot;topK&quot;: 42, # Optional. The number of contexts to retrieve.
    },
    &quot;similarityTopK&quot;: 42, # Optional. Number of top k results to return from the selected corpora.
    &quot;storeContext&quot;: True or False, # Optional. Currently only supported for Gemini Multimodal Live API. In Gemini Multimodal Live API, if `store_context` bool is specified, Gemini will leverage it to automatically memorize the interactions between the client and Gemini, and retrieve context when needed to augment the response generation for users&#x27; ongoing and future interactions.
    &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only return results with vector distance smaller than the threshold.
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for AugmentPrompt.
  &quot;augmentedPrompt&quot;: [ # Augmented prompt, only text format is supported for now.
    { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message.
      &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
        { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
          &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
            &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
            &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
          },
          &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
            &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
            &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
          },
          &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
            &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
            &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
            &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
            &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
          },
          &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
            &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
            &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
              { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                  &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
              },
            ],
            &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
          },
          &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
            &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
          &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
          &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
          &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
            &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
            &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
            &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
          },
        },
      ],
      &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
    },
  ],
  &quot;facts&quot;: [ # Retrieved facts from RAG data sources.
    { # The fact used in grounding.
      &quot;chunk&quot;: { # A RagChunk includes the content of a chunk of a RagFile, and associated metadata. # If present, chunk properties.
        &quot;pageSpan&quot;: { # Represents where the chunk starts and ends in the document. # If populated, represents where the chunk starts and ends in the document.
          &quot;firstPage&quot;: 42, # Page where chunk starts in the document. Inclusive. 1-indexed.
          &quot;lastPage&quot;: 42, # Page where chunk ends in the document. Inclusive. 1-indexed.
        },
        &quot;text&quot;: &quot;A String&quot;, # The content of the chunk.
      },
      &quot;query&quot;: &quot;A String&quot;, # Query that is used to retrieve this fact.
      &quot;score&quot;: 3.14, # If present, according to the underlying Vector DB and the selected metric type, the score can be either the distance or the similarity between the query and the fact and its range depends on the metric type. For example, if the metric type is COSINE_DISTANCE, it represents the distance between the query and the fact. The larger the distance, the less relevant the fact is to the query. The range is [0, 2], while 0 means the most relevant and 2 means the least relevant.
      &quot;summary&quot;: &quot;A String&quot;, # If present, the summary/snippet of the fact.
      &quot;title&quot;: &quot;A String&quot;, # If present, it refers to the title of this fact.
      &quot;uri&quot;: &quot;A String&quot;, # If present, this uri links to the source of the fact.
      &quot;vectorDistance&quot;: 3.14, # If present, the distance between the query vector and this fact vector.
    },
  ],
}</pre>
</div>

<div class="method">
    <code class="details" id="close">close()</code>
  <pre>Close httplib2 connections.</pre>
</div>

<div class="method">
    <code class="details" id="corroborateContent">corroborateContent(parent, body=None, x__xgafv=None)</code>
  <pre>Given an input text, it returns a score that evaluates the factuality of the text. It also extracts and returns claims from the text and provides supporting facts.

Args:
  parent: string, Required. The resource name of the Location from which to corroborate text. The users must have permission to make a call in the project. Format: `projects/{project}/locations/{location}`. (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for CorroborateContent.
  &quot;content&quot;: { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message. # Optional. Input content to corroborate, only text format is supported for now.
    &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
      { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
        &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
          &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
          &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
        },
        &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
          &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
          &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
        },
        &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
          &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
          &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
          &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
        },
        &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
          &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
          },
          &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
          &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
        },
        &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
          &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
          &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
          &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
            { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
              &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
              },
              &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
              },
            },
          ],
          &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
          },
        },
        &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
          &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
          &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
          &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
        },
        &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
        &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
        &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
        &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
          &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
          &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
          &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
        },
      },
    ],
    &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
  },
  &quot;facts&quot;: [ # Optional. Facts used to generate the text can also be used to corroborate the text.
    { # The fact used in grounding.
      &quot;chunk&quot;: { # A RagChunk includes the content of a chunk of a RagFile, and associated metadata. # If present, chunk properties.
        &quot;pageSpan&quot;: { # Represents where the chunk starts and ends in the document. # If populated, represents where the chunk starts and ends in the document.
          &quot;firstPage&quot;: 42, # Page where chunk starts in the document. Inclusive. 1-indexed.
          &quot;lastPage&quot;: 42, # Page where chunk ends in the document. Inclusive. 1-indexed.
        },
        &quot;text&quot;: &quot;A String&quot;, # The content of the chunk.
      },
      &quot;query&quot;: &quot;A String&quot;, # Query that is used to retrieve this fact.
      &quot;score&quot;: 3.14, # If present, according to the underlying Vector DB and the selected metric type, the score can be either the distance or the similarity between the query and the fact and its range depends on the metric type. For example, if the metric type is COSINE_DISTANCE, it represents the distance between the query and the fact. The larger the distance, the less relevant the fact is to the query. The range is [0, 2], while 0 means the most relevant and 2 means the least relevant.
      &quot;summary&quot;: &quot;A String&quot;, # If present, the summary/snippet of the fact.
      &quot;title&quot;: &quot;A String&quot;, # If present, it refers to the title of this fact.
      &quot;uri&quot;: &quot;A String&quot;, # If present, this uri links to the source of the fact.
      &quot;vectorDistance&quot;: 3.14, # If present, the distance between the query vector and this fact vector.
    },
  ],
  &quot;parameters&quot;: { # Parameters that can be overrided per request. # Optional. Parameters that can be set to override default settings per request.
    &quot;citationThreshold&quot;: 3.14, # Optional. Only return claims with citation score larger than the threshold.
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for CorroborateContent.
  &quot;claims&quot;: [ # Claims that are extracted from the input content and facts that support the claims.
    { # Claim that is extracted from the input text and facts that support it.
      &quot;endIndex&quot;: 42, # Index in the input text where the claim ends (exclusive).
      &quot;factIndexes&quot;: [ # Indexes of the facts supporting this claim.
        42,
      ],
      &quot;score&quot;: 3.14, # Confidence score of this corroboration.
      &quot;startIndex&quot;: 42, # Index in the input text where the claim starts (inclusive).
    },
  ],
  &quot;corroborationScore&quot;: 3.14, # Confidence score of corroborating content. Value is [0,1] with 1 is the most confidence.
}</pre>
</div>

<div class="method">
    <code class="details" id="deploy">deploy(destination, body=None, x__xgafv=None)</code>
  <pre>Deploys a model to a new endpoint.

Args:
  destination: string, Required. The resource name of the Location to deploy the model in. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for ModelGardenService.Deploy.
  &quot;customModel&quot;: { # The custom model to deploy from model weights in a Google Cloud Storage URI or Model Registry model. # The custom model to deploy from a Google Cloud Storage URI.
    &quot;gcsUri&quot;: &quot;A String&quot;, # Immutable. The Google Cloud Storage URI of the custom model, storing weights and config files (which can be used to infer the base model).
    &quot;modelId&quot;: &quot;A String&quot;, # Optional. Deprecated. Use ModelConfig.model_user_id instead.
  },
  &quot;deployConfig&quot;: { # The deploy config to use for the deployment. # Optional. The deploy config to use for the deployment. If not specified, the default deploy config will be used.
    &quot;dedicatedResources&quot;: { # A description of resources that are dedicated to a DeployedModel or DeployedIndex, and that need a higher degree of manual configuration. # Optional. The dedicated resources to use for the endpoint. If not set, the default resources will be used.
      &quot;autoscalingMetricSpecs&quot;: [ # Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator&#x27;s duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator&#x27;s duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and autoscaling_metric_specs.target to `80`.
        { # The metric specification that defines the target resource utilization (CPU utilization, accelerator&#x27;s duty cycle, and so on) for calculating the desired replica count.
          &quot;metricName&quot;: &quot;A String&quot;, # Required. The resource metric name. Supported metrics: * For Online Prediction: * `aiplatform.googleapis.com/prediction/online/accelerator/duty_cycle` * `aiplatform.googleapis.com/prediction/online/cpu/utilization` * `aiplatform.googleapis.com/prediction/online/request_count`
          &quot;monitoredResourceLabels&quot;: { # Optional. The Cloud Monitoring monitored resource labels as key value pairs used for metrics filtering. See Cloud Monitoring Labels https://cloud.google.com/monitoring/api/v3/metric-model#generic-label-info
            &quot;a_key&quot;: &quot;A String&quot;,
          },
          &quot;target&quot;: 42, # The target resource utilization in percentage (1% - 100%) for the given metric; once the real usage deviates from the target by a certain percentage, the machine replicas change. The default value is 60 (representing 60%) if not provided.
        },
      ],
      &quot;flexStart&quot;: { # FlexStart is used to schedule the deployment workload on DWS resource. It contains the max duration of the deployment. # Optional. Immutable. If set, use DWS resource to schedule the deployment workload. reference: (https://cloud.google.com/blog/products/compute/introducing-dynamic-workload-scheduler)
        &quot;maxRuntimeDuration&quot;: &quot;A String&quot;, # The max duration of the deployment is max_runtime_duration. The deployment will be terminated after the duration. The max_runtime_duration can be set up to 7 days.
      },
      &quot;initialReplicaCount&quot;: 42, # Immutable. Number of initial replicas being deployed on when scaling the workload up from zero or when creating the workload in case min_replica_count = 0. When min_replica_count &gt; 0 (meaning that the scale-to-zero feature is not enabled), initial_replica_count should not be set. When min_replica_count = 0 (meaning that the scale-to-zero feature is enabled), initial_replica_count should be larger than zero, but no greater than max_replica_count.
      &quot;machineSpec&quot;: { # Specification of a single machine. # Required. Immutable. The specification of a single machine being used.
        &quot;acceleratorCount&quot;: 42, # The number of accelerators to attach to the machine.
        &quot;acceleratorType&quot;: &quot;A String&quot;, # Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
        &quot;gpuPartitionSize&quot;: &quot;A String&quot;, # Optional. Immutable. The Nvidia GPU partition size. When specified, the requested accelerators will be partitioned into smaller GPU partitions. For example, if the request is for 8 units of NVIDIA A100 GPUs, and gpu_partition_size=&quot;1g.10gb&quot;, the service will create 8 * 7 = 56 partitioned MIG instances. The partition size must be a value supported by the requested accelerator. Refer to [Nvidia GPU Partitioning](https://cloud.google.com/kubernetes-engine/docs/how-to/gpus-multi#multi-instance_gpu_partitions) for the available partition sizes. If set, the accelerator_count should be set to 1.
        &quot;machineType&quot;: &quot;A String&quot;, # Immutable. The type of the machine. See the [list of machine types supported for prediction](https://cloud.google.com/vertex-ai/docs/predictions/configure-compute#machine-types) See the [list of machine types supported for custom training](https://cloud.google.com/vertex-ai/docs/training/configure-compute#machine-types). For DeployedModel this field is optional, and the default value is `n1-standard-2`. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
        &quot;multihostGpuNodeCount&quot;: 42, # Optional. Immutable. The number of nodes per replica for multihost GPU deployments.
        &quot;reservationAffinity&quot;: { # A ReservationAffinity can be used to configure a Vertex AI resource (e.g., a DeployedModel) to draw its Compute Engine resources from a Shared Reservation, or exclusively from on-demand capacity. # Optional. Immutable. Configuration controlling how this resource pool consumes reservation.
          &quot;key&quot;: &quot;A String&quot;, # Optional. Corresponds to the label key of a reservation resource. To target a SPECIFIC_RESERVATION by name, use `compute.googleapis.com/reservation-name` as the key and specify the name of your reservation as its value.
          &quot;reservationAffinityType&quot;: &quot;A String&quot;, # Required. Specifies the reservation affinity type.
          &quot;values&quot;: [ # Optional. Corresponds to the label values of a reservation resource. This must be the full resource name of the reservation or reservation block.
            &quot;A String&quot;,
          ],
        },
        &quot;tpuTopology&quot;: &quot;A String&quot;, # Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: &quot;2x2x1&quot;).
      },
      &quot;maxReplicaCount&quot;: 42, # Immutable. The maximum number of replicas that may be deployed on when the traffic against it increases. If the requested value is too large, the deployment will error, but if deployment succeeds then the ability to scale to that many replicas is guaranteed (barring service outages). If traffic increases beyond what its replicas at maximum may handle, a portion of the traffic will be dropped. If this value is not provided, will use min_replica_count as the default value. The value of this field impacts the charge against Vertex CPU and GPU quotas. Specifically, you will be charged for (max_replica_count * number of cores in the selected machine type) and (max_replica_count * number of GPUs per replica in the selected machine type).
      &quot;minReplicaCount&quot;: 42, # Required. Immutable. The minimum number of machine replicas that will be always deployed on. This value must be greater than or equal to 1. If traffic increases, it may dynamically be deployed onto more replicas, and as traffic decreases, some of these extra replicas may be freed.
      &quot;requiredReplicaCount&quot;: 42, # Optional. Number of required available replicas for the deployment to succeed. This field is only needed when partial deployment/mutation is desired. If set, the deploy/mutate operation will succeed once available_replica_count reaches required_replica_count, and the rest of the replicas will be retried. If not set, the default required_replica_count will be min_replica_count.
      &quot;scaleToZeroSpec&quot;: { # Specification for scale-to-zero feature. # Optional. Specification for scale-to-zero feature.
        &quot;idleScaledownPeriod&quot;: &quot;A String&quot;, # Optional. Duration of no traffic before scaling to zero. [MinValue=300] (5 minutes) [MaxValue=28800] (8 hours)
        &quot;minScaleupPeriod&quot;: &quot;A String&quot;, # Optional. Minimum duration that a deployment will be scaled up before traffic is evaluated for potential scale-down. [MinValue=300] (5 minutes) [MaxValue=28800] (8 hours)
      },
      &quot;spot&quot;: True or False, # Optional. If true, schedule the deployment workload on [spot VMs](https://cloud.google.com/kubernetes-engine/docs/concepts/spot-vms).
    },
    &quot;fastTryoutEnabled&quot;: True or False, # Optional. If true, enable the QMT fast tryout feature for this model if possible.
    &quot;systemLabels&quot;: { # Optional. System labels for Model Garden deployments. These labels are managed by Google and for tracking purposes only.
      &quot;a_key&quot;: &quot;A String&quot;,
    },
  },
  &quot;endpointConfig&quot;: { # The endpoint config to use for the deployment. # Optional. The endpoint config to use for the deployment. If not specified, the default endpoint config will be used.
    &quot;dedicatedEndpointDisabled&quot;: True or False, # Optional. By default, if dedicated endpoint is enabled and private service connect config is not set, the endpoint will be exposed through a dedicated DNS [Endpoint.dedicated_endpoint_dns]. If private service connect config is set, the endpoint will be exposed through private service connect. Your request to the dedicated DNS will be isolated from other users&#x27; traffic and will have better performance and reliability. Note: Once you enabled dedicated endpoint, you won&#x27;t be able to send request to the shared DNS {region}-aiplatform.googleapis.com. The limitations will be removed soon. If this field is set to true, the dedicated endpoint will be disabled and the deployed model will be exposed through the shared DNS {region}-aiplatform.googleapis.com.
    &quot;dedicatedEndpointEnabled&quot;: True or False, # Optional. Deprecated. Use dedicated_endpoint_disabled instead. If true, the endpoint will be exposed through a dedicated DNS [Endpoint.dedicated_endpoint_dns]. Your request to the dedicated DNS will be isolated from other users&#x27; traffic and will have better performance and reliability. Note: Once you enabled dedicated endpoint, you won&#x27;t be able to send request to the shared DNS {region}-aiplatform.googleapis.com. The limitations will be removed soon.
    &quot;endpointDisplayName&quot;: &quot;A String&quot;, # Optional. The user-specified display name of the endpoint. If not set, a default name will be used.
    &quot;endpointUserId&quot;: &quot;A String&quot;, # Optional. Immutable. The ID to use for endpoint, which will become the final component of the endpoint resource name. If not provided, Vertex AI will generate a value for this ID. If the first character is a letter, this value may be up to 63 characters, and valid characters are `[a-z0-9-]`. The last character must be a letter or number. If the first character is a number, this value may be up to 9 characters, and valid characters are `[0-9]` with no leading zeros. When using HTTP/JSON, this field is populated based on a query string argument, such as `?endpoint_id=12345`. This is the fallback for fields that are not included in either the URI or the body.
    &quot;labels&quot;: { # Optional. The labels with user-defined metadata to organize your Endpoints. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
      &quot;a_key&quot;: &quot;A String&quot;,
    },
    &quot;privateServiceConnectConfig&quot;: { # Represents configuration for private service connect. # Optional. Configuration for private service connect. If set, the endpoint will be exposed through private service connect.
      &quot;enablePrivateServiceConnect&quot;: True or False, # Required. If true, expose the IndexEndpoint via private service connect.
      &quot;enableSecurePrivateServiceConnect&quot;: True or False, # Optional. If set to true, enable secure private service connect with IAM authorization. Otherwise, private service connect will be done without authorization. Note latency will be slightly increased if authorization is enabled.
      &quot;projectAllowlist&quot;: [ # A list of Projects from which the forwarding rule will target the service attachment.
        &quot;A String&quot;,
      ],
      &quot;pscAutomationConfigs&quot;: [ # Optional. List of projects and networks where the PSC endpoints will be created. This field is used by Online Inference(Prediction) only.
        { # PSC config that is used to automatically create PSC endpoints in the user projects.
          &quot;errorMessage&quot;: &quot;A String&quot;, # Output only. Error message if the PSC service automation failed.
          &quot;forwardingRule&quot;: &quot;A String&quot;, # Output only. Forwarding rule created by the PSC service automation.
          &quot;ipAddress&quot;: &quot;A String&quot;, # Output only. IP address rule created by the PSC service automation.
          &quot;network&quot;: &quot;A String&quot;, # Required. The full name of the Google Compute Engine [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks). [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/get): `projects/{project}/global/networks/{network}`.
          &quot;projectId&quot;: &quot;A String&quot;, # Required. Project id used to create forwarding rule.
          &quot;state&quot;: &quot;A String&quot;, # Output only. The state of the PSC service automation.
        },
      ],
      &quot;serviceAttachment&quot;: &quot;A String&quot;, # Output only. The name of the generated service attachment resource. This is only populated if the endpoint is deployed with PrivateServiceConnect.
    },
  },
  &quot;huggingFaceModelId&quot;: &quot;A String&quot;, # The Hugging Face model to deploy. Format: Hugging Face model ID like `google/gemma-2-2b-it`.
  &quot;modelConfig&quot;: { # The model config to use for the deployment. # Optional. The model config to use for the deployment. If not specified, the default model config will be used.
    &quot;acceptEula&quot;: True or False, # Optional. Whether the user accepts the End User License Agreement (EULA) for the model.
    &quot;containerSpec&quot;: { # Specification of a container for serving predictions. Some fields in this message correspond to fields in the [Kubernetes Container v1 core specification](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). # Optional. The specification of the container that is to be used when deploying. If not set, the default container spec will be used.
      &quot;args&quot;: [ # Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container&#x27;s [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify this field as an array of executable and arguments, similar to a Docker `CMD`&#x27;s &quot;default parameters&quot; form. If you don&#x27;t specify this field but do specify the command field, then the command from the `command` field runs without any additional arguments. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container&#x27;s `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). If you don&#x27;t specify this field and don&#x27;t specify the `command` field, then the container&#x27;s [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd) and `CMD` determine what runs based on their default behavior. See the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `args` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
        &quot;A String&quot;,
      ],
      &quot;command&quot;: [ # Immutable. Specifies the command that runs when the container starts. This overrides the container&#x27;s [ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint). Specify this field as an array of executable and arguments, similar to a Docker `ENTRYPOINT`&#x27;s &quot;exec&quot; form, not its &quot;shell&quot; form. If you do not specify this field, then the container&#x27;s `ENTRYPOINT` runs, in conjunction with the args field or the container&#x27;s [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), if either exists. If this field is not specified and the container does not have an `ENTRYPOINT`, then refer to the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). If you specify this field, then you can also specify the `args` field to provide additional arguments for this command. However, if you specify this field, then the container&#x27;s `CMD` is ignored. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container&#x27;s `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `command` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
        &quot;A String&quot;,
      ],
      &quot;deploymentTimeout&quot;: &quot;A String&quot;, # Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
      &quot;env&quot;: [ # Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables. Additionally, the command and args fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable `VAR_2` to have the value `foo bar`: ```json [ { &quot;name&quot;: &quot;VAR_1&quot;, &quot;value&quot;: &quot;foo&quot; }, { &quot;name&quot;: &quot;VAR_2&quot;, &quot;value&quot;: &quot;$(VAR_1) bar&quot; } ] ``` If you switch the order of the variables in the example, then the expansion does not occur. This field corresponds to the `env` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
        { # Represents an environment variable present in a Container or Python Module.
          &quot;name&quot;: &quot;A String&quot;, # Required. Name of the environment variable. Must be a valid C identifier.
          &quot;value&quot;: &quot;A String&quot;, # Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not.
        },
      ],
      &quot;grpcPorts&quot;: [ # Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, gRPC requests to the container will be disabled. Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers v1 core API.
        { # Represents a network port in a container.
          &quot;containerPort&quot;: 42, # The number of the port to expose on the pod&#x27;s IP address. Must be a valid port number, between 1 and 65535 inclusive.
        },
      ],
      &quot;healthProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes readiness probe.
        &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
          &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
            &quot;A String&quot;,
          ],
        },
        &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
        &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
          &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
          &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
        },
        &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
          &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
          &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
            { # HttpHeader describes a custom header to be used in HTTP probes
              &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
              &quot;value&quot;: &quot;A String&quot;, # The header field value
            },
          ],
          &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
          &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
          &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
        },
        &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
        &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
        &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
        &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
          &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
          &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
        },
        &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
      },
      &quot;healthRoute&quot;: &quot;A String&quot;, # Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container&#x27;s IP address and port to check that the container is healthy. Read more about [health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#health). For example, if you set this field to `/bar`, then Vertex AI intermittently sends a GET request to the `/bar` path on the port of your container specified by the first value of this `ModelContainerSpec`&#x27;s ports field. If you don&#x27;t specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
      &quot;imageUri&quot;: &quot;A String&quot;, # Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the [container publishing requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#publishing), including permissions requirements for the Vertex AI Service Agent. The container image is ingested upon ModelService.UploadModel, stored internally, and this original path is afterwards not used. To learn about the requirements for the Docker image itself, see [Custom container requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#). You can use the URI to one of Vertex AI&#x27;s [pre-built container images for prediction](https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers) in this field.
      &quot;invokeRoutePrefix&quot;: &quot;A String&quot;, # Immutable. Invoke route prefix for the custom container. &quot;/*&quot; is the only supported value right now. By setting this field, any non-root route on this model will be accessible with invoke http call eg: &quot;/invoke/foo/bar&quot;, however the [PredictionService.Invoke] RPC is not supported yet. Only one of `predict_route` or `invoke_route_prefix` can be set, and we default to using `predict_route` if this field is not set. If this field is set, the Model can only be deployed to dedicated endpoint.
      &quot;livenessProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes liveness probe.
        &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
          &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
            &quot;A String&quot;,
          ],
        },
        &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
        &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
          &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
          &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
        },
        &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
          &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
          &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
            { # HttpHeader describes a custom header to be used in HTTP probes
              &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
              &quot;value&quot;: &quot;A String&quot;, # The header field value
            },
          ],
          &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
          &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
          &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
        },
        &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
        &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
        &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
        &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
          &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
          &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
        },
        &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
      },
      &quot;ports&quot;: [ # Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends [liveness and health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#liveness) to this port. If you do not specify this field, it defaults to following value: ```json [ { &quot;containerPort&quot;: 8080 } ] ``` Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
        { # Represents a network port in a container.
          &quot;containerPort&quot;: 42, # The number of the port to expose on the pod&#x27;s IP address. Must be a valid port number, between 1 and 65535 inclusive.
        },
      ],
      &quot;predictRoute&quot;: &quot;A String&quot;, # Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using projects.locations.endpoints.predict to this path on the container&#x27;s IP address and port. Vertex AI then returns the container&#x27;s response in the API response. For example, if you set this field to `/foo`, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the `/foo` path on the port of your container specified by the first value of this `ModelContainerSpec`&#x27;s ports field. If you don&#x27;t specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
      &quot;sharedMemorySizeMb&quot;: &quot;A String&quot;, # Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.
      &quot;startupProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes startup probe.
        &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
          &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
            &quot;A String&quot;,
          ],
        },
        &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
        &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
          &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
          &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
        },
        &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
          &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
          &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
            { # HttpHeader describes a custom header to be used in HTTP probes
              &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
              &quot;value&quot;: &quot;A String&quot;, # The header field value
            },
          ],
          &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
          &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
          &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
        },
        &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
        &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
        &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
        &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
          &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
          &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
        },
        &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
      },
    },
    &quot;huggingFaceAccessToken&quot;: &quot;A String&quot;, # Optional. The Hugging Face read access token used to access the model artifacts of gated models.
    &quot;huggingFaceCacheEnabled&quot;: True or False, # Optional. If true, the model will deploy with a cached version instead of directly downloading the model artifacts from Hugging Face. This is suitable for VPC-SC users with limited internet access.
    &quot;modelDisplayName&quot;: &quot;A String&quot;, # Optional. The user-specified display name of the uploaded model. If not set, a default name will be used.
    &quot;modelUserId&quot;: &quot;A String&quot;, # Optional. The ID to use for the uploaded Model, which will become the final component of the model resource name. When not provided, Vertex AI will generate a value for this ID. When Model Registry model is provided, this field will be ignored. This value may be up to 63 characters, and valid characters are `[a-z0-9_-]`. The first character cannot be a number or hyphen.
  },
  &quot;publisherModelName&quot;: &quot;A String&quot;, # The Model Garden model to deploy. Format: `publishers/{publisher}/models/{publisher_model}@{version_id}`, or `publishers/hf-{hugging-face-author}/models/{hugging-face-model-name}@001`.
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # This resource represents a long-running operation that is the result of a network API call.
  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  &quot;response&quot;: { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="deployPublisherModel">deployPublisherModel(destination, body=None, x__xgafv=None)</code>
  <pre>Deploys publisher models.

Args:
  destination: string, Required. The resource name of the Location to deploy the model in. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for ModelGardenService.DeployPublisherModel.
  &quot;acceptEula&quot;: True or False, # Optional. Whether the user accepts the End User License Agreement (EULA) for the model.
  &quot;dedicatedResources&quot;: { # A description of resources that are dedicated to a DeployedModel or DeployedIndex, and that need a higher degree of manual configuration. # Optional. The dedicated resources to use for the endpoint. If not set, the default resources will be used.
    &quot;autoscalingMetricSpecs&quot;: [ # Immutable. The metric specifications that overrides a resource utilization metric (CPU utilization, accelerator&#x27;s duty cycle, and so on) target value (default to 60 if not set). At most one entry is allowed per metric. If machine_spec.accelerator_count is above 0, the autoscaling will be based on both CPU utilization and accelerator&#x27;s duty cycle metrics and scale up when either metrics exceeds its target value while scale down if both metrics are under their target value. The default target value is 60 for both metrics. If machine_spec.accelerator_count is 0, the autoscaling will be based on CPU utilization metric only with default target value 60 if not explicitly set. For example, in the case of Online Prediction, if you want to override target CPU utilization to 80, you should set autoscaling_metric_specs.metric_name to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and autoscaling_metric_specs.target to `80`.
      { # The metric specification that defines the target resource utilization (CPU utilization, accelerator&#x27;s duty cycle, and so on) for calculating the desired replica count.
        &quot;metricName&quot;: &quot;A String&quot;, # Required. The resource metric name. Supported metrics: * For Online Prediction: * `aiplatform.googleapis.com/prediction/online/accelerator/duty_cycle` * `aiplatform.googleapis.com/prediction/online/cpu/utilization` * `aiplatform.googleapis.com/prediction/online/request_count`
        &quot;monitoredResourceLabels&quot;: { # Optional. The Cloud Monitoring monitored resource labels as key value pairs used for metrics filtering. See Cloud Monitoring Labels https://cloud.google.com/monitoring/api/v3/metric-model#generic-label-info
          &quot;a_key&quot;: &quot;A String&quot;,
        },
        &quot;target&quot;: 42, # The target resource utilization in percentage (1% - 100%) for the given metric; once the real usage deviates from the target by a certain percentage, the machine replicas change. The default value is 60 (representing 60%) if not provided.
      },
    ],
    &quot;flexStart&quot;: { # FlexStart is used to schedule the deployment workload on DWS resource. It contains the max duration of the deployment. # Optional. Immutable. If set, use DWS resource to schedule the deployment workload. reference: (https://cloud.google.com/blog/products/compute/introducing-dynamic-workload-scheduler)
      &quot;maxRuntimeDuration&quot;: &quot;A String&quot;, # The max duration of the deployment is max_runtime_duration. The deployment will be terminated after the duration. The max_runtime_duration can be set up to 7 days.
    },
    &quot;initialReplicaCount&quot;: 42, # Immutable. Number of initial replicas being deployed on when scaling the workload up from zero or when creating the workload in case min_replica_count = 0. When min_replica_count &gt; 0 (meaning that the scale-to-zero feature is not enabled), initial_replica_count should not be set. When min_replica_count = 0 (meaning that the scale-to-zero feature is enabled), initial_replica_count should be larger than zero, but no greater than max_replica_count.
    &quot;machineSpec&quot;: { # Specification of a single machine. # Required. Immutable. The specification of a single machine being used.
      &quot;acceleratorCount&quot;: 42, # The number of accelerators to attach to the machine.
      &quot;acceleratorType&quot;: &quot;A String&quot;, # Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
      &quot;gpuPartitionSize&quot;: &quot;A String&quot;, # Optional. Immutable. The Nvidia GPU partition size. When specified, the requested accelerators will be partitioned into smaller GPU partitions. For example, if the request is for 8 units of NVIDIA A100 GPUs, and gpu_partition_size=&quot;1g.10gb&quot;, the service will create 8 * 7 = 56 partitioned MIG instances. The partition size must be a value supported by the requested accelerator. Refer to [Nvidia GPU Partitioning](https://cloud.google.com/kubernetes-engine/docs/how-to/gpus-multi#multi-instance_gpu_partitions) for the available partition sizes. If set, the accelerator_count should be set to 1.
      &quot;machineType&quot;: &quot;A String&quot;, # Immutable. The type of the machine. See the [list of machine types supported for prediction](https://cloud.google.com/vertex-ai/docs/predictions/configure-compute#machine-types) See the [list of machine types supported for custom training](https://cloud.google.com/vertex-ai/docs/training/configure-compute#machine-types). For DeployedModel this field is optional, and the default value is `n1-standard-2`. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
      &quot;multihostGpuNodeCount&quot;: 42, # Optional. Immutable. The number of nodes per replica for multihost GPU deployments.
      &quot;reservationAffinity&quot;: { # A ReservationAffinity can be used to configure a Vertex AI resource (e.g., a DeployedModel) to draw its Compute Engine resources from a Shared Reservation, or exclusively from on-demand capacity. # Optional. Immutable. Configuration controlling how this resource pool consumes reservation.
        &quot;key&quot;: &quot;A String&quot;, # Optional. Corresponds to the label key of a reservation resource. To target a SPECIFIC_RESERVATION by name, use `compute.googleapis.com/reservation-name` as the key and specify the name of your reservation as its value.
        &quot;reservationAffinityType&quot;: &quot;A String&quot;, # Required. Specifies the reservation affinity type.
        &quot;values&quot;: [ # Optional. Corresponds to the label values of a reservation resource. This must be the full resource name of the reservation or reservation block.
          &quot;A String&quot;,
        ],
      },
      &quot;tpuTopology&quot;: &quot;A String&quot;, # Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: &quot;2x2x1&quot;).
    },
    &quot;maxReplicaCount&quot;: 42, # Immutable. The maximum number of replicas that may be deployed on when the traffic against it increases. If the requested value is too large, the deployment will error, but if deployment succeeds then the ability to scale to that many replicas is guaranteed (barring service outages). If traffic increases beyond what its replicas at maximum may handle, a portion of the traffic will be dropped. If this value is not provided, will use min_replica_count as the default value. The value of this field impacts the charge against Vertex CPU and GPU quotas. Specifically, you will be charged for (max_replica_count * number of cores in the selected machine type) and (max_replica_count * number of GPUs per replica in the selected machine type).
    &quot;minReplicaCount&quot;: 42, # Required. Immutable. The minimum number of machine replicas that will be always deployed on. This value must be greater than or equal to 1. If traffic increases, it may dynamically be deployed onto more replicas, and as traffic decreases, some of these extra replicas may be freed.
    &quot;requiredReplicaCount&quot;: 42, # Optional. Number of required available replicas for the deployment to succeed. This field is only needed when partial deployment/mutation is desired. If set, the deploy/mutate operation will succeed once available_replica_count reaches required_replica_count, and the rest of the replicas will be retried. If not set, the default required_replica_count will be min_replica_count.
    &quot;scaleToZeroSpec&quot;: { # Specification for scale-to-zero feature. # Optional. Specification for scale-to-zero feature.
      &quot;idleScaledownPeriod&quot;: &quot;A String&quot;, # Optional. Duration of no traffic before scaling to zero. [MinValue=300] (5 minutes) [MaxValue=28800] (8 hours)
      &quot;minScaleupPeriod&quot;: &quot;A String&quot;, # Optional. Minimum duration that a deployment will be scaled up before traffic is evaluated for potential scale-down. [MinValue=300] (5 minutes) [MaxValue=28800] (8 hours)
    },
    &quot;spot&quot;: True or False, # Optional. If true, schedule the deployment workload on [spot VMs](https://cloud.google.com/kubernetes-engine/docs/concepts/spot-vms).
  },
  &quot;endpointDisplayName&quot;: &quot;A String&quot;, # Optional. The user-specified display name of the endpoint. If not set, a default name will be used.
  &quot;huggingFaceAccessToken&quot;: &quot;A String&quot;, # Optional. The Hugging Face read access token used to access the model artifacts of gated models.
  &quot;model&quot;: &quot;A String&quot;, # Required. The model to deploy. Format: 1. `publishers/{publisher}/models/{publisher_model}@{version_id}`, or `publishers/hf-{hugging-face-author}/models/{hugging-face-model-name}@001`. 2. Hugging Face model ID like `google/gemma-2-2b-it`. 3. Custom model Google Cloud Storage URI like `gs://bucket`. 4. Custom model zip file like `https://example.com/a.zip`.
  &quot;modelDisplayName&quot;: &quot;A String&quot;, # Optional. The user-specified display name of the uploaded model. If not set, a default name will be used.
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # This resource represents a long-running operation that is the result of a network API call.
  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  &quot;response&quot;: { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="evaluateDataset">evaluateDataset(location, body=None, x__xgafv=None)</code>
  <pre>Evaluates a dataset based on a set of given metrics.

Args:
  location: string, Required. The resource name of the Location to evaluate the dataset. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for EvaluationService.EvaluateDataset.
  &quot;autoraterConfig&quot;: { # The configs for autorater. This is applicable to both EvaluateInstances and EvaluateDataset. # Optional. Autorater config used for evaluation. Currently only publisher Gemini models are supported. Format: `projects/{PROJECT}/locations/{LOCATION}/publishers/google/models/{MODEL}.`
    &quot;autoraterModel&quot;: &quot;A String&quot;, # Optional. The fully qualified name of the publisher model or tuned autorater endpoint to use. Publisher model format: `projects/{project}/locations/{location}/publishers/*/models/*` Tuned model endpoint format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
    &quot;flipEnabled&quot;: True or False, # Optional. Default is true. Whether to flip the candidate and baseline responses. This is only applicable to the pairwise metric. If enabled, also provide PairwiseMetricSpec.candidate_response_field_name and PairwiseMetricSpec.baseline_response_field_name. When rendering PairwiseMetricSpec.metric_prompt_template, the candidate and baseline fields will be flipped for half of the samples to reduce bias.
    &quot;generationConfig&quot;: { # Configuration for content generation. This message contains all the parameters that control how the model generates content. It allows you to influence the randomness, length, and structure of the output. # Optional. Configuration options for model generation and outputs.
      &quot;audioTimestamp&quot;: True or False, # Optional. If enabled, audio timestamps will be included in the request to the model. This can be useful for synchronizing audio with other modalities in the response.
      &quot;candidateCount&quot;: 42, # Optional. The number of candidate responses to generate. A higher `candidate_count` can provide more options to choose from, but it also consumes more resources. This can be useful for generating a variety of responses and selecting the best one.
      &quot;enableAffectiveDialog&quot;: True or False, # Optional. If enabled, the model will detect emotions and adapt its responses accordingly. For example, if the model detects that the user is frustrated, it may provide a more empathetic response.
      &quot;frequencyPenalty&quot;: 3.14, # Optional. Penalizes tokens based on their frequency in the generated text. A positive value helps to reduce the repetition of words and phrases. Valid values can range from [-2.0, 2.0].
      &quot;imageConfig&quot;: { # Configuration for image generation. This message allows you to control various aspects of image generation, such as the output format, aspect ratio, and whether the model can generate images of people. # Optional. Config for image generation features.
        &quot;aspectRatio&quot;: &quot;A String&quot;, # Optional. The desired aspect ratio for the generated images. The following aspect ratios are supported: &quot;1:1&quot; &quot;2:3&quot;, &quot;3:2&quot; &quot;3:4&quot;, &quot;4:3&quot; &quot;4:5&quot;, &quot;5:4&quot; &quot;9:16&quot;, &quot;16:9&quot; &quot;21:9&quot;
        &quot;imageOutputOptions&quot;: { # The image output format for generated images. # Optional. The image output format for generated images.
          &quot;compressionQuality&quot;: 42, # Optional. The compression quality of the output image.
          &quot;mimeType&quot;: &quot;A String&quot;, # Optional. The image format that the output should be saved as.
        },
        &quot;personGeneration&quot;: &quot;A String&quot;, # Optional. Controls whether the model can generate people.
      },
      &quot;logprobs&quot;: 42, # Optional. The number of top log probabilities to return for each token. This can be used to see which other tokens were considered likely candidates for a given position. A higher value will return more options, but it will also increase the size of the response.
      &quot;maxOutputTokens&quot;: 42, # Optional. The maximum number of tokens to generate in the response. A token is approximately four characters. The default value varies by model. This parameter can be used to control the length of the generated text and prevent overly long responses.
      &quot;mediaResolution&quot;: &quot;A String&quot;, # Optional. The token resolution at which input media content is sampled. This is used to control the trade-off between the quality of the response and the number of tokens used to represent the media. A higher resolution allows the model to perceive more detail, which can lead to a more nuanced response, but it will also use more tokens. This does not affect the image dimensions sent to the model.
      &quot;modelConfig&quot;: { # Config for model selection. # Optional. Config for model selection.
        &quot;featureSelectionPreference&quot;: &quot;A String&quot;, # Required. Feature selection preference.
      },
      &quot;presencePenalty&quot;: 3.14, # Optional. Penalizes tokens that have already appeared in the generated text. A positive value encourages the model to generate more diverse and less repetitive text. Valid values can range from [-2.0, 2.0].
      &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. When this field is set, response_schema must be omitted and response_mime_type must be set to `application/json`.
      &quot;responseLogprobs&quot;: True or False, # Optional. If set to true, the log probabilities of the output tokens are returned. Log probabilities are the logarithm of the probability of a token appearing in the output. A higher log probability means the token is more likely to be generated. This can be useful for analyzing the model&#x27;s confidence in its own output and for debugging.
      &quot;responseMimeType&quot;: &quot;A String&quot;, # Optional. The IANA standard MIME type of the response. The model will generate output that conforms to this MIME type. Supported values include &#x27;text/plain&#x27; (default) and &#x27;application/json&#x27;. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
      &quot;responseModalities&quot;: [ # Optional. The modalities of the response. The model will generate a response that includes all the specified modalities. For example, if this is set to `[TEXT, IMAGE]`, the response will include both text and an image.
        &quot;A String&quot;,
      ],
      &quot;responseSchema&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Lets you to specify a schema for the model&#x27;s response, ensuring that the output conforms to a particular structure. This is useful for generating structured data such as JSON. The schema is a subset of the [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema) object. When this field is set, you must also set the `response_mime_type` to `application/json`.
        &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
        &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
          # Object with schema name: GoogleCloudAiplatformV1beta1Schema
        ],
        &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
        &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
          &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
        },
        &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
        &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
          &quot;A String&quot;,
        ],
        &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
        &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
        &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
        &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
        &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
        &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
        &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
        &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
        &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
        &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
        &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
        &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
        &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
        &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
          &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
        },
        &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
          &quot;A String&quot;,
        ],
        &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
        &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
          &quot;A String&quot;,
        ],
        &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
        &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
      },
      &quot;routingConfig&quot;: { # The configuration for routing the request to a specific model. This can be used to control which model is used for the generation, either automatically or by specifying a model name. # Optional. Routing configuration.
        &quot;autoMode&quot;: { # The configuration for automated routing. When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference. # In this mode, the model is selected automatically based on the content of the request.
          &quot;modelRoutingPreference&quot;: &quot;A String&quot;, # The model routing preference.
        },
        &quot;manualMode&quot;: { # The configuration for manual routing. When manual routing is specified, the model will be selected based on the model name provided. # In this mode, the model is specified manually.
          &quot;modelName&quot;: &quot;A String&quot;, # The name of the model to use. Only public LLM models are accepted.
        },
      },
      &quot;seed&quot;: 42, # Optional. A seed for the random number generator. By setting a seed, you can make the model&#x27;s output mostly deterministic. For a given prompt and parameters (like temperature, top_p, etc.), the model will produce the same response every time. However, it&#x27;s not a guaranteed absolute deterministic behavior. This is different from parameters like `temperature`, which control the *level* of randomness. `seed` ensures that the &quot;random&quot; choices the model makes are the same on every run, making it essential for testing and ensuring reproducible results.
      &quot;speechConfig&quot;: { # Configuration for speech generation. # Optional. The speech generation config.
        &quot;languageCode&quot;: &quot;A String&quot;, # Optional. The language code (ISO 639-1) for the speech synthesis.
        &quot;multiSpeakerVoiceConfig&quot;: { # Configuration for a multi-speaker text-to-speech request. # The configuration for a multi-speaker text-to-speech request. This field is mutually exclusive with `voice_config`.
          &quot;speakerVoiceConfigs&quot;: [ # Required. A list of configurations for the voices of the speakers. Exactly two speaker voice configurations must be provided.
            { # Configuration for a single speaker in a multi-speaker setup.
              &quot;speaker&quot;: &quot;A String&quot;, # Required. The name of the speaker. This should be the same as the speaker name used in the prompt.
              &quot;voiceConfig&quot;: { # Configuration for a voice. # Required. The configuration for the voice of this speaker.
                &quot;prebuiltVoiceConfig&quot;: { # Configuration for a prebuilt voice. # The configuration for a prebuilt voice.
                  &quot;voiceName&quot;: &quot;A String&quot;, # The name of the prebuilt voice to use.
                },
              },
            },
          ],
        },
        &quot;voiceConfig&quot;: { # Configuration for a voice. # The configuration for the voice to use.
          &quot;prebuiltVoiceConfig&quot;: { # Configuration for a prebuilt voice. # The configuration for a prebuilt voice.
            &quot;voiceName&quot;: &quot;A String&quot;, # The name of the prebuilt voice to use.
          },
        },
      },
      &quot;stopSequences&quot;: [ # Optional. A list of character sequences that will stop the model from generating further tokens. If a stop sequence is generated, the output will end at that point. This is useful for controlling the length and structure of the output. For example, you can use [&quot;\n&quot;, &quot;###&quot;] to stop generation at a new line or a specific marker.
        &quot;A String&quot;,
      ],
      &quot;temperature&quot;: 3.14, # Optional. Controls the randomness of the output. A higher temperature results in more creative and diverse responses, while a lower temperature makes the output more predictable and focused. The valid range is (0.0, 2.0].
      &quot;thinkingConfig&quot;: { # Configuration for the model&#x27;s thinking features. &quot;Thinking&quot; is a process where the model breaks down a complex task into smaller, manageable steps. This allows the model to reason about the task, plan its approach, and execute the plan to generate a high-quality response. # Optional. Configuration for thinking features. An error will be returned if this field is set for models that don&#x27;t support thinking.
        &quot;includeThoughts&quot;: True or False, # Optional. If true, the model will include its thoughts in the response. &quot;Thoughts&quot; are the intermediate steps the model takes to arrive at the final response. They can provide insights into the model&#x27;s reasoning process and help with debugging. If this is true, thoughts are returned only when available.
        &quot;thinkingBudget&quot;: 42, # Optional. The token budget for the model&#x27;s thinking process. The model will make a best effort to stay within this budget. This can be used to control the trade-off between response quality and latency.
      },
      &quot;topK&quot;: 3.14, # Optional. Specifies the top-k sampling threshold. The model considers only the top k most probable tokens for the next token. This can be useful for generating more coherent and less random text. For example, a `top_k` of 40 means the model will choose the next word from the 40 most likely words.
      &quot;topP&quot;: 3.14, # Optional. Specifies the nucleus sampling threshold. The model considers only the smallest set of tokens whose cumulative probability is at least `top_p`. This helps generate more diverse and less repetitive responses. For example, a `top_p` of 0.9 means the model considers tokens until the cumulative probability of the tokens to select from reaches 0.9. It&#x27;s recommended to adjust either temperature or `top_p`, but not both.
    },
    &quot;samplingCount&quot;: 42, # Optional. Number of samples for each instance in the dataset. If not specified, the default is 4. Minimum value is 1, maximum value is 32.
  },
  &quot;dataset&quot;: { # The dataset used for evaluation. # Required. The dataset used for evaluation.
    &quot;bigquerySource&quot;: { # The BigQuery location for the input content. # BigQuery source holds the dataset.
      &quot;inputUri&quot;: &quot;A String&quot;, # Required. BigQuery URI to a table, up to 2000 characters long. Accepted forms: * BigQuery path. For example: `bq://projectId.bqDatasetId.bqTableId`.
    },
    &quot;gcsSource&quot;: { # The Google Cloud Storage location for the input content. # Cloud storage source holds the dataset. Currently only one Cloud Storage file path is supported.
      &quot;uris&quot;: [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
        &quot;A String&quot;,
      ],
    },
  },
  &quot;metrics&quot;: [ # Required. The metrics used for evaluation.
    { # The metric used for running evaluations.
      &quot;aggregationMetrics&quot;: [ # Optional. The aggregation metrics to use.
        &quot;A String&quot;,
      ],
      &quot;bleuSpec&quot;: { # Spec for bleu score metric - calculates the precision of n-grams in the prediction as compared to reference - returns a score ranging between 0 to 1. # Spec for bleu metric.
        &quot;useEffectiveOrder&quot;: True or False, # Optional. Whether to use_effective_order to compute bleu score.
      },
      &quot;customCodeExecutionSpec&quot;: { # Specificies a metric that is populated by evaluating user-defined Python code. # Spec for Custom Code Execution metric.
        &quot;evaluationFunction&quot;: &quot;A String&quot;, # Required. Python function. Expected user to define the following function, e.g.: def evaluate(instance: dict[str, Any]) -&gt; float: Please include this function signature in the code snippet. Instance is the evaluation instance, any fields populated in the instance are available to the function as instance[field_name]. Example: Example input: ``` instance= EvaluationInstance( response=EvaluationInstance.InstanceData(text=&quot;The answer is 4.&quot;), reference=EvaluationInstance.InstanceData(text=&quot;4&quot;) ) ``` Example converted input: ``` { &#x27;response&#x27;: {&#x27;text&#x27;: &#x27;The answer is 4.&#x27;}, &#x27;reference&#x27;: {&#x27;text&#x27;: &#x27;4&#x27;} } ``` Example python function: ``` def evaluate(instance: dict[str, Any]) -&gt; float: if instance&#x27;response&#x27; == instance&#x27;reference&#x27;: return 1.0 return 0.0 ```
      },
      &quot;exactMatchSpec&quot;: { # Spec for exact match metric - returns 1 if prediction and reference exactly matches, otherwise 0. # Spec for exact match metric.
      },
      &quot;llmBasedMetricSpec&quot;: { # Specification for an LLM based metric. # Spec for an LLM based metric.
        &quot;additionalConfig&quot;: { # Optional. Optional additional configuration for the metric.
          &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
        },
        &quot;judgeAutoraterConfig&quot;: { # The configs for autorater. This is applicable to both EvaluateInstances and EvaluateDataset. # Optional. Optional configuration for the judge LLM (Autorater).
          &quot;autoraterModel&quot;: &quot;A String&quot;, # Optional. The fully qualified name of the publisher model or tuned autorater endpoint to use. Publisher model format: `projects/{project}/locations/{location}/publishers/*/models/*` Tuned model endpoint format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
          &quot;flipEnabled&quot;: True or False, # Optional. Default is true. Whether to flip the candidate and baseline responses. This is only applicable to the pairwise metric. If enabled, also provide PairwiseMetricSpec.candidate_response_field_name and PairwiseMetricSpec.baseline_response_field_name. When rendering PairwiseMetricSpec.metric_prompt_template, the candidate and baseline fields will be flipped for half of the samples to reduce bias.
          &quot;generationConfig&quot;: { # Configuration for content generation. This message contains all the parameters that control how the model generates content. It allows you to influence the randomness, length, and structure of the output. # Optional. Configuration options for model generation and outputs.
            &quot;audioTimestamp&quot;: True or False, # Optional. If enabled, audio timestamps will be included in the request to the model. This can be useful for synchronizing audio with other modalities in the response.
            &quot;candidateCount&quot;: 42, # Optional. The number of candidate responses to generate. A higher `candidate_count` can provide more options to choose from, but it also consumes more resources. This can be useful for generating a variety of responses and selecting the best one.
            &quot;enableAffectiveDialog&quot;: True or False, # Optional. If enabled, the model will detect emotions and adapt its responses accordingly. For example, if the model detects that the user is frustrated, it may provide a more empathetic response.
            &quot;frequencyPenalty&quot;: 3.14, # Optional. Penalizes tokens based on their frequency in the generated text. A positive value helps to reduce the repetition of words and phrases. Valid values can range from [-2.0, 2.0].
            &quot;imageConfig&quot;: { # Configuration for image generation. This message allows you to control various aspects of image generation, such as the output format, aspect ratio, and whether the model can generate images of people. # Optional. Config for image generation features.
              &quot;aspectRatio&quot;: &quot;A String&quot;, # Optional. The desired aspect ratio for the generated images. The following aspect ratios are supported: &quot;1:1&quot; &quot;2:3&quot;, &quot;3:2&quot; &quot;3:4&quot;, &quot;4:3&quot; &quot;4:5&quot;, &quot;5:4&quot; &quot;9:16&quot;, &quot;16:9&quot; &quot;21:9&quot;
              &quot;imageOutputOptions&quot;: { # The image output format for generated images. # Optional. The image output format for generated images.
                &quot;compressionQuality&quot;: 42, # Optional. The compression quality of the output image.
                &quot;mimeType&quot;: &quot;A String&quot;, # Optional. The image format that the output should be saved as.
              },
              &quot;personGeneration&quot;: &quot;A String&quot;, # Optional. Controls whether the model can generate people.
            },
            &quot;logprobs&quot;: 42, # Optional. The number of top log probabilities to return for each token. This can be used to see which other tokens were considered likely candidates for a given position. A higher value will return more options, but it will also increase the size of the response.
            &quot;maxOutputTokens&quot;: 42, # Optional. The maximum number of tokens to generate in the response. A token is approximately four characters. The default value varies by model. This parameter can be used to control the length of the generated text and prevent overly long responses.
            &quot;mediaResolution&quot;: &quot;A String&quot;, # Optional. The token resolution at which input media content is sampled. This is used to control the trade-off between the quality of the response and the number of tokens used to represent the media. A higher resolution allows the model to perceive more detail, which can lead to a more nuanced response, but it will also use more tokens. This does not affect the image dimensions sent to the model.
            &quot;modelConfig&quot;: { # Config for model selection. # Optional. Config for model selection.
              &quot;featureSelectionPreference&quot;: &quot;A String&quot;, # Required. Feature selection preference.
            },
            &quot;presencePenalty&quot;: 3.14, # Optional. Penalizes tokens that have already appeared in the generated text. A positive value encourages the model to generate more diverse and less repetitive text. Valid values can range from [-2.0, 2.0].
            &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. When this field is set, response_schema must be omitted and response_mime_type must be set to `application/json`.
            &quot;responseLogprobs&quot;: True or False, # Optional. If set to true, the log probabilities of the output tokens are returned. Log probabilities are the logarithm of the probability of a token appearing in the output. A higher log probability means the token is more likely to be generated. This can be useful for analyzing the model&#x27;s confidence in its own output and for debugging.
            &quot;responseMimeType&quot;: &quot;A String&quot;, # Optional. The IANA standard MIME type of the response. The model will generate output that conforms to this MIME type. Supported values include &#x27;text/plain&#x27; (default) and &#x27;application/json&#x27;. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
            &quot;responseModalities&quot;: [ # Optional. The modalities of the response. The model will generate a response that includes all the specified modalities. For example, if this is set to `[TEXT, IMAGE]`, the response will include both text and an image.
              &quot;A String&quot;,
            ],
            &quot;responseSchema&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Lets you to specify a schema for the model&#x27;s response, ensuring that the output conforms to a particular structure. This is useful for generating structured data such as JSON. The schema is a subset of the [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema) object. When this field is set, you must also set the `response_mime_type` to `application/json`.
              &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
              &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
                # Object with schema name: GoogleCloudAiplatformV1beta1Schema
              ],
              &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
              &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
                &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
              },
              &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
              &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
                &quot;A String&quot;,
              ],
              &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
              &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
              &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
              &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
              &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
              &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
              &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
              &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
              &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
              &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
              &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
              &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
              &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
              &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
                &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
              },
              &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
                &quot;A String&quot;,
              ],
              &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
              &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
                &quot;A String&quot;,
              ],
              &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
              &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
            },
            &quot;routingConfig&quot;: { # The configuration for routing the request to a specific model. This can be used to control which model is used for the generation, either automatically or by specifying a model name. # Optional. Routing configuration.
              &quot;autoMode&quot;: { # The configuration for automated routing. When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference. # In this mode, the model is selected automatically based on the content of the request.
                &quot;modelRoutingPreference&quot;: &quot;A String&quot;, # The model routing preference.
              },
              &quot;manualMode&quot;: { # The configuration for manual routing. When manual routing is specified, the model will be selected based on the model name provided. # In this mode, the model is specified manually.
                &quot;modelName&quot;: &quot;A String&quot;, # The name of the model to use. Only public LLM models are accepted.
              },
            },
            &quot;seed&quot;: 42, # Optional. A seed for the random number generator. By setting a seed, you can make the model&#x27;s output mostly deterministic. For a given prompt and parameters (like temperature, top_p, etc.), the model will produce the same response every time. However, it&#x27;s not a guaranteed absolute deterministic behavior. This is different from parameters like `temperature`, which control the *level* of randomness. `seed` ensures that the &quot;random&quot; choices the model makes are the same on every run, making it essential for testing and ensuring reproducible results.
            &quot;speechConfig&quot;: { # Configuration for speech generation. # Optional. The speech generation config.
              &quot;languageCode&quot;: &quot;A String&quot;, # Optional. The language code (ISO 639-1) for the speech synthesis.
              &quot;multiSpeakerVoiceConfig&quot;: { # Configuration for a multi-speaker text-to-speech request. # The configuration for a multi-speaker text-to-speech request. This field is mutually exclusive with `voice_config`.
                &quot;speakerVoiceConfigs&quot;: [ # Required. A list of configurations for the voices of the speakers. Exactly two speaker voice configurations must be provided.
                  { # Configuration for a single speaker in a multi-speaker setup.
                    &quot;speaker&quot;: &quot;A String&quot;, # Required. The name of the speaker. This should be the same as the speaker name used in the prompt.
                    &quot;voiceConfig&quot;: { # Configuration for a voice. # Required. The configuration for the voice of this speaker.
                      &quot;prebuiltVoiceConfig&quot;: { # Configuration for a prebuilt voice. # The configuration for a prebuilt voice.
                        &quot;voiceName&quot;: &quot;A String&quot;, # The name of the prebuilt voice to use.
                      },
                    },
                  },
                ],
              },
              &quot;voiceConfig&quot;: { # Configuration for a voice. # The configuration for the voice to use.
                &quot;prebuiltVoiceConfig&quot;: { # Configuration for a prebuilt voice. # The configuration for a prebuilt voice.
                  &quot;voiceName&quot;: &quot;A String&quot;, # The name of the prebuilt voice to use.
                },
              },
            },
            &quot;stopSequences&quot;: [ # Optional. A list of character sequences that will stop the model from generating further tokens. If a stop sequence is generated, the output will end at that point. This is useful for controlling the length and structure of the output. For example, you can use [&quot;\n&quot;, &quot;###&quot;] to stop generation at a new line or a specific marker.
              &quot;A String&quot;,
            ],
            &quot;temperature&quot;: 3.14, # Optional. Controls the randomness of the output. A higher temperature results in more creative and diverse responses, while a lower temperature makes the output more predictable and focused. The valid range is (0.0, 2.0].
            &quot;thinkingConfig&quot;: { # Configuration for the model&#x27;s thinking features. &quot;Thinking&quot; is a process where the model breaks down a complex task into smaller, manageable steps. This allows the model to reason about the task, plan its approach, and execute the plan to generate a high-quality response. # Optional. Configuration for thinking features. An error will be returned if this field is set for models that don&#x27;t support thinking.
              &quot;includeThoughts&quot;: True or False, # Optional. If true, the model will include its thoughts in the response. &quot;Thoughts&quot; are the intermediate steps the model takes to arrive at the final response. They can provide insights into the model&#x27;s reasoning process and help with debugging. If this is true, thoughts are returned only when available.
              &quot;thinkingBudget&quot;: 42, # Optional. The token budget for the model&#x27;s thinking process. The model will make a best effort to stay within this budget. This can be used to control the trade-off between response quality and latency.
            },
            &quot;topK&quot;: 3.14, # Optional. Specifies the top-k sampling threshold. The model considers only the top k most probable tokens for the next token. This can be useful for generating more coherent and less random text. For example, a `top_k` of 40 means the model will choose the next word from the 40 most likely words.
            &quot;topP&quot;: 3.14, # Optional. Specifies the nucleus sampling threshold. The model considers only the smallest set of tokens whose cumulative probability is at least `top_p`. This helps generate more diverse and less repetitive responses. For example, a `top_p` of 0.9 means the model considers tokens until the cumulative probability of the tokens to select from reaches 0.9. It&#x27;s recommended to adjust either temperature or `top_p`, but not both.
          },
          &quot;samplingCount&quot;: 42, # Optional. Number of samples for each instance in the dataset. If not specified, the default is 4. Minimum value is 1, maximum value is 32.
        },
        &quot;metricPromptTemplate&quot;: &quot;A String&quot;, # Required. Template for the prompt sent to the judge model.
        &quot;predefinedRubricGenerationSpec&quot;: { # The spec for a pre-defined metric. # Dynamically generate rubrics using a predefined spec.
          &quot;metricSpecName&quot;: &quot;A String&quot;, # Required. The name of a pre-defined metric, such as &quot;instruction_following_v1&quot; or &quot;text_quality_v1&quot;.
          &quot;metricSpecParameters&quot;: { # Optional. The parameters needed to run the pre-defined metric.
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
          },
        },
        &quot;rubricGenerationSpec&quot;: { # Specification for how rubrics should be generated. # Dynamically generate rubrics using this specification.
          &quot;modelConfig&quot;: { # The configs for autorater. This is applicable to both EvaluateInstances and EvaluateDataset. # Configuration for the model used in rubric generation. Configs including sampling count and base model can be specified here. Flipping is not supported for rubric generation.
            &quot;autoraterModel&quot;: &quot;A String&quot;, # Optional. The fully qualified name of the publisher model or tuned autorater endpoint to use. Publisher model format: `projects/{project}/locations/{location}/publishers/*/models/*` Tuned model endpoint format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
            &quot;flipEnabled&quot;: True or False, # Optional. Default is true. Whether to flip the candidate and baseline responses. This is only applicable to the pairwise metric. If enabled, also provide PairwiseMetricSpec.candidate_response_field_name and PairwiseMetricSpec.baseline_response_field_name. When rendering PairwiseMetricSpec.metric_prompt_template, the candidate and baseline fields will be flipped for half of the samples to reduce bias.
            &quot;generationConfig&quot;: { # Configuration for content generation. This message contains all the parameters that control how the model generates content. It allows you to influence the randomness, length, and structure of the output. # Optional. Configuration options for model generation and outputs.
              &quot;audioTimestamp&quot;: True or False, # Optional. If enabled, audio timestamps will be included in the request to the model. This can be useful for synchronizing audio with other modalities in the response.
              &quot;candidateCount&quot;: 42, # Optional. The number of candidate responses to generate. A higher `candidate_count` can provide more options to choose from, but it also consumes more resources. This can be useful for generating a variety of responses and selecting the best one.
              &quot;enableAffectiveDialog&quot;: True or False, # Optional. If enabled, the model will detect emotions and adapt its responses accordingly. For example, if the model detects that the user is frustrated, it may provide a more empathetic response.
              &quot;frequencyPenalty&quot;: 3.14, # Optional. Penalizes tokens based on their frequency in the generated text. A positive value helps to reduce the repetition of words and phrases. Valid values can range from [-2.0, 2.0].
              &quot;imageConfig&quot;: { # Configuration for image generation. This message allows you to control various aspects of image generation, such as the output format, aspect ratio, and whether the model can generate images of people. # Optional. Config for image generation features.
                &quot;aspectRatio&quot;: &quot;A String&quot;, # Optional. The desired aspect ratio for the generated images. The following aspect ratios are supported: &quot;1:1&quot; &quot;2:3&quot;, &quot;3:2&quot; &quot;3:4&quot;, &quot;4:3&quot; &quot;4:5&quot;, &quot;5:4&quot; &quot;9:16&quot;, &quot;16:9&quot; &quot;21:9&quot;
                &quot;imageOutputOptions&quot;: { # The image output format for generated images. # Optional. The image output format for generated images.
                  &quot;compressionQuality&quot;: 42, # Optional. The compression quality of the output image.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Optional. The image format that the output should be saved as.
                },
                &quot;personGeneration&quot;: &quot;A String&quot;, # Optional. Controls whether the model can generate people.
              },
              &quot;logprobs&quot;: 42, # Optional. The number of top log probabilities to return for each token. This can be used to see which other tokens were considered likely candidates for a given position. A higher value will return more options, but it will also increase the size of the response.
              &quot;maxOutputTokens&quot;: 42, # Optional. The maximum number of tokens to generate in the response. A token is approximately four characters. The default value varies by model. This parameter can be used to control the length of the generated text and prevent overly long responses.
              &quot;mediaResolution&quot;: &quot;A String&quot;, # Optional. The token resolution at which input media content is sampled. This is used to control the trade-off between the quality of the response and the number of tokens used to represent the media. A higher resolution allows the model to perceive more detail, which can lead to a more nuanced response, but it will also use more tokens. This does not affect the image dimensions sent to the model.
              &quot;modelConfig&quot;: { # Config for model selection. # Optional. Config for model selection.
                &quot;featureSelectionPreference&quot;: &quot;A String&quot;, # Required. Feature selection preference.
              },
              &quot;presencePenalty&quot;: 3.14, # Optional. Penalizes tokens that have already appeared in the generated text. A positive value encourages the model to generate more diverse and less repetitive text. Valid values can range from [-2.0, 2.0].
              &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. When this field is set, response_schema must be omitted and response_mime_type must be set to `application/json`.
              &quot;responseLogprobs&quot;: True or False, # Optional. If set to true, the log probabilities of the output tokens are returned. Log probabilities are the logarithm of the probability of a token appearing in the output. A higher log probability means the token is more likely to be generated. This can be useful for analyzing the model&#x27;s confidence in its own output and for debugging.
              &quot;responseMimeType&quot;: &quot;A String&quot;, # Optional. The IANA standard MIME type of the response. The model will generate output that conforms to this MIME type. Supported values include &#x27;text/plain&#x27; (default) and &#x27;application/json&#x27;. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
              &quot;responseModalities&quot;: [ # Optional. The modalities of the response. The model will generate a response that includes all the specified modalities. For example, if this is set to `[TEXT, IMAGE]`, the response will include both text and an image.
                &quot;A String&quot;,
              ],
              &quot;responseSchema&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Lets you to specify a schema for the model&#x27;s response, ensuring that the output conforms to a particular structure. This is useful for generating structured data such as JSON. The schema is a subset of the [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema) object. When this field is set, you must also set the `response_mime_type` to `application/json`.
                &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
                &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
                  # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                ],
                &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
                &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
                  &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                },
                &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
                &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
                  &quot;A String&quot;,
                ],
                &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
                &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
                &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
                &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
                &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
                &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
                &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
                &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
                &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
                &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
                &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
                &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
                &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
                &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
                  &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                },
                &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
                  &quot;A String&quot;,
                ],
                &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
                &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
                  &quot;A String&quot;,
                ],
                &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
                &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
              },
              &quot;routingConfig&quot;: { # The configuration for routing the request to a specific model. This can be used to control which model is used for the generation, either automatically or by specifying a model name. # Optional. Routing configuration.
                &quot;autoMode&quot;: { # The configuration for automated routing. When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference. # In this mode, the model is selected automatically based on the content of the request.
                  &quot;modelRoutingPreference&quot;: &quot;A String&quot;, # The model routing preference.
                },
                &quot;manualMode&quot;: { # The configuration for manual routing. When manual routing is specified, the model will be selected based on the model name provided. # In this mode, the model is specified manually.
                  &quot;modelName&quot;: &quot;A String&quot;, # The name of the model to use. Only public LLM models are accepted.
                },
              },
              &quot;seed&quot;: 42, # Optional. A seed for the random number generator. By setting a seed, you can make the model&#x27;s output mostly deterministic. For a given prompt and parameters (like temperature, top_p, etc.), the model will produce the same response every time. However, it&#x27;s not a guaranteed absolute deterministic behavior. This is different from parameters like `temperature`, which control the *level* of randomness. `seed` ensures that the &quot;random&quot; choices the model makes are the same on every run, making it essential for testing and ensuring reproducible results.
              &quot;speechConfig&quot;: { # Configuration for speech generation. # Optional. The speech generation config.
                &quot;languageCode&quot;: &quot;A String&quot;, # Optional. The language code (ISO 639-1) for the speech synthesis.
                &quot;multiSpeakerVoiceConfig&quot;: { # Configuration for a multi-speaker text-to-speech request. # The configuration for a multi-speaker text-to-speech request. This field is mutually exclusive with `voice_config`.
                  &quot;speakerVoiceConfigs&quot;: [ # Required. A list of configurations for the voices of the speakers. Exactly two speaker voice configurations must be provided.
                    { # Configuration for a single speaker in a multi-speaker setup.
                      &quot;speaker&quot;: &quot;A String&quot;, # Required. The name of the speaker. This should be the same as the speaker name used in the prompt.
                      &quot;voiceConfig&quot;: { # Configuration for a voice. # Required. The configuration for the voice of this speaker.
                        &quot;prebuiltVoiceConfig&quot;: { # Configuration for a prebuilt voice. # The configuration for a prebuilt voice.
                          &quot;voiceName&quot;: &quot;A String&quot;, # The name of the prebuilt voice to use.
                        },
                      },
                    },
                  ],
                },
                &quot;voiceConfig&quot;: { # Configuration for a voice. # The configuration for the voice to use.
                  &quot;prebuiltVoiceConfig&quot;: { # Configuration for a prebuilt voice. # The configuration for a prebuilt voice.
                    &quot;voiceName&quot;: &quot;A String&quot;, # The name of the prebuilt voice to use.
                  },
                },
              },
              &quot;stopSequences&quot;: [ # Optional. A list of character sequences that will stop the model from generating further tokens. If a stop sequence is generated, the output will end at that point. This is useful for controlling the length and structure of the output. For example, you can use [&quot;\n&quot;, &quot;###&quot;] to stop generation at a new line or a specific marker.
                &quot;A String&quot;,
              ],
              &quot;temperature&quot;: 3.14, # Optional. Controls the randomness of the output. A higher temperature results in more creative and diverse responses, while a lower temperature makes the output more predictable and focused. The valid range is (0.0, 2.0].
              &quot;thinkingConfig&quot;: { # Configuration for the model&#x27;s thinking features. &quot;Thinking&quot; is a process where the model breaks down a complex task into smaller, manageable steps. This allows the model to reason about the task, plan its approach, and execute the plan to generate a high-quality response. # Optional. Configuration for thinking features. An error will be returned if this field is set for models that don&#x27;t support thinking.
                &quot;includeThoughts&quot;: True or False, # Optional. If true, the model will include its thoughts in the response. &quot;Thoughts&quot; are the intermediate steps the model takes to arrive at the final response. They can provide insights into the model&#x27;s reasoning process and help with debugging. If this is true, thoughts are returned only when available.
                &quot;thinkingBudget&quot;: 42, # Optional. The token budget for the model&#x27;s thinking process. The model will make a best effort to stay within this budget. This can be used to control the trade-off between response quality and latency.
              },
              &quot;topK&quot;: 3.14, # Optional. Specifies the top-k sampling threshold. The model considers only the top k most probable tokens for the next token. This can be useful for generating more coherent and less random text. For example, a `top_k` of 40 means the model will choose the next word from the 40 most likely words.
              &quot;topP&quot;: 3.14, # Optional. Specifies the nucleus sampling threshold. The model considers only the smallest set of tokens whose cumulative probability is at least `top_p`. This helps generate more diverse and less repetitive responses. For example, a `top_p` of 0.9 means the model considers tokens until the cumulative probability of the tokens to select from reaches 0.9. It&#x27;s recommended to adjust either temperature or `top_p`, but not both.
            },
            &quot;samplingCount&quot;: 42, # Optional. Number of samples for each instance in the dataset. If not specified, the default is 4. Minimum value is 1, maximum value is 32.
          },
          &quot;promptTemplate&quot;: &quot;A String&quot;, # Template for the prompt used to generate rubrics. The details should be updated based on the most-recent recipe requirements.
          &quot;rubricContentType&quot;: &quot;A String&quot;, # The type of rubric content to be generated.
          &quot;rubricTypeOntology&quot;: [ # Optional. An optional, pre-defined list of allowed types for generated rubrics. If this field is provided, it implies `include_rubric_type` should be true, and the generated rubric types should be chosen from this ontology.
            &quot;A String&quot;,
          ],
        },
        &quot;rubricGroupKey&quot;: &quot;A String&quot;, # Use a pre-defined group of rubrics associated with the input. Refers to a key in the rubric_groups map of EvaluationInstance.
        &quot;systemInstruction&quot;: &quot;A String&quot;, # Optional. System instructions for the judge model.
      },
      &quot;pairwiseMetricSpec&quot;: { # Spec for pairwise metric. # Spec for pairwise metric.
        &quot;baselineResponseFieldName&quot;: &quot;A String&quot;, # Optional. The field name of the baseline response.
        &quot;candidateResponseFieldName&quot;: &quot;A String&quot;, # Optional. The field name of the candidate response.
        &quot;customOutputFormatConfig&quot;: { # Spec for custom output format configuration. # Optional. CustomOutputFormatConfig allows customization of metric output. When this config is set, the default output is replaced with the raw output string. If a custom format is chosen, the `pairwise_choice` and `explanation` fields in the corresponding metric result will be empty.
          &quot;returnRawOutput&quot;: True or False, # Optional. Whether to return raw output.
        },
        &quot;metricPromptTemplate&quot;: &quot;A String&quot;, # Required. Metric prompt template for pairwise metric.
        &quot;systemInstruction&quot;: &quot;A String&quot;, # Optional. System instructions for pairwise metric.
      },
      &quot;pointwiseMetricSpec&quot;: { # Spec for pointwise metric. # Spec for pointwise metric.
        &quot;customOutputFormatConfig&quot;: { # Spec for custom output format configuration. # Optional. CustomOutputFormatConfig allows customization of metric output. By default, metrics return a score and explanation. When this config is set, the default output is replaced with either: - The raw output string. - A parsed output based on a user-defined schema. If a custom format is chosen, the `score` and `explanation` fields in the corresponding metric result will be empty.
          &quot;returnRawOutput&quot;: True or False, # Optional. Whether to return raw output.
        },
        &quot;metricPromptTemplate&quot;: &quot;A String&quot;, # Required. Metric prompt template for pointwise metric.
        &quot;systemInstruction&quot;: &quot;A String&quot;, # Optional. System instructions for pointwise metric.
      },
      &quot;predefinedMetricSpec&quot;: { # The spec for a pre-defined metric. # The spec for a pre-defined metric.
        &quot;metricSpecName&quot;: &quot;A String&quot;, # Required. The name of a pre-defined metric, such as &quot;instruction_following_v1&quot; or &quot;text_quality_v1&quot;.
        &quot;metricSpecParameters&quot;: { # Optional. The parameters needed to run the pre-defined metric.
          &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
        },
      },
      &quot;rougeSpec&quot;: { # Spec for rouge score metric - calculates the recall of n-grams in prediction as compared to reference - returns a score ranging between 0 and 1. # Spec for rouge metric.
        &quot;rougeType&quot;: &quot;A String&quot;, # Optional. Supported rouge types are rougen[1-9], rougeL, and rougeLsum.
        &quot;splitSummaries&quot;: True or False, # Optional. Whether to split summaries while using rougeLsum.
        &quot;useStemmer&quot;: True or False, # Optional. Whether to use stemmer to compute rouge score.
      },
    },
  ],
  &quot;outputConfig&quot;: { # Config for evaluation output. # Required. Config for evaluation output.
    &quot;gcsDestination&quot;: { # The Google Cloud Storage location where the output is to be written to. # Cloud storage destination for evaluation output.
      &quot;outputUriPrefix&quot;: &quot;A String&quot;, # Required. Google Cloud Storage URI to output directory. If the uri doesn&#x27;t end with &#x27;/&#x27;, a &#x27;/&#x27; will be automatically appended. The directory is created if it doesn&#x27;t exist.
    },
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # This resource represents a long-running operation that is the result of a network API call.
  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  &quot;response&quot;: { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="evaluateInstances">evaluateInstances(location, body=None, x__xgafv=None)</code>
  <pre>Evaluates instances based on a given metric.

Args:
  location: string, Required. The resource name of the Location to evaluate the instances. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for EvaluationService.EvaluateInstances.
  &quot;autoraterConfig&quot;: { # The configs for autorater. This is applicable to both EvaluateInstances and EvaluateDataset. # Optional. Autorater config used for evaluation.
    &quot;autoraterModel&quot;: &quot;A String&quot;, # Optional. The fully qualified name of the publisher model or tuned autorater endpoint to use. Publisher model format: `projects/{project}/locations/{location}/publishers/*/models/*` Tuned model endpoint format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
    &quot;flipEnabled&quot;: True or False, # Optional. Default is true. Whether to flip the candidate and baseline responses. This is only applicable to the pairwise metric. If enabled, also provide PairwiseMetricSpec.candidate_response_field_name and PairwiseMetricSpec.baseline_response_field_name. When rendering PairwiseMetricSpec.metric_prompt_template, the candidate and baseline fields will be flipped for half of the samples to reduce bias.
    &quot;generationConfig&quot;: { # Configuration for content generation. This message contains all the parameters that control how the model generates content. It allows you to influence the randomness, length, and structure of the output. # Optional. Configuration options for model generation and outputs.
      &quot;audioTimestamp&quot;: True or False, # Optional. If enabled, audio timestamps will be included in the request to the model. This can be useful for synchronizing audio with other modalities in the response.
      &quot;candidateCount&quot;: 42, # Optional. The number of candidate responses to generate. A higher `candidate_count` can provide more options to choose from, but it also consumes more resources. This can be useful for generating a variety of responses and selecting the best one.
      &quot;enableAffectiveDialog&quot;: True or False, # Optional. If enabled, the model will detect emotions and adapt its responses accordingly. For example, if the model detects that the user is frustrated, it may provide a more empathetic response.
      &quot;frequencyPenalty&quot;: 3.14, # Optional. Penalizes tokens based on their frequency in the generated text. A positive value helps to reduce the repetition of words and phrases. Valid values can range from [-2.0, 2.0].
      &quot;imageConfig&quot;: { # Configuration for image generation. This message allows you to control various aspects of image generation, such as the output format, aspect ratio, and whether the model can generate images of people. # Optional. Config for image generation features.
        &quot;aspectRatio&quot;: &quot;A String&quot;, # Optional. The desired aspect ratio for the generated images. The following aspect ratios are supported: &quot;1:1&quot; &quot;2:3&quot;, &quot;3:2&quot; &quot;3:4&quot;, &quot;4:3&quot; &quot;4:5&quot;, &quot;5:4&quot; &quot;9:16&quot;, &quot;16:9&quot; &quot;21:9&quot;
        &quot;imageOutputOptions&quot;: { # The image output format for generated images. # Optional. The image output format for generated images.
          &quot;compressionQuality&quot;: 42, # Optional. The compression quality of the output image.
          &quot;mimeType&quot;: &quot;A String&quot;, # Optional. The image format that the output should be saved as.
        },
        &quot;personGeneration&quot;: &quot;A String&quot;, # Optional. Controls whether the model can generate people.
      },
      &quot;logprobs&quot;: 42, # Optional. The number of top log probabilities to return for each token. This can be used to see which other tokens were considered likely candidates for a given position. A higher value will return more options, but it will also increase the size of the response.
      &quot;maxOutputTokens&quot;: 42, # Optional. The maximum number of tokens to generate in the response. A token is approximately four characters. The default value varies by model. This parameter can be used to control the length of the generated text and prevent overly long responses.
      &quot;mediaResolution&quot;: &quot;A String&quot;, # Optional. The token resolution at which input media content is sampled. This is used to control the trade-off between the quality of the response and the number of tokens used to represent the media. A higher resolution allows the model to perceive more detail, which can lead to a more nuanced response, but it will also use more tokens. This does not affect the image dimensions sent to the model.
      &quot;modelConfig&quot;: { # Config for model selection. # Optional. Config for model selection.
        &quot;featureSelectionPreference&quot;: &quot;A String&quot;, # Required. Feature selection preference.
      },
      &quot;presencePenalty&quot;: 3.14, # Optional. Penalizes tokens that have already appeared in the generated text. A positive value encourages the model to generate more diverse and less repetitive text. Valid values can range from [-2.0, 2.0].
      &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. When this field is set, response_schema must be omitted and response_mime_type must be set to `application/json`.
      &quot;responseLogprobs&quot;: True or False, # Optional. If set to true, the log probabilities of the output tokens are returned. Log probabilities are the logarithm of the probability of a token appearing in the output. A higher log probability means the token is more likely to be generated. This can be useful for analyzing the model&#x27;s confidence in its own output and for debugging.
      &quot;responseMimeType&quot;: &quot;A String&quot;, # Optional. The IANA standard MIME type of the response. The model will generate output that conforms to this MIME type. Supported values include &#x27;text/plain&#x27; (default) and &#x27;application/json&#x27;. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
      &quot;responseModalities&quot;: [ # Optional. The modalities of the response. The model will generate a response that includes all the specified modalities. For example, if this is set to `[TEXT, IMAGE]`, the response will include both text and an image.
        &quot;A String&quot;,
      ],
      &quot;responseSchema&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Lets you to specify a schema for the model&#x27;s response, ensuring that the output conforms to a particular structure. This is useful for generating structured data such as JSON. The schema is a subset of the [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema) object. When this field is set, you must also set the `response_mime_type` to `application/json`.
        &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
        &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
          # Object with schema name: GoogleCloudAiplatformV1beta1Schema
        ],
        &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
        &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
          &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
        },
        &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
        &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
          &quot;A String&quot;,
        ],
        &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
        &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
        &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
        &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
        &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
        &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
        &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
        &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
        &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
        &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
        &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
        &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
        &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
        &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
          &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
        },
        &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
          &quot;A String&quot;,
        ],
        &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
        &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
          &quot;A String&quot;,
        ],
        &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
        &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
      },
      &quot;routingConfig&quot;: { # The configuration for routing the request to a specific model. This can be used to control which model is used for the generation, either automatically or by specifying a model name. # Optional. Routing configuration.
        &quot;autoMode&quot;: { # The configuration for automated routing. When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference. # In this mode, the model is selected automatically based on the content of the request.
          &quot;modelRoutingPreference&quot;: &quot;A String&quot;, # The model routing preference.
        },
        &quot;manualMode&quot;: { # The configuration for manual routing. When manual routing is specified, the model will be selected based on the model name provided. # In this mode, the model is specified manually.
          &quot;modelName&quot;: &quot;A String&quot;, # The name of the model to use. Only public LLM models are accepted.
        },
      },
      &quot;seed&quot;: 42, # Optional. A seed for the random number generator. By setting a seed, you can make the model&#x27;s output mostly deterministic. For a given prompt and parameters (like temperature, top_p, etc.), the model will produce the same response every time. However, it&#x27;s not a guaranteed absolute deterministic behavior. This is different from parameters like `temperature`, which control the *level* of randomness. `seed` ensures that the &quot;random&quot; choices the model makes are the same on every run, making it essential for testing and ensuring reproducible results.
      &quot;speechConfig&quot;: { # Configuration for speech generation. # Optional. The speech generation config.
        &quot;languageCode&quot;: &quot;A String&quot;, # Optional. The language code (ISO 639-1) for the speech synthesis.
        &quot;multiSpeakerVoiceConfig&quot;: { # Configuration for a multi-speaker text-to-speech request. # The configuration for a multi-speaker text-to-speech request. This field is mutually exclusive with `voice_config`.
          &quot;speakerVoiceConfigs&quot;: [ # Required. A list of configurations for the voices of the speakers. Exactly two speaker voice configurations must be provided.
            { # Configuration for a single speaker in a multi-speaker setup.
              &quot;speaker&quot;: &quot;A String&quot;, # Required. The name of the speaker. This should be the same as the speaker name used in the prompt.
              &quot;voiceConfig&quot;: { # Configuration for a voice. # Required. The configuration for the voice of this speaker.
                &quot;prebuiltVoiceConfig&quot;: { # Configuration for a prebuilt voice. # The configuration for a prebuilt voice.
                  &quot;voiceName&quot;: &quot;A String&quot;, # The name of the prebuilt voice to use.
                },
              },
            },
          ],
        },
        &quot;voiceConfig&quot;: { # Configuration for a voice. # The configuration for the voice to use.
          &quot;prebuiltVoiceConfig&quot;: { # Configuration for a prebuilt voice. # The configuration for a prebuilt voice.
            &quot;voiceName&quot;: &quot;A String&quot;, # The name of the prebuilt voice to use.
          },
        },
      },
      &quot;stopSequences&quot;: [ # Optional. A list of character sequences that will stop the model from generating further tokens. If a stop sequence is generated, the output will end at that point. This is useful for controlling the length and structure of the output. For example, you can use [&quot;\n&quot;, &quot;###&quot;] to stop generation at a new line or a specific marker.
        &quot;A String&quot;,
      ],
      &quot;temperature&quot;: 3.14, # Optional. Controls the randomness of the output. A higher temperature results in more creative and diverse responses, while a lower temperature makes the output more predictable and focused. The valid range is (0.0, 2.0].
      &quot;thinkingConfig&quot;: { # Configuration for the model&#x27;s thinking features. &quot;Thinking&quot; is a process where the model breaks down a complex task into smaller, manageable steps. This allows the model to reason about the task, plan its approach, and execute the plan to generate a high-quality response. # Optional. Configuration for thinking features. An error will be returned if this field is set for models that don&#x27;t support thinking.
        &quot;includeThoughts&quot;: True or False, # Optional. If true, the model will include its thoughts in the response. &quot;Thoughts&quot; are the intermediate steps the model takes to arrive at the final response. They can provide insights into the model&#x27;s reasoning process and help with debugging. If this is true, thoughts are returned only when available.
        &quot;thinkingBudget&quot;: 42, # Optional. The token budget for the model&#x27;s thinking process. The model will make a best effort to stay within this budget. This can be used to control the trade-off between response quality and latency.
      },
      &quot;topK&quot;: 3.14, # Optional. Specifies the top-k sampling threshold. The model considers only the top k most probable tokens for the next token. This can be useful for generating more coherent and less random text. For example, a `top_k` of 40 means the model will choose the next word from the 40 most likely words.
      &quot;topP&quot;: 3.14, # Optional. Specifies the nucleus sampling threshold. The model considers only the smallest set of tokens whose cumulative probability is at least `top_p`. This helps generate more diverse and less repetitive responses. For example, a `top_p` of 0.9 means the model considers tokens until the cumulative probability of the tokens to select from reaches 0.9. It&#x27;s recommended to adjust either temperature or `top_p`, but not both.
    },
    &quot;samplingCount&quot;: 42, # Optional. Number of samples for each instance in the dataset. If not specified, the default is 4. Minimum value is 1, maximum value is 32.
  },
  &quot;bleuInput&quot;: { # Input for bleu metric. # Instances and metric spec for bleu metric.
    &quot;instances&quot;: [ # Required. Repeated bleu instances.
      { # Spec for bleu instance.
        &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
        &quot;reference&quot;: &quot;A String&quot;, # Required. Ground truth used to compare against the prediction.
      },
    ],
    &quot;metricSpec&quot;: { # Spec for bleu score metric - calculates the precision of n-grams in the prediction as compared to reference - returns a score ranging between 0 to 1. # Required. Spec for bleu score metric.
      &quot;useEffectiveOrder&quot;: True or False, # Optional. Whether to use_effective_order to compute bleu score.
    },
  },
  &quot;coherenceInput&quot;: { # Input for coherence metric. # Input for coherence metric.
    &quot;instance&quot;: { # Spec for coherence instance. # Required. Coherence instance.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
    },
    &quot;metricSpec&quot;: { # Spec for coherence score metric. # Required. Spec for coherence score metric.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;cometInput&quot;: { # Input for Comet metric. # Translation metrics. Input for Comet metric.
    &quot;instance&quot;: { # Spec for Comet instance - The fields used for evaluation are dependent on the comet version. # Required. Comet instance.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
      &quot;source&quot;: &quot;A String&quot;, # Optional. Source text in original language.
    },
    &quot;metricSpec&quot;: { # Spec for Comet metric. # Required. Spec for comet metric.
      &quot;sourceLanguage&quot;: &quot;A String&quot;, # Optional. Source language in BCP-47 format.
      &quot;targetLanguage&quot;: &quot;A String&quot;, # Optional. Target language in BCP-47 format. Covers both prediction and reference.
      &quot;version&quot;: &quot;A String&quot;, # Required. Which version to use for evaluation.
    },
  },
  &quot;exactMatchInput&quot;: { # Input for exact match metric. # Auto metric instances. Instances and metric spec for exact match metric.
    &quot;instances&quot;: [ # Required. Repeated exact match instances.
      { # Spec for exact match instance.
        &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
        &quot;reference&quot;: &quot;A String&quot;, # Required. Ground truth used to compare against the prediction.
      },
    ],
    &quot;metricSpec&quot;: { # Spec for exact match metric - returns 1 if prediction and reference exactly matches, otherwise 0. # Required. Spec for exact match metric.
    },
  },
  &quot;fluencyInput&quot;: { # Input for fluency metric. # LLM-based metric instance. General text generation metrics, applicable to other categories. Input for fluency metric.
    &quot;instance&quot;: { # Spec for fluency instance. # Required. Fluency instance.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
    },
    &quot;metricSpec&quot;: { # Spec for fluency score metric. # Required. Spec for fluency score metric.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;fulfillmentInput&quot;: { # Input for fulfillment metric. # Input for fulfillment metric.
    &quot;instance&quot;: { # Spec for fulfillment instance. # Required. Fulfillment instance.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. Inference instruction prompt to compare prediction with.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
    },
    &quot;metricSpec&quot;: { # Spec for fulfillment metric. # Required. Spec for fulfillment score metric.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;groundednessInput&quot;: { # Input for groundedness metric. # Input for groundedness metric.
    &quot;instance&quot;: { # Spec for groundedness instance. # Required. Groundedness instance.
      &quot;context&quot;: &quot;A String&quot;, # Required. Background information provided in context used to compare against the prediction.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
    },
    &quot;metricSpec&quot;: { # Spec for groundedness metric. # Required. Spec for groundedness metric.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;instance&quot;: { # A single instance to be evaluated. Instances are used to specify the input data for evaluation, from simple string comparisons to complex, multi-turn model evaluations # The instance to be evaluated.
    &quot;agentData&quot;: { # Contains data specific to agent evaluations. # Optional. Data used for agent evaluation.
      &quot;agentConfig&quot;: { # Configuration for an Agent. # Optional. Agent configuration.
        &quot;developerInstruction&quot;: { # Instance data used to populate placeholders in a metric prompt template. # Optional. A field containing instructions from the developer for the agent.
          &quot;contents&quot;: { # List of standard Content messages from Gemini API. # List of Gemini content data.
            &quot;contents&quot;: [ # Optional. Repeated contents.
              { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message.
                &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
                  { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                    &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
                      &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                      &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                    },
                    &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
                      &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                      &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                    },
                    &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
                      &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                      &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
                      &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                    },
                    &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
                      &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                        &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                      },
                      &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                      &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
                    },
                    &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
                      &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                      &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                      &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
                        { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                          &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                            &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                          },
                          &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                            &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                          },
                        },
                      ],
                      &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                        &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                      },
                    },
                    &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
                      &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
                      &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                      &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                    },
                    &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
                    &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
                    &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                    &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                      &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                      &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
                      &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                    },
                  },
                ],
                &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
              },
            ],
          },
          &quot;text&quot;: &quot;A String&quot;, # Text data.
        },
        &quot;tools&quot;: { # Represents a list of tools for an agent. # List of tools.
          &quot;tool&quot;: [ # Optional. List of tools: each tool can have multiple function declarations.
            { # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
              &quot;codeExecution&quot;: { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
              },
              &quot;computerUse&quot;: { # Tool to support computer use. # Optional. Tool to support the model interacting directly with the computer. If enabled, it automatically populates computer-use specific Function Declarations.
                &quot;environment&quot;: &quot;A String&quot;, # Required. The environment being operated.
                &quot;excludedPredefinedFunctions&quot;: [ # Optional. By default, [predefined functions](https://cloud.google.com/vertex-ai/generative-ai/docs/computer-use#supported-actions) are included in the final model call. Some of them can be explicitly excluded from being automatically included. This can serve two purposes: 1. Using a more restricted / different action space. 2. Improving the definitions / instructions of predefined functions.
                  &quot;A String&quot;,
                ],
              },
              &quot;enterpriseWebSearch&quot;: { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
                &quot;blockingConfidence&quot;: &quot;A String&quot;, # Optional. Sites with confidence level chosen &amp; above this value will be blocked from the search results.
                &quot;excludeDomains&quot;: [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
                  &quot;A String&quot;,
                ],
              },
              &quot;functionDeclarations&quot;: [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
                { # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
                  &quot;description&quot;: &quot;A String&quot;, # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
                  &quot;parameters&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
                    &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
                    &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
                      # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                    ],
                    &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
                    &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
                      &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                    },
                    &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
                    &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
                      &quot;A String&quot;,
                    ],
                    &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
                    &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
                    &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
                    &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
                    &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
                    &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
                    &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
                    &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
                    &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
                    &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
                    &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
                    &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
                    &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
                    &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
                      &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                    },
                    &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
                      &quot;A String&quot;,
                    ],
                    &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
                    &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
                      &quot;A String&quot;,
                    ],
                    &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
                    &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
                  },
                  &quot;parametersJsonSchema&quot;: &quot;&quot;, # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { &quot;type&quot;: &quot;object&quot;, &quot;properties&quot;: { &quot;name&quot;: { &quot;type&quot;: &quot;string&quot; }, &quot;age&quot;: { &quot;type&quot;: &quot;integer&quot; } }, &quot;additionalProperties&quot;: false, &quot;required&quot;: [&quot;name&quot;, &quot;age&quot;], &quot;propertyOrdering&quot;: [&quot;name&quot;, &quot;age&quot;] } ``` This field is mutually exclusive with `parameters`.
                  &quot;response&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
                    &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
                    &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
                      # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                    ],
                    &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
                    &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
                      &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                    },
                    &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
                    &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
                      &quot;A String&quot;,
                    ],
                    &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
                    &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
                    &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
                    &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
                    &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
                    &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
                    &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
                    &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
                    &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
                    &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
                    &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
                    &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
                    &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
                    &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
                      &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                    },
                    &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
                      &quot;A String&quot;,
                    ],
                    &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
                    &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
                      &quot;A String&quot;,
                    ],
                    &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
                    &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
                  },
                  &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
                },
              ],
              &quot;googleMaps&quot;: { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
                &quot;enableWidget&quot;: True or False, # Optional. If true, include the widget context token in the response.
              },
              &quot;googleSearch&quot;: { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
                &quot;blockingConfidence&quot;: &quot;A String&quot;, # Optional. Sites with confidence level chosen &amp; above this value will be blocked from the search results.
                &quot;excludeDomains&quot;: [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: [&quot;amazon.com&quot;, &quot;facebook.com&quot;].
                  &quot;A String&quot;,
                ],
              },
              &quot;googleSearchRetrieval&quot;: { # Tool to retrieve public web data for grounding, powered by Google. # Optional. Specialized retrieval tool that is powered by Google Search.
                &quot;dynamicRetrievalConfig&quot;: { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
                  &quot;dynamicThreshold&quot;: 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
                  &quot;mode&quot;: &quot;A String&quot;, # The mode of the predictor to be used in dynamic retrieval.
                },
              },
              &quot;retrieval&quot;: { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
                &quot;disableAttribution&quot;: True or False, # Optional. Deprecated. This option is no longer supported.
                &quot;externalApi&quot;: { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
                  &quot;apiAuth&quot;: { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
                    &quot;apiKeyConfig&quot;: { # The API secret. # The API secret.
                      &quot;apiKeySecretVersion&quot;: &quot;A String&quot;, # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
                      &quot;apiKeyString&quot;: &quot;A String&quot;, # The API key string. Either this or `api_key_secret_version` must be set.
                    },
                  },
                  &quot;apiSpec&quot;: &quot;A String&quot;, # The API spec that the external API implements.
                  &quot;authConfig&quot;: { # Auth configuration to run the extension. # The authentication config to access the API.
                    &quot;apiKeyConfig&quot;: { # Config for authentication with API key. # Config for API key auth.
                      &quot;apiKeySecret&quot;: &quot;A String&quot;, # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
                      &quot;apiKeyString&quot;: &quot;A String&quot;, # Optional. The API key to be used in the request directly.
                      &quot;httpElementLocation&quot;: &quot;A String&quot;, # Optional. The location of the API key.
                      &quot;name&quot;: &quot;A String&quot;, # Optional. The parameter name of the API key. E.g. If the API request is &quot;https://example.com/act?api_key=&quot;, &quot;api_key&quot; would be the parameter name.
                    },
                    &quot;authType&quot;: &quot;A String&quot;, # Type of auth scheme.
                    &quot;googleServiceAccountConfig&quot;: { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
                      &quot;serviceAccount&quot;: &quot;A String&quot;, # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
                    },
                    &quot;httpBasicAuthConfig&quot;: { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
                      &quot;credentialSecret&quot;: &quot;A String&quot;, # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
                    },
                    &quot;oauthConfig&quot;: { # Config for user oauth. # Config for user oauth.
                      &quot;accessToken&quot;: &quot;A String&quot;, # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
                      &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
                    },
                    &quot;oidcConfig&quot;: { # Config for user OIDC auth. # Config for user OIDC auth.
                      &quot;idToken&quot;: &quot;A String&quot;, # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
                      &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
                    },
                  },
                  &quot;elasticSearchParams&quot;: { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
                    &quot;index&quot;: &quot;A String&quot;, # The ElasticSearch index to use.
                    &quot;numHits&quot;: 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
                    &quot;searchTemplate&quot;: &quot;A String&quot;, # The ElasticSearch search template to use.
                  },
                  &quot;endpoint&quot;: &quot;A String&quot;, # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
                  &quot;simpleSearchParams&quot;: { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
                  },
                },
                &quot;vertexAiSearch&quot;: { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
                  &quot;dataStoreSpecs&quot;: [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
                    { # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
                      &quot;dataStore&quot;: &quot;A String&quot;, # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
                      &quot;filter&quot;: &quot;A String&quot;, # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
                    },
                  ],
                  &quot;datastore&quot;: &quot;A String&quot;, # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
                  &quot;engine&quot;: &quot;A String&quot;, # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
                  &quot;filter&quot;: &quot;A String&quot;, # Optional. Filter strings to be passed to the search API.
                  &quot;maxResults&quot;: 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
                },
                &quot;vertexRagStore&quot;: { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
                  &quot;ragCorpora&quot;: [ # Optional. Deprecated. Please use rag_resources instead.
                    &quot;A String&quot;,
                  ],
                  &quot;ragResources&quot;: [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
                    { # The definition of the Rag resource.
                      &quot;ragCorpus&quot;: &quot;A String&quot;, # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
                      &quot;ragFileIds&quot;: [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
                        &quot;A String&quot;,
                      ],
                    },
                  ],
                  &quot;ragRetrievalConfig&quot;: { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
                    &quot;filter&quot;: { # Config for filters. # Optional. Config for filters.
                      &quot;metadataFilter&quot;: &quot;A String&quot;, # Optional. String for metadata filtering.
                      &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
                      &quot;vectorSimilarityThreshold&quot;: 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
                    },
                    &quot;hybridSearch&quot;: { # Config for Hybrid Search. # Optional. Config for Hybrid Search.
                      &quot;alpha&quot;: 3.14, # Optional. Alpha value controls the weight between dense and sparse vector search results. The range is [0, 1], while 0 means sparse vector search only and 1 means dense vector search only. The default value is 0.5 which balances sparse and dense vector search equally.
                    },
                    &quot;ranking&quot;: { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
                      &quot;llmRanker&quot;: { # Config for LlmRanker. # Optional. Config for LlmRanker.
                        &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
                      },
                      &quot;rankService&quot;: { # Config for Rank Service. # Optional. Config for Rank Service.
                        &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
                      },
                    },
                    &quot;topK&quot;: 42, # Optional. The number of contexts to retrieve.
                  },
                  &quot;similarityTopK&quot;: 42, # Optional. Number of top k results to return from the selected corpora.
                  &quot;storeContext&quot;: True or False, # Optional. Currently only supported for Gemini Multimodal Live API. In Gemini Multimodal Live API, if `store_context` bool is specified, Gemini will leverage it to automatically memorize the interactions between the client and Gemini, and retrieve context when needed to augment the response generation for users&#x27; ongoing and future interactions.
                  &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only return results with vector distance smaller than the threshold.
                },
              },
              &quot;urlContext&quot;: { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
              },
            },
          ],
        },
        &quot;toolsText&quot;: &quot;A String&quot;, # A JSON string containing a list of tools available to an agent with info such as name, description, parameters and required parameters.
      },
      &quot;developerInstruction&quot;: { # Instance data used to populate placeholders in a metric prompt template. # Optional. A field containing instructions from the developer for the agent.
        &quot;contents&quot;: { # List of standard Content messages from Gemini API. # List of Gemini content data.
          &quot;contents&quot;: [ # Optional. Repeated contents.
            { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message.
              &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
                { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                  &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
                    &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                    &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                  },
                  &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
                    &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                    &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                  },
                  &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
                    &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                    &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
                    &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                  },
                  &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
                    &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                      &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                    },
                    &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                    &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
                  },
                  &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
                    &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                    &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                    &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
                      { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                        &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                          &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                          &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                          &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                        },
                        &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                          &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                          &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                          &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                        },
                      },
                    ],
                    &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                      &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                    },
                  },
                  &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
                    &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
                    &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                    &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                  },
                  &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
                  &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
                  &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                  &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                    &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                    &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
                    &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                  },
                },
              ],
              &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
            },
          ],
        },
        &quot;text&quot;: &quot;A String&quot;, # Text data.
      },
      &quot;events&quot;: { # Represents a list of events for an agent. # A list of events.
        &quot;event&quot;: [ # Optional. A list of events.
          { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message.
            &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
              { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
                  &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                  &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                },
                &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
                  &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                  &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                },
                &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
                  &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
                },
                &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                  &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
                    { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                      &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                        &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                        &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                        &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                      },
                      &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                        &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                        &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                        &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                      },
                    },
                  ],
                  &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                },
                &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
                  &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
                &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
                &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                  &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                  &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
                  &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                },
              },
            ],
            &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
          },
        ],
      },
      &quot;eventsText&quot;: &quot;A String&quot;, # A JSON string containing a sequence of events.
      &quot;tools&quot;: { # Represents a list of tools for an agent. # List of tools.
        &quot;tool&quot;: [ # Optional. List of tools: each tool can have multiple function declarations.
          { # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
            &quot;codeExecution&quot;: { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
            },
            &quot;computerUse&quot;: { # Tool to support computer use. # Optional. Tool to support the model interacting directly with the computer. If enabled, it automatically populates computer-use specific Function Declarations.
              &quot;environment&quot;: &quot;A String&quot;, # Required. The environment being operated.
              &quot;excludedPredefinedFunctions&quot;: [ # Optional. By default, [predefined functions](https://cloud.google.com/vertex-ai/generative-ai/docs/computer-use#supported-actions) are included in the final model call. Some of them can be explicitly excluded from being automatically included. This can serve two purposes: 1. Using a more restricted / different action space. 2. Improving the definitions / instructions of predefined functions.
                &quot;A String&quot;,
              ],
            },
            &quot;enterpriseWebSearch&quot;: { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
              &quot;blockingConfidence&quot;: &quot;A String&quot;, # Optional. Sites with confidence level chosen &amp; above this value will be blocked from the search results.
              &quot;excludeDomains&quot;: [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
                &quot;A String&quot;,
              ],
            },
            &quot;functionDeclarations&quot;: [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
              { # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
                &quot;description&quot;: &quot;A String&quot;, # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
                &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
                &quot;parameters&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
                  &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
                  &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
                    # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                  ],
                  &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
                  &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
                    &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                  },
                  &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
                  &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
                    &quot;A String&quot;,
                  ],
                  &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
                  &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
                  &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
                  &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
                  &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
                  &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
                  &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
                  &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
                  &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
                  &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
                  &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
                  &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
                  &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
                  &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
                    &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                  },
                  &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
                    &quot;A String&quot;,
                  ],
                  &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
                  &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
                    &quot;A String&quot;,
                  ],
                  &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
                  &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
                },
                &quot;parametersJsonSchema&quot;: &quot;&quot;, # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { &quot;type&quot;: &quot;object&quot;, &quot;properties&quot;: { &quot;name&quot;: { &quot;type&quot;: &quot;string&quot; }, &quot;age&quot;: { &quot;type&quot;: &quot;integer&quot; } }, &quot;additionalProperties&quot;: false, &quot;required&quot;: [&quot;name&quot;, &quot;age&quot;], &quot;propertyOrdering&quot;: [&quot;name&quot;, &quot;age&quot;] } ``` This field is mutually exclusive with `parameters`.
                &quot;response&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
                  &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
                  &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
                    # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                  ],
                  &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
                  &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
                    &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                  },
                  &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
                  &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
                    &quot;A String&quot;,
                  ],
                  &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
                  &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
                  &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
                  &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
                  &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
                  &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
                  &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
                  &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
                  &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
                  &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
                  &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
                  &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
                  &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
                  &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
                    &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                  },
                  &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
                    &quot;A String&quot;,
                  ],
                  &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
                  &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
                    &quot;A String&quot;,
                  ],
                  &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
                  &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
                },
                &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
              },
            ],
            &quot;googleMaps&quot;: { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
              &quot;enableWidget&quot;: True or False, # Optional. If true, include the widget context token in the response.
            },
            &quot;googleSearch&quot;: { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
              &quot;blockingConfidence&quot;: &quot;A String&quot;, # Optional. Sites with confidence level chosen &amp; above this value will be blocked from the search results.
              &quot;excludeDomains&quot;: [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: [&quot;amazon.com&quot;, &quot;facebook.com&quot;].
                &quot;A String&quot;,
              ],
            },
            &quot;googleSearchRetrieval&quot;: { # Tool to retrieve public web data for grounding, powered by Google. # Optional. Specialized retrieval tool that is powered by Google Search.
              &quot;dynamicRetrievalConfig&quot;: { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
                &quot;dynamicThreshold&quot;: 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
                &quot;mode&quot;: &quot;A String&quot;, # The mode of the predictor to be used in dynamic retrieval.
              },
            },
            &quot;retrieval&quot;: { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
              &quot;disableAttribution&quot;: True or False, # Optional. Deprecated. This option is no longer supported.
              &quot;externalApi&quot;: { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
                &quot;apiAuth&quot;: { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
                  &quot;apiKeyConfig&quot;: { # The API secret. # The API secret.
                    &quot;apiKeySecretVersion&quot;: &quot;A String&quot;, # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
                    &quot;apiKeyString&quot;: &quot;A String&quot;, # The API key string. Either this or `api_key_secret_version` must be set.
                  },
                },
                &quot;apiSpec&quot;: &quot;A String&quot;, # The API spec that the external API implements.
                &quot;authConfig&quot;: { # Auth configuration to run the extension. # The authentication config to access the API.
                  &quot;apiKeyConfig&quot;: { # Config for authentication with API key. # Config for API key auth.
                    &quot;apiKeySecret&quot;: &quot;A String&quot;, # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
                    &quot;apiKeyString&quot;: &quot;A String&quot;, # Optional. The API key to be used in the request directly.
                    &quot;httpElementLocation&quot;: &quot;A String&quot;, # Optional. The location of the API key.
                    &quot;name&quot;: &quot;A String&quot;, # Optional. The parameter name of the API key. E.g. If the API request is &quot;https://example.com/act?api_key=&quot;, &quot;api_key&quot; would be the parameter name.
                  },
                  &quot;authType&quot;: &quot;A String&quot;, # Type of auth scheme.
                  &quot;googleServiceAccountConfig&quot;: { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
                    &quot;serviceAccount&quot;: &quot;A String&quot;, # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
                  },
                  &quot;httpBasicAuthConfig&quot;: { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
                    &quot;credentialSecret&quot;: &quot;A String&quot;, # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
                  },
                  &quot;oauthConfig&quot;: { # Config for user oauth. # Config for user oauth.
                    &quot;accessToken&quot;: &quot;A String&quot;, # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
                    &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
                  },
                  &quot;oidcConfig&quot;: { # Config for user OIDC auth. # Config for user OIDC auth.
                    &quot;idToken&quot;: &quot;A String&quot;, # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
                    &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
                  },
                },
                &quot;elasticSearchParams&quot;: { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
                  &quot;index&quot;: &quot;A String&quot;, # The ElasticSearch index to use.
                  &quot;numHits&quot;: 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
                  &quot;searchTemplate&quot;: &quot;A String&quot;, # The ElasticSearch search template to use.
                },
                &quot;endpoint&quot;: &quot;A String&quot;, # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
                &quot;simpleSearchParams&quot;: { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
                },
              },
              &quot;vertexAiSearch&quot;: { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
                &quot;dataStoreSpecs&quot;: [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
                  { # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
                    &quot;dataStore&quot;: &quot;A String&quot;, # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
                    &quot;filter&quot;: &quot;A String&quot;, # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
                  },
                ],
                &quot;datastore&quot;: &quot;A String&quot;, # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
                &quot;engine&quot;: &quot;A String&quot;, # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
                &quot;filter&quot;: &quot;A String&quot;, # Optional. Filter strings to be passed to the search API.
                &quot;maxResults&quot;: 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
              },
              &quot;vertexRagStore&quot;: { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
                &quot;ragCorpora&quot;: [ # Optional. Deprecated. Please use rag_resources instead.
                  &quot;A String&quot;,
                ],
                &quot;ragResources&quot;: [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
                  { # The definition of the Rag resource.
                    &quot;ragCorpus&quot;: &quot;A String&quot;, # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
                    &quot;ragFileIds&quot;: [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
                      &quot;A String&quot;,
                    ],
                  },
                ],
                &quot;ragRetrievalConfig&quot;: { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
                  &quot;filter&quot;: { # Config for filters. # Optional. Config for filters.
                    &quot;metadataFilter&quot;: &quot;A String&quot;, # Optional. String for metadata filtering.
                    &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
                    &quot;vectorSimilarityThreshold&quot;: 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
                  },
                  &quot;hybridSearch&quot;: { # Config for Hybrid Search. # Optional. Config for Hybrid Search.
                    &quot;alpha&quot;: 3.14, # Optional. Alpha value controls the weight between dense and sparse vector search results. The range is [0, 1], while 0 means sparse vector search only and 1 means dense vector search only. The default value is 0.5 which balances sparse and dense vector search equally.
                  },
                  &quot;ranking&quot;: { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
                    &quot;llmRanker&quot;: { # Config for LlmRanker. # Optional. Config for LlmRanker.
                      &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
                    },
                    &quot;rankService&quot;: { # Config for Rank Service. # Optional. Config for Rank Service.
                      &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
                    },
                  },
                  &quot;topK&quot;: 42, # Optional. The number of contexts to retrieve.
                },
                &quot;similarityTopK&quot;: 42, # Optional. Number of top k results to return from the selected corpora.
                &quot;storeContext&quot;: True or False, # Optional. Currently only supported for Gemini Multimodal Live API. In Gemini Multimodal Live API, if `store_context` bool is specified, Gemini will leverage it to automatically memorize the interactions between the client and Gemini, and retrieve context when needed to augment the response generation for users&#x27; ongoing and future interactions.
                &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only return results with vector distance smaller than the threshold.
              },
            },
            &quot;urlContext&quot;: { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
            },
          },
        ],
      },
      &quot;toolsText&quot;: &quot;A String&quot;, # A JSON string containing a list of tools available to an agent with info such as name, description, parameters and required parameters. Example: [ { &quot;name&quot;: &quot;search_actors&quot;, &quot;description&quot;: &quot;Search for actors in a movie. Returns a list of actors, their roles, their birthdate, and their place of birth.&quot;, &quot;parameters&quot;: [ { &quot;name&quot;: &quot;movie_name&quot;, &quot;description&quot;: &quot;The name of the movie.&quot; }, { &quot;name&quot;: &quot;character_name&quot;, &quot;description&quot;: &quot;The name of the character.&quot; } ], &quot;required&quot;: [&quot;movie_name&quot;, &quot;character_name&quot;] } ]
    },
    &quot;otherData&quot;: { # Instance data specified as a map. # Optional. Other data used to populate placeholders based on their key.
      &quot;mapInstance&quot;: { # Optional. Map of instance data.
        &quot;a_key&quot;: { # Instance data used to populate placeholders in a metric prompt template.
          &quot;contents&quot;: { # List of standard Content messages from Gemini API. # List of Gemini content data.
            &quot;contents&quot;: [ # Optional. Repeated contents.
              { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message.
                &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
                  { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                    &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
                      &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                      &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                    },
                    &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
                      &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                      &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                    },
                    &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
                      &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                      &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
                      &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                    },
                    &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
                      &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                        &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                      },
                      &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                      &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
                    },
                    &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
                      &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                      &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                      &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
                        { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                          &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                            &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                          },
                          &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                            &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                          },
                        },
                      ],
                      &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                        &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                      },
                    },
                    &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
                      &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
                      &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                      &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                    },
                    &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
                    &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
                    &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                    &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                      &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                      &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
                      &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                    },
                  },
                ],
                &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
              },
            ],
          },
          &quot;text&quot;: &quot;A String&quot;, # Text data.
        },
      },
    },
    &quot;prompt&quot;: { # Instance data used to populate placeholders in a metric prompt template. # Optional. Data used to populate placeholder `prompt` in a metric prompt template.
      &quot;contents&quot;: { # List of standard Content messages from Gemini API. # List of Gemini content data.
        &quot;contents&quot;: [ # Optional. Repeated contents.
          { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message.
            &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
              { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
                  &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                  &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                },
                &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
                  &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                  &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                },
                &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
                  &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
                },
                &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                  &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
                    { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                      &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                        &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                        &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                        &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                      },
                      &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                        &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                        &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                        &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                      },
                    },
                  ],
                  &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                },
                &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
                  &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
                &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
                &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                  &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                  &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
                  &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                },
              },
            ],
            &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
          },
        ],
      },
      &quot;text&quot;: &quot;A String&quot;, # Text data.
    },
    &quot;reference&quot;: { # Instance data used to populate placeholders in a metric prompt template. # Optional. Data used to populate placeholder `reference` in a metric prompt template.
      &quot;contents&quot;: { # List of standard Content messages from Gemini API. # List of Gemini content data.
        &quot;contents&quot;: [ # Optional. Repeated contents.
          { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message.
            &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
              { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
                  &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                  &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                },
                &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
                  &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                  &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                },
                &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
                  &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
                },
                &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                  &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
                    { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                      &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                        &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                        &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                        &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                      },
                      &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                        &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                        &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                        &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                      },
                    },
                  ],
                  &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                },
                &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
                  &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
                &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
                &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                  &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                  &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
                  &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                },
              },
            ],
            &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
          },
        ],
      },
      &quot;text&quot;: &quot;A String&quot;, # Text data.
    },
    &quot;response&quot;: { # Instance data used to populate placeholders in a metric prompt template. # Required. Data used to populate placeholder `response` in a metric prompt template.
      &quot;contents&quot;: { # List of standard Content messages from Gemini API. # List of Gemini content data.
        &quot;contents&quot;: [ # Optional. Repeated contents.
          { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message.
            &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
              { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
                  &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                  &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                },
                &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
                  &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                  &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                },
                &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
                  &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
                },
                &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                  &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
                    { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                      &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                        &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                        &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                        &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                      },
                      &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                        &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                        &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                        &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                      },
                    },
                  ],
                  &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                },
                &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
                  &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
                &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
                &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                  &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                  &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
                  &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                },
              },
            ],
            &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
          },
        ],
      },
      &quot;text&quot;: &quot;A String&quot;, # Text data.
    },
    &quot;rubricGroups&quot;: { # Optional. Named groups of rubrics associated with the prompt. This is used for rubric-based evaluations where rubrics can be referenced by a key. The key could represent versions, associated metrics, etc.
      &quot;a_key&quot;: { # A group of rubrics, used for grouping rubrics based on a metric or a version.
        &quot;displayName&quot;: &quot;A String&quot;, # Human-readable name for the group. This should be unique within a given context if used for display or selection. Example: &quot;Instruction Following V1&quot;, &quot;Content Quality - Summarization Task&quot;.
        &quot;groupId&quot;: &quot;A String&quot;, # Unique identifier for the group.
        &quot;rubrics&quot;: [ # Rubrics that are part of this group.
          { # Message representing a single testable criterion for evaluation. One input prompt could have multiple rubrics.
            &quot;content&quot;: { # Content of the rubric, defining the testable criteria. # Required. The actual testable criteria for the rubric.
              &quot;property&quot;: { # Defines criteria based on a specific property. # Evaluation criteria based on a specific property.
                &quot;description&quot;: &quot;A String&quot;, # Description of the property being evaluated. Example: &quot;The model&#x27;s response is grammatically correct.&quot;
              },
            },
            &quot;importance&quot;: &quot;A String&quot;, # Optional. The relative importance of this rubric.
            &quot;rubricId&quot;: &quot;A String&quot;, # Unique identifier for the rubric. This ID is used to refer to this rubric, e.g., in RubricVerdict.
            &quot;type&quot;: &quot;A String&quot;, # Optional. A type designator for the rubric, which can inform how it&#x27;s evaluated or interpreted by systems or users. It&#x27;s recommended to use consistent, well-defined, upper snake_case strings. Examples: &quot;SUMMARIZATION_QUALITY&quot;, &quot;SAFETY_HARMFUL_CONTENT&quot;, &quot;INSTRUCTION_ADHERENCE&quot;.
          },
        ],
      },
    },
  },
  &quot;metrics&quot;: [ # The metrics used for evaluation. Currently, we only support evaluating a single metric. If multiple metrics are provided, only the first one will be evaluated.
    { # The metric used for running evaluations.
      &quot;aggregationMetrics&quot;: [ # Optional. The aggregation metrics to use.
        &quot;A String&quot;,
      ],
      &quot;bleuSpec&quot;: { # Spec for bleu score metric - calculates the precision of n-grams in the prediction as compared to reference - returns a score ranging between 0 to 1. # Spec for bleu metric.
        &quot;useEffectiveOrder&quot;: True or False, # Optional. Whether to use_effective_order to compute bleu score.
      },
      &quot;customCodeExecutionSpec&quot;: { # Specificies a metric that is populated by evaluating user-defined Python code. # Spec for Custom Code Execution metric.
        &quot;evaluationFunction&quot;: &quot;A String&quot;, # Required. Python function. Expected user to define the following function, e.g.: def evaluate(instance: dict[str, Any]) -&gt; float: Please include this function signature in the code snippet. Instance is the evaluation instance, any fields populated in the instance are available to the function as instance[field_name]. Example: Example input: ``` instance= EvaluationInstance( response=EvaluationInstance.InstanceData(text=&quot;The answer is 4.&quot;), reference=EvaluationInstance.InstanceData(text=&quot;4&quot;) ) ``` Example converted input: ``` { &#x27;response&#x27;: {&#x27;text&#x27;: &#x27;The answer is 4.&#x27;}, &#x27;reference&#x27;: {&#x27;text&#x27;: &#x27;4&#x27;} } ``` Example python function: ``` def evaluate(instance: dict[str, Any]) -&gt; float: if instance&#x27;response&#x27; == instance&#x27;reference&#x27;: return 1.0 return 0.0 ```
      },
      &quot;exactMatchSpec&quot;: { # Spec for exact match metric - returns 1 if prediction and reference exactly matches, otherwise 0. # Spec for exact match metric.
      },
      &quot;llmBasedMetricSpec&quot;: { # Specification for an LLM based metric. # Spec for an LLM based metric.
        &quot;additionalConfig&quot;: { # Optional. Optional additional configuration for the metric.
          &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
        },
        &quot;judgeAutoraterConfig&quot;: { # The configs for autorater. This is applicable to both EvaluateInstances and EvaluateDataset. # Optional. Optional configuration for the judge LLM (Autorater).
          &quot;autoraterModel&quot;: &quot;A String&quot;, # Optional. The fully qualified name of the publisher model or tuned autorater endpoint to use. Publisher model format: `projects/{project}/locations/{location}/publishers/*/models/*` Tuned model endpoint format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
          &quot;flipEnabled&quot;: True or False, # Optional. Default is true. Whether to flip the candidate and baseline responses. This is only applicable to the pairwise metric. If enabled, also provide PairwiseMetricSpec.candidate_response_field_name and PairwiseMetricSpec.baseline_response_field_name. When rendering PairwiseMetricSpec.metric_prompt_template, the candidate and baseline fields will be flipped for half of the samples to reduce bias.
          &quot;generationConfig&quot;: { # Configuration for content generation. This message contains all the parameters that control how the model generates content. It allows you to influence the randomness, length, and structure of the output. # Optional. Configuration options for model generation and outputs.
            &quot;audioTimestamp&quot;: True or False, # Optional. If enabled, audio timestamps will be included in the request to the model. This can be useful for synchronizing audio with other modalities in the response.
            &quot;candidateCount&quot;: 42, # Optional. The number of candidate responses to generate. A higher `candidate_count` can provide more options to choose from, but it also consumes more resources. This can be useful for generating a variety of responses and selecting the best one.
            &quot;enableAffectiveDialog&quot;: True or False, # Optional. If enabled, the model will detect emotions and adapt its responses accordingly. For example, if the model detects that the user is frustrated, it may provide a more empathetic response.
            &quot;frequencyPenalty&quot;: 3.14, # Optional. Penalizes tokens based on their frequency in the generated text. A positive value helps to reduce the repetition of words and phrases. Valid values can range from [-2.0, 2.0].
            &quot;imageConfig&quot;: { # Configuration for image generation. This message allows you to control various aspects of image generation, such as the output format, aspect ratio, and whether the model can generate images of people. # Optional. Config for image generation features.
              &quot;aspectRatio&quot;: &quot;A String&quot;, # Optional. The desired aspect ratio for the generated images. The following aspect ratios are supported: &quot;1:1&quot; &quot;2:3&quot;, &quot;3:2&quot; &quot;3:4&quot;, &quot;4:3&quot; &quot;4:5&quot;, &quot;5:4&quot; &quot;9:16&quot;, &quot;16:9&quot; &quot;21:9&quot;
              &quot;imageOutputOptions&quot;: { # The image output format for generated images. # Optional. The image output format for generated images.
                &quot;compressionQuality&quot;: 42, # Optional. The compression quality of the output image.
                &quot;mimeType&quot;: &quot;A String&quot;, # Optional. The image format that the output should be saved as.
              },
              &quot;personGeneration&quot;: &quot;A String&quot;, # Optional. Controls whether the model can generate people.
            },
            &quot;logprobs&quot;: 42, # Optional. The number of top log probabilities to return for each token. This can be used to see which other tokens were considered likely candidates for a given position. A higher value will return more options, but it will also increase the size of the response.
            &quot;maxOutputTokens&quot;: 42, # Optional. The maximum number of tokens to generate in the response. A token is approximately four characters. The default value varies by model. This parameter can be used to control the length of the generated text and prevent overly long responses.
            &quot;mediaResolution&quot;: &quot;A String&quot;, # Optional. The token resolution at which input media content is sampled. This is used to control the trade-off between the quality of the response and the number of tokens used to represent the media. A higher resolution allows the model to perceive more detail, which can lead to a more nuanced response, but it will also use more tokens. This does not affect the image dimensions sent to the model.
            &quot;modelConfig&quot;: { # Config for model selection. # Optional. Config for model selection.
              &quot;featureSelectionPreference&quot;: &quot;A String&quot;, # Required. Feature selection preference.
            },
            &quot;presencePenalty&quot;: 3.14, # Optional. Penalizes tokens that have already appeared in the generated text. A positive value encourages the model to generate more diverse and less repetitive text. Valid values can range from [-2.0, 2.0].
            &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. When this field is set, response_schema must be omitted and response_mime_type must be set to `application/json`.
            &quot;responseLogprobs&quot;: True or False, # Optional. If set to true, the log probabilities of the output tokens are returned. Log probabilities are the logarithm of the probability of a token appearing in the output. A higher log probability means the token is more likely to be generated. This can be useful for analyzing the model&#x27;s confidence in its own output and for debugging.
            &quot;responseMimeType&quot;: &quot;A String&quot;, # Optional. The IANA standard MIME type of the response. The model will generate output that conforms to this MIME type. Supported values include &#x27;text/plain&#x27; (default) and &#x27;application/json&#x27;. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
            &quot;responseModalities&quot;: [ # Optional. The modalities of the response. The model will generate a response that includes all the specified modalities. For example, if this is set to `[TEXT, IMAGE]`, the response will include both text and an image.
              &quot;A String&quot;,
            ],
            &quot;responseSchema&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Lets you to specify a schema for the model&#x27;s response, ensuring that the output conforms to a particular structure. This is useful for generating structured data such as JSON. The schema is a subset of the [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema) object. When this field is set, you must also set the `response_mime_type` to `application/json`.
              &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
              &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
                # Object with schema name: GoogleCloudAiplatformV1beta1Schema
              ],
              &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
              &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
                &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
              },
              &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
              &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
                &quot;A String&quot;,
              ],
              &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
              &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
              &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
              &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
              &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
              &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
              &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
              &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
              &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
              &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
              &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
              &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
              &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
              &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
                &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
              },
              &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
                &quot;A String&quot;,
              ],
              &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
              &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
                &quot;A String&quot;,
              ],
              &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
              &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
            },
            &quot;routingConfig&quot;: { # The configuration for routing the request to a specific model. This can be used to control which model is used for the generation, either automatically or by specifying a model name. # Optional. Routing configuration.
              &quot;autoMode&quot;: { # The configuration for automated routing. When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference. # In this mode, the model is selected automatically based on the content of the request.
                &quot;modelRoutingPreference&quot;: &quot;A String&quot;, # The model routing preference.
              },
              &quot;manualMode&quot;: { # The configuration for manual routing. When manual routing is specified, the model will be selected based on the model name provided. # In this mode, the model is specified manually.
                &quot;modelName&quot;: &quot;A String&quot;, # The name of the model to use. Only public LLM models are accepted.
              },
            },
            &quot;seed&quot;: 42, # Optional. A seed for the random number generator. By setting a seed, you can make the model&#x27;s output mostly deterministic. For a given prompt and parameters (like temperature, top_p, etc.), the model will produce the same response every time. However, it&#x27;s not a guaranteed absolute deterministic behavior. This is different from parameters like `temperature`, which control the *level* of randomness. `seed` ensures that the &quot;random&quot; choices the model makes are the same on every run, making it essential for testing and ensuring reproducible results.
            &quot;speechConfig&quot;: { # Configuration for speech generation. # Optional. The speech generation config.
              &quot;languageCode&quot;: &quot;A String&quot;, # Optional. The language code (ISO 639-1) for the speech synthesis.
              &quot;multiSpeakerVoiceConfig&quot;: { # Configuration for a multi-speaker text-to-speech request. # The configuration for a multi-speaker text-to-speech request. This field is mutually exclusive with `voice_config`.
                &quot;speakerVoiceConfigs&quot;: [ # Required. A list of configurations for the voices of the speakers. Exactly two speaker voice configurations must be provided.
                  { # Configuration for a single speaker in a multi-speaker setup.
                    &quot;speaker&quot;: &quot;A String&quot;, # Required. The name of the speaker. This should be the same as the speaker name used in the prompt.
                    &quot;voiceConfig&quot;: { # Configuration for a voice. # Required. The configuration for the voice of this speaker.
                      &quot;prebuiltVoiceConfig&quot;: { # Configuration for a prebuilt voice. # The configuration for a prebuilt voice.
                        &quot;voiceName&quot;: &quot;A String&quot;, # The name of the prebuilt voice to use.
                      },
                    },
                  },
                ],
              },
              &quot;voiceConfig&quot;: { # Configuration for a voice. # The configuration for the voice to use.
                &quot;prebuiltVoiceConfig&quot;: { # Configuration for a prebuilt voice. # The configuration for a prebuilt voice.
                  &quot;voiceName&quot;: &quot;A String&quot;, # The name of the prebuilt voice to use.
                },
              },
            },
            &quot;stopSequences&quot;: [ # Optional. A list of character sequences that will stop the model from generating further tokens. If a stop sequence is generated, the output will end at that point. This is useful for controlling the length and structure of the output. For example, you can use [&quot;\n&quot;, &quot;###&quot;] to stop generation at a new line or a specific marker.
              &quot;A String&quot;,
            ],
            &quot;temperature&quot;: 3.14, # Optional. Controls the randomness of the output. A higher temperature results in more creative and diverse responses, while a lower temperature makes the output more predictable and focused. The valid range is (0.0, 2.0].
            &quot;thinkingConfig&quot;: { # Configuration for the model&#x27;s thinking features. &quot;Thinking&quot; is a process where the model breaks down a complex task into smaller, manageable steps. This allows the model to reason about the task, plan its approach, and execute the plan to generate a high-quality response. # Optional. Configuration for thinking features. An error will be returned if this field is set for models that don&#x27;t support thinking.
              &quot;includeThoughts&quot;: True or False, # Optional. If true, the model will include its thoughts in the response. &quot;Thoughts&quot; are the intermediate steps the model takes to arrive at the final response. They can provide insights into the model&#x27;s reasoning process and help with debugging. If this is true, thoughts are returned only when available.
              &quot;thinkingBudget&quot;: 42, # Optional. The token budget for the model&#x27;s thinking process. The model will make a best effort to stay within this budget. This can be used to control the trade-off between response quality and latency.
            },
            &quot;topK&quot;: 3.14, # Optional. Specifies the top-k sampling threshold. The model considers only the top k most probable tokens for the next token. This can be useful for generating more coherent and less random text. For example, a `top_k` of 40 means the model will choose the next word from the 40 most likely words.
            &quot;topP&quot;: 3.14, # Optional. Specifies the nucleus sampling threshold. The model considers only the smallest set of tokens whose cumulative probability is at least `top_p`. This helps generate more diverse and less repetitive responses. For example, a `top_p` of 0.9 means the model considers tokens until the cumulative probability of the tokens to select from reaches 0.9. It&#x27;s recommended to adjust either temperature or `top_p`, but not both.
          },
          &quot;samplingCount&quot;: 42, # Optional. Number of samples for each instance in the dataset. If not specified, the default is 4. Minimum value is 1, maximum value is 32.
        },
        &quot;metricPromptTemplate&quot;: &quot;A String&quot;, # Required. Template for the prompt sent to the judge model.
        &quot;predefinedRubricGenerationSpec&quot;: { # The spec for a pre-defined metric. # Dynamically generate rubrics using a predefined spec.
          &quot;metricSpecName&quot;: &quot;A String&quot;, # Required. The name of a pre-defined metric, such as &quot;instruction_following_v1&quot; or &quot;text_quality_v1&quot;.
          &quot;metricSpecParameters&quot;: { # Optional. The parameters needed to run the pre-defined metric.
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
          },
        },
        &quot;rubricGenerationSpec&quot;: { # Specification for how rubrics should be generated. # Dynamically generate rubrics using this specification.
          &quot;modelConfig&quot;: { # The configs for autorater. This is applicable to both EvaluateInstances and EvaluateDataset. # Configuration for the model used in rubric generation. Configs including sampling count and base model can be specified here. Flipping is not supported for rubric generation.
            &quot;autoraterModel&quot;: &quot;A String&quot;, # Optional. The fully qualified name of the publisher model or tuned autorater endpoint to use. Publisher model format: `projects/{project}/locations/{location}/publishers/*/models/*` Tuned model endpoint format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
            &quot;flipEnabled&quot;: True or False, # Optional. Default is true. Whether to flip the candidate and baseline responses. This is only applicable to the pairwise metric. If enabled, also provide PairwiseMetricSpec.candidate_response_field_name and PairwiseMetricSpec.baseline_response_field_name. When rendering PairwiseMetricSpec.metric_prompt_template, the candidate and baseline fields will be flipped for half of the samples to reduce bias.
            &quot;generationConfig&quot;: { # Configuration for content generation. This message contains all the parameters that control how the model generates content. It allows you to influence the randomness, length, and structure of the output. # Optional. Configuration options for model generation and outputs.
              &quot;audioTimestamp&quot;: True or False, # Optional. If enabled, audio timestamps will be included in the request to the model. This can be useful for synchronizing audio with other modalities in the response.
              &quot;candidateCount&quot;: 42, # Optional. The number of candidate responses to generate. A higher `candidate_count` can provide more options to choose from, but it also consumes more resources. This can be useful for generating a variety of responses and selecting the best one.
              &quot;enableAffectiveDialog&quot;: True or False, # Optional. If enabled, the model will detect emotions and adapt its responses accordingly. For example, if the model detects that the user is frustrated, it may provide a more empathetic response.
              &quot;frequencyPenalty&quot;: 3.14, # Optional. Penalizes tokens based on their frequency in the generated text. A positive value helps to reduce the repetition of words and phrases. Valid values can range from [-2.0, 2.0].
              &quot;imageConfig&quot;: { # Configuration for image generation. This message allows you to control various aspects of image generation, such as the output format, aspect ratio, and whether the model can generate images of people. # Optional. Config for image generation features.
                &quot;aspectRatio&quot;: &quot;A String&quot;, # Optional. The desired aspect ratio for the generated images. The following aspect ratios are supported: &quot;1:1&quot; &quot;2:3&quot;, &quot;3:2&quot; &quot;3:4&quot;, &quot;4:3&quot; &quot;4:5&quot;, &quot;5:4&quot; &quot;9:16&quot;, &quot;16:9&quot; &quot;21:9&quot;
                &quot;imageOutputOptions&quot;: { # The image output format for generated images. # Optional. The image output format for generated images.
                  &quot;compressionQuality&quot;: 42, # Optional. The compression quality of the output image.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Optional. The image format that the output should be saved as.
                },
                &quot;personGeneration&quot;: &quot;A String&quot;, # Optional. Controls whether the model can generate people.
              },
              &quot;logprobs&quot;: 42, # Optional. The number of top log probabilities to return for each token. This can be used to see which other tokens were considered likely candidates for a given position. A higher value will return more options, but it will also increase the size of the response.
              &quot;maxOutputTokens&quot;: 42, # Optional. The maximum number of tokens to generate in the response. A token is approximately four characters. The default value varies by model. This parameter can be used to control the length of the generated text and prevent overly long responses.
              &quot;mediaResolution&quot;: &quot;A String&quot;, # Optional. The token resolution at which input media content is sampled. This is used to control the trade-off between the quality of the response and the number of tokens used to represent the media. A higher resolution allows the model to perceive more detail, which can lead to a more nuanced response, but it will also use more tokens. This does not affect the image dimensions sent to the model.
              &quot;modelConfig&quot;: { # Config for model selection. # Optional. Config for model selection.
                &quot;featureSelectionPreference&quot;: &quot;A String&quot;, # Required. Feature selection preference.
              },
              &quot;presencePenalty&quot;: 3.14, # Optional. Penalizes tokens that have already appeared in the generated text. A positive value encourages the model to generate more diverse and less repetitive text. Valid values can range from [-2.0, 2.0].
              &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. When this field is set, response_schema must be omitted and response_mime_type must be set to `application/json`.
              &quot;responseLogprobs&quot;: True or False, # Optional. If set to true, the log probabilities of the output tokens are returned. Log probabilities are the logarithm of the probability of a token appearing in the output. A higher log probability means the token is more likely to be generated. This can be useful for analyzing the model&#x27;s confidence in its own output and for debugging.
              &quot;responseMimeType&quot;: &quot;A String&quot;, # Optional. The IANA standard MIME type of the response. The model will generate output that conforms to this MIME type. Supported values include &#x27;text/plain&#x27; (default) and &#x27;application/json&#x27;. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
              &quot;responseModalities&quot;: [ # Optional. The modalities of the response. The model will generate a response that includes all the specified modalities. For example, if this is set to `[TEXT, IMAGE]`, the response will include both text and an image.
                &quot;A String&quot;,
              ],
              &quot;responseSchema&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Lets you to specify a schema for the model&#x27;s response, ensuring that the output conforms to a particular structure. This is useful for generating structured data such as JSON. The schema is a subset of the [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema) object. When this field is set, you must also set the `response_mime_type` to `application/json`.
                &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
                &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
                  # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                ],
                &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
                &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
                  &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                },
                &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
                &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
                  &quot;A String&quot;,
                ],
                &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
                &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
                &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
                &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
                &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
                &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
                &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
                &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
                &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
                &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
                &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
                &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
                &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
                &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
                  &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                },
                &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
                  &quot;A String&quot;,
                ],
                &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
                &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
                  &quot;A String&quot;,
                ],
                &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
                &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
              },
              &quot;routingConfig&quot;: { # The configuration for routing the request to a specific model. This can be used to control which model is used for the generation, either automatically or by specifying a model name. # Optional. Routing configuration.
                &quot;autoMode&quot;: { # The configuration for automated routing. When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference. # In this mode, the model is selected automatically based on the content of the request.
                  &quot;modelRoutingPreference&quot;: &quot;A String&quot;, # The model routing preference.
                },
                &quot;manualMode&quot;: { # The configuration for manual routing. When manual routing is specified, the model will be selected based on the model name provided. # In this mode, the model is specified manually.
                  &quot;modelName&quot;: &quot;A String&quot;, # The name of the model to use. Only public LLM models are accepted.
                },
              },
              &quot;seed&quot;: 42, # Optional. A seed for the random number generator. By setting a seed, you can make the model&#x27;s output mostly deterministic. For a given prompt and parameters (like temperature, top_p, etc.), the model will produce the same response every time. However, it&#x27;s not a guaranteed absolute deterministic behavior. This is different from parameters like `temperature`, which control the *level* of randomness. `seed` ensures that the &quot;random&quot; choices the model makes are the same on every run, making it essential for testing and ensuring reproducible results.
              &quot;speechConfig&quot;: { # Configuration for speech generation. # Optional. The speech generation config.
                &quot;languageCode&quot;: &quot;A String&quot;, # Optional. The language code (ISO 639-1) for the speech synthesis.
                &quot;multiSpeakerVoiceConfig&quot;: { # Configuration for a multi-speaker text-to-speech request. # The configuration for a multi-speaker text-to-speech request. This field is mutually exclusive with `voice_config`.
                  &quot;speakerVoiceConfigs&quot;: [ # Required. A list of configurations for the voices of the speakers. Exactly two speaker voice configurations must be provided.
                    { # Configuration for a single speaker in a multi-speaker setup.
                      &quot;speaker&quot;: &quot;A String&quot;, # Required. The name of the speaker. This should be the same as the speaker name used in the prompt.
                      &quot;voiceConfig&quot;: { # Configuration for a voice. # Required. The configuration for the voice of this speaker.
                        &quot;prebuiltVoiceConfig&quot;: { # Configuration for a prebuilt voice. # The configuration for a prebuilt voice.
                          &quot;voiceName&quot;: &quot;A String&quot;, # The name of the prebuilt voice to use.
                        },
                      },
                    },
                  ],
                },
                &quot;voiceConfig&quot;: { # Configuration for a voice. # The configuration for the voice to use.
                  &quot;prebuiltVoiceConfig&quot;: { # Configuration for a prebuilt voice. # The configuration for a prebuilt voice.
                    &quot;voiceName&quot;: &quot;A String&quot;, # The name of the prebuilt voice to use.
                  },
                },
              },
              &quot;stopSequences&quot;: [ # Optional. A list of character sequences that will stop the model from generating further tokens. If a stop sequence is generated, the output will end at that point. This is useful for controlling the length and structure of the output. For example, you can use [&quot;\n&quot;, &quot;###&quot;] to stop generation at a new line or a specific marker.
                &quot;A String&quot;,
              ],
              &quot;temperature&quot;: 3.14, # Optional. Controls the randomness of the output. A higher temperature results in more creative and diverse responses, while a lower temperature makes the output more predictable and focused. The valid range is (0.0, 2.0].
              &quot;thinkingConfig&quot;: { # Configuration for the model&#x27;s thinking features. &quot;Thinking&quot; is a process where the model breaks down a complex task into smaller, manageable steps. This allows the model to reason about the task, plan its approach, and execute the plan to generate a high-quality response. # Optional. Configuration for thinking features. An error will be returned if this field is set for models that don&#x27;t support thinking.
                &quot;includeThoughts&quot;: True or False, # Optional. If true, the model will include its thoughts in the response. &quot;Thoughts&quot; are the intermediate steps the model takes to arrive at the final response. They can provide insights into the model&#x27;s reasoning process and help with debugging. If this is true, thoughts are returned only when available.
                &quot;thinkingBudget&quot;: 42, # Optional. The token budget for the model&#x27;s thinking process. The model will make a best effort to stay within this budget. This can be used to control the trade-off between response quality and latency.
              },
              &quot;topK&quot;: 3.14, # Optional. Specifies the top-k sampling threshold. The model considers only the top k most probable tokens for the next token. This can be useful for generating more coherent and less random text. For example, a `top_k` of 40 means the model will choose the next word from the 40 most likely words.
              &quot;topP&quot;: 3.14, # Optional. Specifies the nucleus sampling threshold. The model considers only the smallest set of tokens whose cumulative probability is at least `top_p`. This helps generate more diverse and less repetitive responses. For example, a `top_p` of 0.9 means the model considers tokens until the cumulative probability of the tokens to select from reaches 0.9. It&#x27;s recommended to adjust either temperature or `top_p`, but not both.
            },
            &quot;samplingCount&quot;: 42, # Optional. Number of samples for each instance in the dataset. If not specified, the default is 4. Minimum value is 1, maximum value is 32.
          },
          &quot;promptTemplate&quot;: &quot;A String&quot;, # Template for the prompt used to generate rubrics. The details should be updated based on the most-recent recipe requirements.
          &quot;rubricContentType&quot;: &quot;A String&quot;, # The type of rubric content to be generated.
          &quot;rubricTypeOntology&quot;: [ # Optional. An optional, pre-defined list of allowed types for generated rubrics. If this field is provided, it implies `include_rubric_type` should be true, and the generated rubric types should be chosen from this ontology.
            &quot;A String&quot;,
          ],
        },
        &quot;rubricGroupKey&quot;: &quot;A String&quot;, # Use a pre-defined group of rubrics associated with the input. Refers to a key in the rubric_groups map of EvaluationInstance.
        &quot;systemInstruction&quot;: &quot;A String&quot;, # Optional. System instructions for the judge model.
      },
      &quot;pairwiseMetricSpec&quot;: { # Spec for pairwise metric. # Spec for pairwise metric.
        &quot;baselineResponseFieldName&quot;: &quot;A String&quot;, # Optional. The field name of the baseline response.
        &quot;candidateResponseFieldName&quot;: &quot;A String&quot;, # Optional. The field name of the candidate response.
        &quot;customOutputFormatConfig&quot;: { # Spec for custom output format configuration. # Optional. CustomOutputFormatConfig allows customization of metric output. When this config is set, the default output is replaced with the raw output string. If a custom format is chosen, the `pairwise_choice` and `explanation` fields in the corresponding metric result will be empty.
          &quot;returnRawOutput&quot;: True or False, # Optional. Whether to return raw output.
        },
        &quot;metricPromptTemplate&quot;: &quot;A String&quot;, # Required. Metric prompt template for pairwise metric.
        &quot;systemInstruction&quot;: &quot;A String&quot;, # Optional. System instructions for pairwise metric.
      },
      &quot;pointwiseMetricSpec&quot;: { # Spec for pointwise metric. # Spec for pointwise metric.
        &quot;customOutputFormatConfig&quot;: { # Spec for custom output format configuration. # Optional. CustomOutputFormatConfig allows customization of metric output. By default, metrics return a score and explanation. When this config is set, the default output is replaced with either: - The raw output string. - A parsed output based on a user-defined schema. If a custom format is chosen, the `score` and `explanation` fields in the corresponding metric result will be empty.
          &quot;returnRawOutput&quot;: True or False, # Optional. Whether to return raw output.
        },
        &quot;metricPromptTemplate&quot;: &quot;A String&quot;, # Required. Metric prompt template for pointwise metric.
        &quot;systemInstruction&quot;: &quot;A String&quot;, # Optional. System instructions for pointwise metric.
      },
      &quot;predefinedMetricSpec&quot;: { # The spec for a pre-defined metric. # The spec for a pre-defined metric.
        &quot;metricSpecName&quot;: &quot;A String&quot;, # Required. The name of a pre-defined metric, such as &quot;instruction_following_v1&quot; or &quot;text_quality_v1&quot;.
        &quot;metricSpecParameters&quot;: { # Optional. The parameters needed to run the pre-defined metric.
          &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
        },
      },
      &quot;rougeSpec&quot;: { # Spec for rouge score metric - calculates the recall of n-grams in prediction as compared to reference - returns a score ranging between 0 and 1. # Spec for rouge metric.
        &quot;rougeType&quot;: &quot;A String&quot;, # Optional. Supported rouge types are rougen[1-9], rougeL, and rougeLsum.
        &quot;splitSummaries&quot;: True or False, # Optional. Whether to split summaries while using rougeLsum.
        &quot;useStemmer&quot;: True or False, # Optional. Whether to use stemmer to compute rouge score.
      },
    },
  ],
  &quot;metricxInput&quot;: { # Input for MetricX metric. # Input for Metricx metric.
    &quot;instance&quot;: { # Spec for MetricX instance - The fields used for evaluation are dependent on the MetricX version. # Required. Metricx instance.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
      &quot;source&quot;: &quot;A String&quot;, # Optional. Source text in original language.
    },
    &quot;metricSpec&quot;: { # Spec for MetricX metric. # Required. Spec for Metricx metric.
      &quot;sourceLanguage&quot;: &quot;A String&quot;, # Optional. Source language in BCP-47 format.
      &quot;targetLanguage&quot;: &quot;A String&quot;, # Optional. Target language in BCP-47 format. Covers both prediction and reference.
      &quot;version&quot;: &quot;A String&quot;, # Required. Which version to use for evaluation.
    },
  },
  &quot;pairwiseMetricInput&quot;: { # Input for pairwise metric. # Input for pairwise metric.
    &quot;instance&quot;: { # Pairwise metric instance. Usually one instance corresponds to one row in an evaluation dataset. # Required. Pairwise metric instance.
      &quot;contentMapInstance&quot;: { # Map of placeholder in metric prompt template to contents of model input. # Key-value contents for the mutlimodality input, including text, image, video, audio, and pdf, etc. The key is placeholder in metric prompt template, and the value is the multimodal content.
        &quot;values&quot;: { # Optional. Map of placeholder to contents.
          &quot;a_key&quot;: { # Repeated Content type.
            &quot;contents&quot;: [ # Optional. Repeated contents.
              { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message.
                &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
                  { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                    &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
                      &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                      &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                    },
                    &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
                      &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                      &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                    },
                    &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
                      &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                      &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
                      &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                    },
                    &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
                      &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                        &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                      },
                      &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                      &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
                    },
                    &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
                      &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                      &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                      &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
                        { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                          &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                            &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                          },
                          &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                            &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                          },
                        },
                      ],
                      &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                        &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                      },
                    },
                    &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
                      &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
                      &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                      &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                    },
                    &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
                    &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
                    &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                    &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                      &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                      &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
                      &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                    },
                  },
                ],
                &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
              },
            ],
          },
        },
      },
      &quot;jsonInstance&quot;: &quot;A String&quot;, # Instance specified as a json string. String key-value pairs are expected in the json_instance to render PairwiseMetricSpec.instance_prompt_template.
    },
    &quot;metricSpec&quot;: { # Spec for pairwise metric. # Required. Spec for pairwise metric.
      &quot;baselineResponseFieldName&quot;: &quot;A String&quot;, # Optional. The field name of the baseline response.
      &quot;candidateResponseFieldName&quot;: &quot;A String&quot;, # Optional. The field name of the candidate response.
      &quot;customOutputFormatConfig&quot;: { # Spec for custom output format configuration. # Optional. CustomOutputFormatConfig allows customization of metric output. When this config is set, the default output is replaced with the raw output string. If a custom format is chosen, the `pairwise_choice` and `explanation` fields in the corresponding metric result will be empty.
        &quot;returnRawOutput&quot;: True or False, # Optional. Whether to return raw output.
      },
      &quot;metricPromptTemplate&quot;: &quot;A String&quot;, # Required. Metric prompt template for pairwise metric.
      &quot;systemInstruction&quot;: &quot;A String&quot;, # Optional. System instructions for pairwise metric.
    },
  },
  &quot;pairwiseQuestionAnsweringQualityInput&quot;: { # Input for pairwise question answering quality metric. # Input for pairwise question answering quality metric.
    &quot;instance&quot;: { # Spec for pairwise question answering quality instance. # Required. Pairwise question answering quality instance.
      &quot;baselinePrediction&quot;: &quot;A String&quot;, # Required. Output of the baseline model.
      &quot;context&quot;: &quot;A String&quot;, # Required. Text to answer the question.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. Question Answering prompt for LLM.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the candidate model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for pairwise question answering quality score metric. # Required. Spec for pairwise question answering quality score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute question answering quality.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;pairwiseSummarizationQualityInput&quot;: { # Input for pairwise summarization quality metric. # Input for pairwise summarization quality metric.
    &quot;instance&quot;: { # Spec for pairwise summarization quality instance. # Required. Pairwise summarization quality instance.
      &quot;baselinePrediction&quot;: &quot;A String&quot;, # Required. Output of the baseline model.
      &quot;context&quot;: &quot;A String&quot;, # Required. Text to be summarized.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. Summarization prompt for LLM.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the candidate model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for pairwise summarization quality score metric. # Required. Spec for pairwise summarization quality score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute pairwise summarization quality.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;pointwiseMetricInput&quot;: { # Input for pointwise metric. # Input for pointwise metric.
    &quot;instance&quot;: { # Pointwise metric instance. Usually one instance corresponds to one row in an evaluation dataset. # Required. Pointwise metric instance.
      &quot;contentMapInstance&quot;: { # Map of placeholder in metric prompt template to contents of model input. # Key-value contents for the mutlimodality input, including text, image, video, audio, and pdf, etc. The key is placeholder in metric prompt template, and the value is the multimodal content.
        &quot;values&quot;: { # Optional. Map of placeholder to contents.
          &quot;a_key&quot;: { # Repeated Content type.
            &quot;contents&quot;: [ # Optional. Repeated contents.
              { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message.
                &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
                  { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                    &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
                      &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                      &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                    },
                    &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
                      &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                      &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                    },
                    &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
                      &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                      &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
                      &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                    },
                    &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
                      &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                        &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                      },
                      &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                      &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
                    },
                    &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
                      &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                      &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                      &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
                        { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                          &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                            &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                          },
                          &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                            &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                            &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                          },
                        },
                      ],
                      &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                        &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                      },
                    },
                    &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
                      &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
                      &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                      &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                    },
                    &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
                    &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
                    &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                    &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                      &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                      &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
                      &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                    },
                  },
                ],
                &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
              },
            ],
          },
        },
      },
      &quot;jsonInstance&quot;: &quot;A String&quot;, # Instance specified as a json string. String key-value pairs are expected in the json_instance to render PointwiseMetricSpec.instance_prompt_template.
    },
    &quot;metricSpec&quot;: { # Spec for pointwise metric. # Required. Spec for pointwise metric.
      &quot;customOutputFormatConfig&quot;: { # Spec for custom output format configuration. # Optional. CustomOutputFormatConfig allows customization of metric output. By default, metrics return a score and explanation. When this config is set, the default output is replaced with either: - The raw output string. - A parsed output based on a user-defined schema. If a custom format is chosen, the `score` and `explanation` fields in the corresponding metric result will be empty.
        &quot;returnRawOutput&quot;: True or False, # Optional. Whether to return raw output.
      },
      &quot;metricPromptTemplate&quot;: &quot;A String&quot;, # Required. Metric prompt template for pointwise metric.
      &quot;systemInstruction&quot;: &quot;A String&quot;, # Optional. System instructions for pointwise metric.
    },
  },
  &quot;questionAnsweringCorrectnessInput&quot;: { # Input for question answering correctness metric. # Input for question answering correctness metric.
    &quot;instance&quot;: { # Spec for question answering correctness instance. # Required. Question answering correctness instance.
      &quot;context&quot;: &quot;A String&quot;, # Optional. Text provided as context to answer the question.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. The question asked and other instruction in the inference prompt.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for question answering correctness metric. # Required. Spec for question answering correctness score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute question answering correctness.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;questionAnsweringHelpfulnessInput&quot;: { # Input for question answering helpfulness metric. # Input for question answering helpfulness metric.
    &quot;instance&quot;: { # Spec for question answering helpfulness instance. # Required. Question answering helpfulness instance.
      &quot;context&quot;: &quot;A String&quot;, # Optional. Text provided as context to answer the question.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. The question asked and other instruction in the inference prompt.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for question answering helpfulness metric. # Required. Spec for question answering helpfulness score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute question answering helpfulness.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;questionAnsweringQualityInput&quot;: { # Input for question answering quality metric. # Input for question answering quality metric.
    &quot;instance&quot;: { # Spec for question answering quality instance. # Required. Question answering quality instance.
      &quot;context&quot;: &quot;A String&quot;, # Required. Text to answer the question.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. Question Answering prompt for LLM.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for question answering quality score metric. # Required. Spec for question answering quality score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute question answering quality.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;questionAnsweringRelevanceInput&quot;: { # Input for question answering relevance metric. # Input for question answering relevance metric.
    &quot;instance&quot;: { # Spec for question answering relevance instance. # Required. Question answering relevance instance.
      &quot;context&quot;: &quot;A String&quot;, # Optional. Text provided as context to answer the question.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. The question asked and other instruction in the inference prompt.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for question answering relevance metric. # Required. Spec for question answering relevance score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute question answering relevance.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;rougeInput&quot;: { # Input for rouge metric. # Instances and metric spec for rouge metric.
    &quot;instances&quot;: [ # Required. Repeated rouge instances.
      { # Spec for rouge instance.
        &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
        &quot;reference&quot;: &quot;A String&quot;, # Required. Ground truth used to compare against the prediction.
      },
    ],
    &quot;metricSpec&quot;: { # Spec for rouge score metric - calculates the recall of n-grams in prediction as compared to reference - returns a score ranging between 0 and 1. # Required. Spec for rouge score metric.
      &quot;rougeType&quot;: &quot;A String&quot;, # Optional. Supported rouge types are rougen[1-9], rougeL, and rougeLsum.
      &quot;splitSummaries&quot;: True or False, # Optional. Whether to split summaries while using rougeLsum.
      &quot;useStemmer&quot;: True or False, # Optional. Whether to use stemmer to compute rouge score.
    },
  },
  &quot;rubricBasedInstructionFollowingInput&quot;: { # Instance and metric spec for RubricBasedInstructionFollowing metric. # Rubric Based Instruction Following metric.
    &quot;instance&quot;: { # Instance for RubricBasedInstructionFollowing metric - one instance corresponds to one row in an evaluation dataset. # Required. Instance for RubricBasedInstructionFollowing metric.
      &quot;jsonInstance&quot;: &quot;A String&quot;, # Required. Instance specified as a json string. String key-value pairs are expected in the json_instance to render RubricBasedInstructionFollowing prompt templates.
    },
    &quot;metricSpec&quot;: { # Spec for RubricBasedInstructionFollowing metric - returns rubrics and verdicts corresponding to rubrics along with overall score. # Required. Spec for RubricBasedInstructionFollowing metric.
    },
  },
  &quot;safetyInput&quot;: { # Input for safety metric. # Input for safety metric.
    &quot;instance&quot;: { # Spec for safety instance. # Required. Safety instance.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
    },
    &quot;metricSpec&quot;: { # Spec for safety metric. # Required. Spec for safety metric.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;summarizationHelpfulnessInput&quot;: { # Input for summarization helpfulness metric. # Input for summarization helpfulness metric.
    &quot;instance&quot;: { # Spec for summarization helpfulness instance. # Required. Summarization helpfulness instance.
      &quot;context&quot;: &quot;A String&quot;, # Required. Text to be summarized.
      &quot;instruction&quot;: &quot;A String&quot;, # Optional. Summarization prompt for LLM.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for summarization helpfulness score metric. # Required. Spec for summarization helpfulness score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute summarization helpfulness.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;summarizationQualityInput&quot;: { # Input for summarization quality metric. # Input for summarization quality metric.
    &quot;instance&quot;: { # Spec for summarization quality instance. # Required. Summarization quality instance.
      &quot;context&quot;: &quot;A String&quot;, # Required. Text to be summarized.
      &quot;instruction&quot;: &quot;A String&quot;, # Required. Summarization prompt for LLM.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for summarization quality score metric. # Required. Spec for summarization quality score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute summarization quality.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;summarizationVerbosityInput&quot;: { # Input for summarization verbosity metric. # Input for summarization verbosity metric.
    &quot;instance&quot;: { # Spec for summarization verbosity instance. # Required. Summarization verbosity instance.
      &quot;context&quot;: &quot;A String&quot;, # Required. Text to be summarized.
      &quot;instruction&quot;: &quot;A String&quot;, # Optional. Summarization prompt for LLM.
      &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
      &quot;reference&quot;: &quot;A String&quot;, # Optional. Ground truth used to compare against the prediction.
    },
    &quot;metricSpec&quot;: { # Spec for summarization verbosity score metric. # Required. Spec for summarization verbosity score metric.
      &quot;useReference&quot;: True or False, # Optional. Whether to use instance.reference to compute summarization verbosity.
      &quot;version&quot;: 42, # Optional. Which version to use for evaluation.
    },
  },
  &quot;toolCallValidInput&quot;: { # Input for tool call valid metric. # Tool call metric instances. Input for tool call valid metric.
    &quot;instances&quot;: [ # Required. Repeated tool call valid instances.
      { # Spec for tool call valid instance.
        &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
        &quot;reference&quot;: &quot;A String&quot;, # Required. Ground truth used to compare against the prediction.
      },
    ],
    &quot;metricSpec&quot;: { # Spec for tool call valid metric. # Required. Spec for tool call valid metric.
    },
  },
  &quot;toolNameMatchInput&quot;: { # Input for tool name match metric. # Input for tool name match metric.
    &quot;instances&quot;: [ # Required. Repeated tool name match instances.
      { # Spec for tool name match instance.
        &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
        &quot;reference&quot;: &quot;A String&quot;, # Required. Ground truth used to compare against the prediction.
      },
    ],
    &quot;metricSpec&quot;: { # Spec for tool name match metric. # Required. Spec for tool name match metric.
    },
  },
  &quot;toolParameterKeyMatchInput&quot;: { # Input for tool parameter key match metric. # Input for tool parameter key match metric.
    &quot;instances&quot;: [ # Required. Repeated tool parameter key match instances.
      { # Spec for tool parameter key match instance.
        &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
        &quot;reference&quot;: &quot;A String&quot;, # Required. Ground truth used to compare against the prediction.
      },
    ],
    &quot;metricSpec&quot;: { # Spec for tool parameter key match metric. # Required. Spec for tool parameter key match metric.
    },
  },
  &quot;toolParameterKvMatchInput&quot;: { # Input for tool parameter key value match metric. # Input for tool parameter key value match metric.
    &quot;instances&quot;: [ # Required. Repeated tool parameter key value match instances.
      { # Spec for tool parameter key value match instance.
        &quot;prediction&quot;: &quot;A String&quot;, # Required. Output of the evaluated model.
        &quot;reference&quot;: &quot;A String&quot;, # Required. Ground truth used to compare against the prediction.
      },
    ],
    &quot;metricSpec&quot;: { # Spec for tool parameter key value match metric. # Required. Spec for tool parameter key value match metric.
      &quot;useStrictStringMatch&quot;: True or False, # Optional. Whether to use STRICT string match on parameter values.
    },
  },
  &quot;trajectoryAnyOrderMatchInput&quot;: { # Instances and metric spec for TrajectoryAnyOrderMatch metric. # Input for trajectory match any order metric.
    &quot;instances&quot;: [ # Required. Repeated TrajectoryAnyOrderMatch instance.
      { # Spec for TrajectoryAnyOrderMatch instance.
        &quot;predictedTrajectory&quot;: { # Spec for trajectory. # Required. Spec for predicted tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
        &quot;referenceTrajectory&quot;: { # Spec for trajectory. # Required. Spec for reference tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
      },
    ],
    &quot;metricSpec&quot;: { # Spec for TrajectoryAnyOrderMatch metric - returns 1 if all tool calls in the reference trajectory appear in the predicted trajectory in any order, else 0. # Required. Spec for TrajectoryAnyOrderMatch metric.
    },
  },
  &quot;trajectoryExactMatchInput&quot;: { # Instances and metric spec for TrajectoryExactMatch metric. # Input for trajectory exact match metric.
    &quot;instances&quot;: [ # Required. Repeated TrajectoryExactMatch instance.
      { # Spec for TrajectoryExactMatch instance.
        &quot;predictedTrajectory&quot;: { # Spec for trajectory. # Required. Spec for predicted tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
        &quot;referenceTrajectory&quot;: { # Spec for trajectory. # Required. Spec for reference tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
      },
    ],
    &quot;metricSpec&quot;: { # Spec for TrajectoryExactMatch metric - returns 1 if tool calls in the reference trajectory exactly match the predicted trajectory, else 0. # Required. Spec for TrajectoryExactMatch metric.
    },
  },
  &quot;trajectoryInOrderMatchInput&quot;: { # Instances and metric spec for TrajectoryInOrderMatch metric. # Input for trajectory in order match metric.
    &quot;instances&quot;: [ # Required. Repeated TrajectoryInOrderMatch instance.
      { # Spec for TrajectoryInOrderMatch instance.
        &quot;predictedTrajectory&quot;: { # Spec for trajectory. # Required. Spec for predicted tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
        &quot;referenceTrajectory&quot;: { # Spec for trajectory. # Required. Spec for reference tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
      },
    ],
    &quot;metricSpec&quot;: { # Spec for TrajectoryInOrderMatch metric - returns 1 if tool calls in the reference trajectory appear in the predicted trajectory in the same order, else 0. # Required. Spec for TrajectoryInOrderMatch metric.
    },
  },
  &quot;trajectoryPrecisionInput&quot;: { # Instances and metric spec for TrajectoryPrecision metric. # Input for trajectory precision metric.
    &quot;instances&quot;: [ # Required. Repeated TrajectoryPrecision instance.
      { # Spec for TrajectoryPrecision instance.
        &quot;predictedTrajectory&quot;: { # Spec for trajectory. # Required. Spec for predicted tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
        &quot;referenceTrajectory&quot;: { # Spec for trajectory. # Required. Spec for reference tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
      },
    ],
    &quot;metricSpec&quot;: { # Spec for TrajectoryPrecision metric - returns a float score based on average precision of individual tool calls. # Required. Spec for TrajectoryPrecision metric.
    },
  },
  &quot;trajectoryRecallInput&quot;: { # Instances and metric spec for TrajectoryRecall metric. # Input for trajectory recall metric.
    &quot;instances&quot;: [ # Required. Repeated TrajectoryRecall instance.
      { # Spec for TrajectoryRecall instance.
        &quot;predictedTrajectory&quot;: { # Spec for trajectory. # Required. Spec for predicted tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
        &quot;referenceTrajectory&quot;: { # Spec for trajectory. # Required. Spec for reference tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
      },
    ],
    &quot;metricSpec&quot;: { # Spec for TrajectoryRecall metric - returns a float score based on average recall of individual tool calls. # Required. Spec for TrajectoryRecall metric.
    },
  },
  &quot;trajectorySingleToolUseInput&quot;: { # Instances and metric spec for TrajectorySingleToolUse metric. # Input for trajectory single tool use metric.
    &quot;instances&quot;: [ # Required. Repeated TrajectorySingleToolUse instance.
      { # Spec for TrajectorySingleToolUse instance.
        &quot;predictedTrajectory&quot;: { # Spec for trajectory. # Required. Spec for predicted tool call trajectory.
          &quot;toolCalls&quot;: [ # Required. Tool calls in the trajectory.
            { # Spec for tool call.
              &quot;toolInput&quot;: &quot;A String&quot;, # Optional. Spec for tool input
              &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name
            },
          ],
        },
      },
    ],
    &quot;metricSpec&quot;: { # Spec for TrajectorySingleToolUse metric - returns 1 if tool is present in the predicted trajectory, else 0. # Required. Spec for TrajectorySingleToolUse metric.
      &quot;toolName&quot;: &quot;A String&quot;, # Required. Spec for tool name to be checked for in the predicted trajectory.
    },
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for EvaluationService.EvaluateInstances.
  &quot;bleuResults&quot;: { # Results for bleu metric. # Results for bleu metric.
    &quot;bleuMetricValues&quot;: [ # Output only. Bleu metric values.
      { # Bleu metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. Bleu score.
      },
    ],
  },
  &quot;coherenceResult&quot;: { # Spec for coherence result. # Result for coherence metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for coherence score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for coherence score.
    &quot;score&quot;: 3.14, # Output only. Coherence score.
  },
  &quot;cometResult&quot;: { # Spec for Comet result - calculates the comet score for the given instance using the version specified in the spec. # Translation metrics. Result for Comet metric.
    &quot;score&quot;: 3.14, # Output only. Comet score. Range depends on version.
  },
  &quot;exactMatchResults&quot;: { # Results for exact match metric. # Auto metric evaluation results. Results for exact match metric.
    &quot;exactMatchMetricValues&quot;: [ # Output only. Exact match metric values.
      { # Exact match metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. Exact match score.
      },
    ],
  },
  &quot;fluencyResult&quot;: { # Spec for fluency result. # LLM-based metric evaluation result. General text generation metrics, applicable to other categories. Result for fluency metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for fluency score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for fluency score.
    &quot;score&quot;: 3.14, # Output only. Fluency score.
  },
  &quot;fulfillmentResult&quot;: { # Spec for fulfillment result. # Result for fulfillment metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for fulfillment score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for fulfillment score.
    &quot;score&quot;: 3.14, # Output only. Fulfillment score.
  },
  &quot;groundednessResult&quot;: { # Spec for groundedness result. # Result for groundedness metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for groundedness score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for groundedness score.
    &quot;score&quot;: 3.14, # Output only. Groundedness score.
  },
  &quot;metricResults&quot;: [ # Metric results for each instance. The order of the metric results is guaranteed to be the same as the order of the instances in the request.
    { # Result for a single metric on a single instance.
      &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # Output only. The error status for the metric result.
        &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
        &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
          {
            &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
          },
        ],
        &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
      },
      &quot;explanation&quot;: &quot;A String&quot;, # Output only. The explanation for the metric result.
      &quot;rubricVerdicts&quot;: [ # Output only. For rubric-based metrics, the verdicts for each rubric.
        { # Represents the verdict of an evaluation against a single rubric.
          &quot;evaluatedRubric&quot;: { # Message representing a single testable criterion for evaluation. One input prompt could have multiple rubrics. # Required. The full rubric definition that was evaluated. Storing this ensures the verdict is self-contained and understandable, especially if the original rubric definition changes or was dynamically generated.
            &quot;content&quot;: { # Content of the rubric, defining the testable criteria. # Required. The actual testable criteria for the rubric.
              &quot;property&quot;: { # Defines criteria based on a specific property. # Evaluation criteria based on a specific property.
                &quot;description&quot;: &quot;A String&quot;, # Description of the property being evaluated. Example: &quot;The model&#x27;s response is grammatically correct.&quot;
              },
            },
            &quot;importance&quot;: &quot;A String&quot;, # Optional. The relative importance of this rubric.
            &quot;rubricId&quot;: &quot;A String&quot;, # Unique identifier for the rubric. This ID is used to refer to this rubric, e.g., in RubricVerdict.
            &quot;type&quot;: &quot;A String&quot;, # Optional. A type designator for the rubric, which can inform how it&#x27;s evaluated or interpreted by systems or users. It&#x27;s recommended to use consistent, well-defined, upper snake_case strings. Examples: &quot;SUMMARIZATION_QUALITY&quot;, &quot;SAFETY_HARMFUL_CONTENT&quot;, &quot;INSTRUCTION_ADHERENCE&quot;.
          },
          &quot;reasoning&quot;: &quot;A String&quot;, # Optional. Human-readable reasoning or explanation for the verdict. This can include specific examples or details from the evaluated content that justify the given verdict.
          &quot;verdict&quot;: True or False, # Required. Outcome of the evaluation against the rubric, represented as a boolean. `true` indicates a &quot;Pass&quot;, `false` indicates a &quot;Fail&quot;.
        },
      ],
      &quot;score&quot;: 3.14, # Output only. The score for the metric. Please refer to each metric&#x27;s documentation for the meaning of the score.
    },
  ],
  &quot;metricxResult&quot;: { # Spec for MetricX result - calculates the MetricX score for the given instance using the version specified in the spec. # Result for Metricx metric.
    &quot;score&quot;: 3.14, # Output only. MetricX score. Range depends on version.
  },
  &quot;pairwiseMetricResult&quot;: { # Spec for pairwise metric result. # Result for pairwise metric.
    &quot;customOutput&quot;: { # Spec for custom output. # Output only. Spec for custom output.
      &quot;rawOutputs&quot;: { # Raw output. # Output only. List of raw output strings.
        &quot;rawOutput&quot;: [ # Output only. Raw output string.
          &quot;A String&quot;,
        ],
      },
    },
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for pairwise metric score.
    &quot;pairwiseChoice&quot;: &quot;A String&quot;, # Output only. Pairwise metric choice.
  },
  &quot;pairwiseQuestionAnsweringQualityResult&quot;: { # Spec for pairwise question answering quality result. # Result for pairwise question answering quality metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for question answering quality score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for question answering quality score.
    &quot;pairwiseChoice&quot;: &quot;A String&quot;, # Output only. Pairwise question answering prediction choice.
  },
  &quot;pairwiseSummarizationQualityResult&quot;: { # Spec for pairwise summarization quality result. # Result for pairwise summarization quality metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for summarization quality score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for summarization quality score.
    &quot;pairwiseChoice&quot;: &quot;A String&quot;, # Output only. Pairwise summarization prediction choice.
  },
  &quot;pointwiseMetricResult&quot;: { # Spec for pointwise metric result. # Generic metrics. Result for pointwise metric.
    &quot;customOutput&quot;: { # Spec for custom output. # Output only. Spec for custom output.
      &quot;rawOutputs&quot;: { # Raw output. # Output only. List of raw output strings.
        &quot;rawOutput&quot;: [ # Output only. Raw output string.
          &quot;A String&quot;,
        ],
      },
    },
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for pointwise metric score.
    &quot;score&quot;: 3.14, # Output only. Pointwise metric score.
  },
  &quot;questionAnsweringCorrectnessResult&quot;: { # Spec for question answering correctness result. # Result for question answering correctness metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for question answering correctness score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for question answering correctness score.
    &quot;score&quot;: 3.14, # Output only. Question Answering Correctness score.
  },
  &quot;questionAnsweringHelpfulnessResult&quot;: { # Spec for question answering helpfulness result. # Result for question answering helpfulness metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for question answering helpfulness score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for question answering helpfulness score.
    &quot;score&quot;: 3.14, # Output only. Question Answering Helpfulness score.
  },
  &quot;questionAnsweringQualityResult&quot;: { # Spec for question answering quality result. # Question answering only metrics. Result for question answering quality metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for question answering quality score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for question answering quality score.
    &quot;score&quot;: 3.14, # Output only. Question Answering Quality score.
  },
  &quot;questionAnsweringRelevanceResult&quot;: { # Spec for question answering relevance result. # Result for question answering relevance metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for question answering relevance score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for question answering relevance score.
    &quot;score&quot;: 3.14, # Output only. Question Answering Relevance score.
  },
  &quot;rougeResults&quot;: { # Results for rouge metric. # Results for rouge metric.
    &quot;rougeMetricValues&quot;: [ # Output only. Rouge metric values.
      { # Rouge metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. Rouge score.
      },
    ],
  },
  &quot;rubricBasedInstructionFollowingResult&quot;: { # Result for RubricBasedInstructionFollowing metric. # Result for rubric based instruction following metric.
    &quot;rubricCritiqueResults&quot;: [ # Output only. List of per rubric critique results.
      { # Rubric critique result.
        &quot;rubric&quot;: &quot;A String&quot;, # Output only. Rubric to be evaluated.
        &quot;verdict&quot;: True or False, # Output only. Verdict for the rubric - true if the rubric is met, false otherwise.
      },
    ],
    &quot;score&quot;: 3.14, # Output only. Overall score for the instruction following.
  },
  &quot;safetyResult&quot;: { # Spec for safety result. # Result for safety metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for safety score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for safety score.
    &quot;score&quot;: 3.14, # Output only. Safety score.
  },
  &quot;summarizationHelpfulnessResult&quot;: { # Spec for summarization helpfulness result. # Result for summarization helpfulness metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for summarization helpfulness score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for summarization helpfulness score.
    &quot;score&quot;: 3.14, # Output only. Summarization Helpfulness score.
  },
  &quot;summarizationQualityResult&quot;: { # Spec for summarization quality result. # Summarization only metrics. Result for summarization quality metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for summarization quality score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for summarization quality score.
    &quot;score&quot;: 3.14, # Output only. Summarization Quality score.
  },
  &quot;summarizationVerbosityResult&quot;: { # Spec for summarization verbosity result. # Result for summarization verbosity metric.
    &quot;confidence&quot;: 3.14, # Output only. Confidence for summarization verbosity score.
    &quot;explanation&quot;: &quot;A String&quot;, # Output only. Explanation for summarization verbosity score.
    &quot;score&quot;: 3.14, # Output only. Summarization Verbosity score.
  },
  &quot;toolCallValidResults&quot;: { # Results for tool call valid metric. # Tool call metrics. Results for tool call valid metric.
    &quot;toolCallValidMetricValues&quot;: [ # Output only. Tool call valid metric values.
      { # Tool call valid metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. Tool call valid score.
      },
    ],
  },
  &quot;toolNameMatchResults&quot;: { # Results for tool name match metric. # Results for tool name match metric.
    &quot;toolNameMatchMetricValues&quot;: [ # Output only. Tool name match metric values.
      { # Tool name match metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. Tool name match score.
      },
    ],
  },
  &quot;toolParameterKeyMatchResults&quot;: { # Results for tool parameter key match metric. # Results for tool parameter key match metric.
    &quot;toolParameterKeyMatchMetricValues&quot;: [ # Output only. Tool parameter key match metric values.
      { # Tool parameter key match metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. Tool parameter key match score.
      },
    ],
  },
  &quot;toolParameterKvMatchResults&quot;: { # Results for tool parameter key value match metric. # Results for tool parameter key value match metric.
    &quot;toolParameterKvMatchMetricValues&quot;: [ # Output only. Tool parameter key value match metric values.
      { # Tool parameter key value match metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. Tool parameter key value match score.
      },
    ],
  },
  &quot;trajectoryAnyOrderMatchResults&quot;: { # Results for TrajectoryAnyOrderMatch metric. # Result for trajectory any order match metric.
    &quot;trajectoryAnyOrderMatchMetricValues&quot;: [ # Output only. TrajectoryAnyOrderMatch metric values.
      { # TrajectoryAnyOrderMatch metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. TrajectoryAnyOrderMatch score.
      },
    ],
  },
  &quot;trajectoryExactMatchResults&quot;: { # Results for TrajectoryExactMatch metric. # Result for trajectory exact match metric.
    &quot;trajectoryExactMatchMetricValues&quot;: [ # Output only. TrajectoryExactMatch metric values.
      { # TrajectoryExactMatch metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. TrajectoryExactMatch score.
      },
    ],
  },
  &quot;trajectoryInOrderMatchResults&quot;: { # Results for TrajectoryInOrderMatch metric. # Result for trajectory in order match metric.
    &quot;trajectoryInOrderMatchMetricValues&quot;: [ # Output only. TrajectoryInOrderMatch metric values.
      { # TrajectoryInOrderMatch metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. TrajectoryInOrderMatch score.
      },
    ],
  },
  &quot;trajectoryPrecisionResults&quot;: { # Results for TrajectoryPrecision metric. # Result for trajectory precision metric.
    &quot;trajectoryPrecisionMetricValues&quot;: [ # Output only. TrajectoryPrecision metric values.
      { # TrajectoryPrecision metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. TrajectoryPrecision score.
      },
    ],
  },
  &quot;trajectoryRecallResults&quot;: { # Results for TrajectoryRecall metric. # Results for trajectory recall metric.
    &quot;trajectoryRecallMetricValues&quot;: [ # Output only. TrajectoryRecall metric values.
      { # TrajectoryRecall metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. TrajectoryRecall score.
      },
    ],
  },
  &quot;trajectorySingleToolUseResults&quot;: { # Results for TrajectorySingleToolUse metric. # Results for trajectory single tool use metric.
    &quot;trajectorySingleToolUseMetricValues&quot;: [ # Output only. TrajectorySingleToolUse metric values.
      { # TrajectorySingleToolUse metric value for an instance.
        &quot;score&quot;: 3.14, # Output only. TrajectorySingleToolUse score.
      },
    ],
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="generateInstanceRubrics">generateInstanceRubrics(location, body=None, x__xgafv=None)</code>
  <pre>Generates rubrics for a given prompt. A rubric represents a single testable criterion for evaluation. One input prompt could have multiple rubrics This RPC allows users to get suggested rubrics based on provided prompt, which can then be reviewed and used for subsequent evaluations.

Args:
  location: string, Required. The resource name of the Location to generate rubrics from. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for EvaluationService.GenerateInstanceRubrics.
  &quot;agentConfig&quot;: { # Configuration for an Agent. # Optional. Agent configuration, required for agent-based rubric generation.
    &quot;developerInstruction&quot;: { # Instance data used to populate placeholders in a metric prompt template. # Optional. A field containing instructions from the developer for the agent.
      &quot;contents&quot;: { # List of standard Content messages from Gemini API. # List of Gemini content data.
        &quot;contents&quot;: [ # Optional. Repeated contents.
          { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message.
            &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
              { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
                  &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                  &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                },
                &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
                  &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                  &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                },
                &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
                  &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
                },
                &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                  &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
                    { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                      &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                        &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                        &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                        &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                      },
                      &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                        &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                        &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                        &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                      },
                    },
                  ],
                  &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                },
                &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
                  &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
                &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
                &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                  &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                  &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
                  &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                },
              },
            ],
            &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
          },
        ],
      },
      &quot;text&quot;: &quot;A String&quot;, # Text data.
    },
    &quot;tools&quot;: { # Represents a list of tools for an agent. # List of tools.
      &quot;tool&quot;: [ # Optional. List of tools: each tool can have multiple function declarations.
        { # Tool details that the model may use to generate response. A `Tool` is a piece of code that enables the system to interact with external systems to perform an action, or set of actions, outside of knowledge and scope of the model. A Tool object should contain exactly one type of Tool (e.g FunctionDeclaration, Retrieval or GoogleSearchRetrieval).
          &quot;codeExecution&quot;: { # Tool that executes code generated by the model, and automatically returns the result to the model. See also [ExecutableCode]and [CodeExecutionResult] which are input and output to this tool. # Optional. CodeExecution tool type. Enables the model to execute code as part of generation.
          },
          &quot;computerUse&quot;: { # Tool to support computer use. # Optional. Tool to support the model interacting directly with the computer. If enabled, it automatically populates computer-use specific Function Declarations.
            &quot;environment&quot;: &quot;A String&quot;, # Required. The environment being operated.
            &quot;excludedPredefinedFunctions&quot;: [ # Optional. By default, [predefined functions](https://cloud.google.com/vertex-ai/generative-ai/docs/computer-use#supported-actions) are included in the final model call. Some of them can be explicitly excluded from being automatically included. This can serve two purposes: 1. Using a more restricted / different action space. 2. Improving the definitions / instructions of predefined functions.
              &quot;A String&quot;,
            ],
          },
          &quot;enterpriseWebSearch&quot;: { # Tool to search public web data, powered by Vertex AI Search and Sec4 compliance. # Optional. Tool to support searching public web data, powered by Vertex AI Search and Sec4 compliance.
            &quot;blockingConfidence&quot;: &quot;A String&quot;, # Optional. Sites with confidence level chosen &amp; above this value will be blocked from the search results.
            &quot;excludeDomains&quot;: [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains.
              &quot;A String&quot;,
            ],
          },
          &quot;functionDeclarations&quot;: [ # Optional. Function tool type. One or more function declarations to be passed to the model along with the current user query. Model may decide to call a subset of these functions by populating FunctionCall in the response. User should provide a FunctionResponse for each function call in the next turn. Based on the function responses, Model will generate the final response back to the user. Maximum 512 function declarations can be provided.
            { # Structured representation of a function declaration as defined by the [OpenAPI 3.0 specification](https://spec.openapis.org/oas/v3.0.3). Included in this declaration are the function name, description, parameters and response type. This FunctionDeclaration is a representation of a block of code that can be used as a `Tool` by the model and executed by the client.
              &quot;description&quot;: &quot;A String&quot;, # Optional. Description and purpose of the function. Model uses it to decide how and whether to call the function.
              &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Must start with a letter or an underscore. Must be a-z, A-Z, 0-9, or contain underscores, dots and dashes, with a maximum length of 64.
              &quot;parameters&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the parameters to this function in JSON Schema Object format. Reflects the Open API 3.03 Parameter Object. string Key: the name of the parameter. Parameter names are case sensitive. Schema Value: the Schema defining the type used for the parameter. For function with no parameters, this can be left unset. Parameter names must start with a letter or an underscore and must only contain chars a-z, A-Z, 0-9, or underscores with a maximum length of 64. Example with 1 required and 1 optional parameter: type: OBJECT properties: param1: type: STRING param2: type: INTEGER required: - param1
                &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
                &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
                  # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                ],
                &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
                &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
                  &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                },
                &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
                &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
                  &quot;A String&quot;,
                ],
                &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
                &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
                &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
                &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
                &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
                &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
                &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
                &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
                &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
                &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
                &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
                &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
                &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
                &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
                  &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                },
                &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
                  &quot;A String&quot;,
                ],
                &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
                &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
                  &quot;A String&quot;,
                ],
                &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
                &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
              },
              &quot;parametersJsonSchema&quot;: &quot;&quot;, # Optional. Describes the parameters to the function in JSON Schema format. The schema must describe an object where the properties are the parameters to the function. For example: ``` { &quot;type&quot;: &quot;object&quot;, &quot;properties&quot;: { &quot;name&quot;: { &quot;type&quot;: &quot;string&quot; }, &quot;age&quot;: { &quot;type&quot;: &quot;integer&quot; } }, &quot;additionalProperties&quot;: false, &quot;required&quot;: [&quot;name&quot;, &quot;age&quot;], &quot;propertyOrdering&quot;: [&quot;name&quot;, &quot;age&quot;] } ``` This field is mutually exclusive with `parameters`.
              &quot;response&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Describes the output from this function in JSON Schema format. Reflects the Open API 3.03 Response Object. The Schema defines the type used for the response value of the function.
                &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
                &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
                  # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                ],
                &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
                &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
                  &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                },
                &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
                &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
                  &quot;A String&quot;,
                ],
                &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
                &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
                &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
                &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
                &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
                &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
                &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
                &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
                &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
                &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
                &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
                &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
                &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
                &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
                  &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
                },
                &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
                  &quot;A String&quot;,
                ],
                &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
                &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
                  &quot;A String&quot;,
                ],
                &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
                &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
              },
              &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. Describes the output from this function in JSON Schema format. The value specified by the schema is the response value of the function. This field is mutually exclusive with `response`.
            },
          ],
          &quot;googleMaps&quot;: { # Tool to retrieve public maps data for grounding, powered by Google. # Optional. GoogleMaps tool type. Tool to support Google Maps in Model.
            &quot;enableWidget&quot;: True or False, # Optional. If true, include the widget context token in the response.
          },
          &quot;googleSearch&quot;: { # GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google. # Optional. GoogleSearch tool type. Tool to support Google Search in Model. Powered by Google.
            &quot;blockingConfidence&quot;: &quot;A String&quot;, # Optional. Sites with confidence level chosen &amp; above this value will be blocked from the search results.
            &quot;excludeDomains&quot;: [ # Optional. List of domains to be excluded from the search results. The default limit is 2000 domains. Example: [&quot;amazon.com&quot;, &quot;facebook.com&quot;].
              &quot;A String&quot;,
            ],
          },
          &quot;googleSearchRetrieval&quot;: { # Tool to retrieve public web data for grounding, powered by Google. # Optional. Specialized retrieval tool that is powered by Google Search.
            &quot;dynamicRetrievalConfig&quot;: { # Describes the options to customize dynamic retrieval. # Specifies the dynamic retrieval configuration for the given source.
              &quot;dynamicThreshold&quot;: 3.14, # Optional. The threshold to be used in dynamic retrieval. If not set, a system default value is used.
              &quot;mode&quot;: &quot;A String&quot;, # The mode of the predictor to be used in dynamic retrieval.
            },
          },
          &quot;retrieval&quot;: { # Defines a retrieval tool that model can call to access external knowledge. # Optional. Retrieval tool type. System will always execute the provided retrieval tool(s) to get external knowledge to answer the prompt. Retrieval results are presented to the model for generation.
            &quot;disableAttribution&quot;: True or False, # Optional. Deprecated. This option is no longer supported.
            &quot;externalApi&quot;: { # Retrieve from data source powered by external API for grounding. The external API is not owned by Google, but need to follow the pre-defined API spec. # Use data source powered by external API for grounding.
              &quot;apiAuth&quot;: { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # The authentication config to access the API. Deprecated. Please use auth_config instead.
                &quot;apiKeyConfig&quot;: { # The API secret. # The API secret.
                  &quot;apiKeySecretVersion&quot;: &quot;A String&quot;, # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
                  &quot;apiKeyString&quot;: &quot;A String&quot;, # The API key string. Either this or `api_key_secret_version` must be set.
                },
              },
              &quot;apiSpec&quot;: &quot;A String&quot;, # The API spec that the external API implements.
              &quot;authConfig&quot;: { # Auth configuration to run the extension. # The authentication config to access the API.
                &quot;apiKeyConfig&quot;: { # Config for authentication with API key. # Config for API key auth.
                  &quot;apiKeySecret&quot;: &quot;A String&quot;, # Optional. The name of the SecretManager secret version resource storing the API key. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If both `api_key_secret` and `api_key_string` are specified, this field takes precedence over `api_key_string`. - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
                  &quot;apiKeyString&quot;: &quot;A String&quot;, # Optional. The API key to be used in the request directly.
                  &quot;httpElementLocation&quot;: &quot;A String&quot;, # Optional. The location of the API key.
                  &quot;name&quot;: &quot;A String&quot;, # Optional. The parameter name of the API key. E.g. If the API request is &quot;https://example.com/act?api_key=&quot;, &quot;api_key&quot; would be the parameter name.
                },
                &quot;authType&quot;: &quot;A String&quot;, # Type of auth scheme.
                &quot;googleServiceAccountConfig&quot;: { # Config for Google Service Account Authentication. # Config for Google Service Account auth.
                  &quot;serviceAccount&quot;: &quot;A String&quot;, # Optional. The service account that the extension execution service runs as. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified service account. - If not specified, the Vertex AI Extension Service Agent will be used to execute the Extension.
                },
                &quot;httpBasicAuthConfig&quot;: { # Config for HTTP Basic Authentication. # Config for HTTP Basic auth.
                  &quot;credentialSecret&quot;: &quot;A String&quot;, # Required. The name of the SecretManager secret version resource storing the base64 encoded credentials. Format: `projects/{project}/secrets/{secrete}/versions/{version}` - If specified, the `secretmanager.versions.access` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the specified resource.
                },
                &quot;oauthConfig&quot;: { # Config for user oauth. # Config for user oauth.
                  &quot;accessToken&quot;: &quot;A String&quot;, # Access token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
                  &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account used to generate access tokens for executing the Extension. - If the service account is specified, the `iam.serviceAccounts.getAccessToken` permission should be granted to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) on the provided service account.
                },
                &quot;oidcConfig&quot;: { # Config for user OIDC auth. # Config for user OIDC auth.
                  &quot;idToken&quot;: &quot;A String&quot;, # OpenID Connect formatted ID token for extension endpoint. Only used to propagate token from [[ExecuteExtensionRequest.runtime_auth_config]] at request time.
                  &quot;serviceAccount&quot;: &quot;A String&quot;, # The service account used to generate an OpenID Connect (OIDC)-compatible JWT token signed by the Google OIDC Provider (accounts.google.com) for extension endpoint (https://cloud.google.com/iam/docs/create-short-lived-credentials-direct#sa-credentials-oidc). - The audience for the token will be set to the URL in the server url defined in the OpenApi spec. - If the service account is provided, the service account should grant `iam.serviceAccounts.getOpenIdToken` permission to Vertex AI Extension Service Agent (https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents).
                },
              },
              &quot;elasticSearchParams&quot;: { # The search parameters to use for the ELASTIC_SEARCH spec. # Parameters for the elastic search API.
                &quot;index&quot;: &quot;A String&quot;, # The ElasticSearch index to use.
                &quot;numHits&quot;: 42, # Optional. Number of hits (chunks) to request. When specified, it is passed to Elasticsearch as the `num_hits` param.
                &quot;searchTemplate&quot;: &quot;A String&quot;, # The ElasticSearch search template to use.
              },
              &quot;endpoint&quot;: &quot;A String&quot;, # The endpoint of the external API. The system will call the API at this endpoint to retrieve the data for grounding. Example: https://acme.com:443/search
              &quot;simpleSearchParams&quot;: { # The search parameters to use for SIMPLE_SEARCH spec. # Parameters for the simple search API.
              },
            },
            &quot;vertexAiSearch&quot;: { # Retrieve from Vertex AI Search datastore or engine for grounding. datastore and engine are mutually exclusive. See https://cloud.google.com/products/agent-builder # Set to use data source powered by Vertex AI Search.
              &quot;dataStoreSpecs&quot;: [ # Specifications that define the specific DataStores to be searched, along with configurations for those data stores. This is only considered for Engines with multiple data stores. It should only be set if engine is used.
                { # Define data stores within engine to filter on in a search call and configurations for those data stores. For more information, see https://cloud.google.com/generative-ai-app-builder/docs/reference/rpc/google.cloud.discoveryengine.v1#datastorespec
                  &quot;dataStore&quot;: &quot;A String&quot;, # Full resource name of DataStore, such as Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
                  &quot;filter&quot;: &quot;A String&quot;, # Optional. Filter specification to filter documents in the data store specified by data_store field. For more information on filtering, see [Filtering](https://cloud.google.com/generative-ai-app-builder/docs/filter-search-metadata)
                },
              ],
              &quot;datastore&quot;: &quot;A String&quot;, # Optional. Fully-qualified Vertex AI Search data store resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/dataStores/{dataStore}`
              &quot;engine&quot;: &quot;A String&quot;, # Optional. Fully-qualified Vertex AI Search engine resource ID. Format: `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}`
              &quot;filter&quot;: &quot;A String&quot;, # Optional. Filter strings to be passed to the search API.
              &quot;maxResults&quot;: 42, # Optional. Number of search results to return per query. The default value is 10. The maximumm allowed value is 10.
            },
            &quot;vertexRagStore&quot;: { # Retrieve from Vertex RAG Store for grounding. # Set to use data source powered by Vertex RAG store. User data is uploaded via the VertexRagDataService.
              &quot;ragCorpora&quot;: [ # Optional. Deprecated. Please use rag_resources instead.
                &quot;A String&quot;,
              ],
              &quot;ragResources&quot;: [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
                { # The definition of the Rag resource.
                  &quot;ragCorpus&quot;: &quot;A String&quot;, # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
                  &quot;ragFileIds&quot;: [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
                    &quot;A String&quot;,
                  ],
                },
              ],
              &quot;ragRetrievalConfig&quot;: { # Specifies the context retrieval config. # Optional. The retrieval config for the Rag query.
                &quot;filter&quot;: { # Config for filters. # Optional. Config for filters.
                  &quot;metadataFilter&quot;: &quot;A String&quot;, # Optional. String for metadata filtering.
                  &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
                  &quot;vectorSimilarityThreshold&quot;: 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
                },
                &quot;hybridSearch&quot;: { # Config for Hybrid Search. # Optional. Config for Hybrid Search.
                  &quot;alpha&quot;: 3.14, # Optional. Alpha value controls the weight between dense and sparse vector search results. The range is [0, 1], while 0 means sparse vector search only and 1 means dense vector search only. The default value is 0.5 which balances sparse and dense vector search equally.
                },
                &quot;ranking&quot;: { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
                  &quot;llmRanker&quot;: { # Config for LlmRanker. # Optional. Config for LlmRanker.
                    &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
                  },
                  &quot;rankService&quot;: { # Config for Rank Service. # Optional. Config for Rank Service.
                    &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
                  },
                },
                &quot;topK&quot;: 42, # Optional. The number of contexts to retrieve.
              },
              &quot;similarityTopK&quot;: 42, # Optional. Number of top k results to return from the selected corpora.
              &quot;storeContext&quot;: True or False, # Optional. Currently only supported for Gemini Multimodal Live API. In Gemini Multimodal Live API, if `store_context` bool is specified, Gemini will leverage it to automatically memorize the interactions between the client and Gemini, and retrieve context when needed to augment the response generation for users&#x27; ongoing and future interactions.
              &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only return results with vector distance smaller than the threshold.
            },
          },
          &quot;urlContext&quot;: { # Tool to support URL context. # Optional. Tool to support URL context retrieval.
          },
        },
      ],
    },
    &quot;toolsText&quot;: &quot;A String&quot;, # A JSON string containing a list of tools available to an agent with info such as name, description, parameters and required parameters.
  },
  &quot;contents&quot;: [ # Required. The prompt to generate rubrics from. For single-turn queries, this is a single instance. For multi-turn queries, this is a repeated field that contains conversation history + latest request.
    { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message.
      &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
        { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
          &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
            &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
            &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
          },
          &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
            &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
            &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
          },
          &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
            &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
            &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
            &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
            &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
          },
          &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
            &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
            &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
            &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
              { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                  &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
              },
            ],
            &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
              &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
            },
          },
          &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
            &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
            &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
            &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
          },
          &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
          &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
          &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
          &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
            &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
            &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
            &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
          },
        },
      ],
      &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
    },
  ],
  &quot;predefinedRubricGenerationSpec&quot;: { # The spec for a pre-defined metric. # Optional. Specification for using the rubric generation configs of a pre-defined metric, e.g. &quot;generic_quality_v1&quot; and &quot;instruction_following_v1&quot;. Some of the configs may be only used in rubric generation and not supporting evaluation, e.g. &quot;fully_customized_generic_quality_v1&quot;. If this field is set, the `rubric_generation_spec` field will be ignored.
    &quot;metricSpecName&quot;: &quot;A String&quot;, # Required. The name of a pre-defined metric, such as &quot;instruction_following_v1&quot; or &quot;text_quality_v1&quot;.
    &quot;metricSpecParameters&quot;: { # Optional. The parameters needed to run the pre-defined metric.
      &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
    },
  },
  &quot;rubricGenerationSpec&quot;: { # Specification for how rubrics should be generated. # Optional. Specification for how the rubrics should be generated.
    &quot;modelConfig&quot;: { # The configs for autorater. This is applicable to both EvaluateInstances and EvaluateDataset. # Configuration for the model used in rubric generation. Configs including sampling count and base model can be specified here. Flipping is not supported for rubric generation.
      &quot;autoraterModel&quot;: &quot;A String&quot;, # Optional. The fully qualified name of the publisher model or tuned autorater endpoint to use. Publisher model format: `projects/{project}/locations/{location}/publishers/*/models/*` Tuned model endpoint format: `projects/{project}/locations/{location}/endpoints/{endpoint}`
      &quot;flipEnabled&quot;: True or False, # Optional. Default is true. Whether to flip the candidate and baseline responses. This is only applicable to the pairwise metric. If enabled, also provide PairwiseMetricSpec.candidate_response_field_name and PairwiseMetricSpec.baseline_response_field_name. When rendering PairwiseMetricSpec.metric_prompt_template, the candidate and baseline fields will be flipped for half of the samples to reduce bias.
      &quot;generationConfig&quot;: { # Configuration for content generation. This message contains all the parameters that control how the model generates content. It allows you to influence the randomness, length, and structure of the output. # Optional. Configuration options for model generation and outputs.
        &quot;audioTimestamp&quot;: True or False, # Optional. If enabled, audio timestamps will be included in the request to the model. This can be useful for synchronizing audio with other modalities in the response.
        &quot;candidateCount&quot;: 42, # Optional. The number of candidate responses to generate. A higher `candidate_count` can provide more options to choose from, but it also consumes more resources. This can be useful for generating a variety of responses and selecting the best one.
        &quot;enableAffectiveDialog&quot;: True or False, # Optional. If enabled, the model will detect emotions and adapt its responses accordingly. For example, if the model detects that the user is frustrated, it may provide a more empathetic response.
        &quot;frequencyPenalty&quot;: 3.14, # Optional. Penalizes tokens based on their frequency in the generated text. A positive value helps to reduce the repetition of words and phrases. Valid values can range from [-2.0, 2.0].
        &quot;imageConfig&quot;: { # Configuration for image generation. This message allows you to control various aspects of image generation, such as the output format, aspect ratio, and whether the model can generate images of people. # Optional. Config for image generation features.
          &quot;aspectRatio&quot;: &quot;A String&quot;, # Optional. The desired aspect ratio for the generated images. The following aspect ratios are supported: &quot;1:1&quot; &quot;2:3&quot;, &quot;3:2&quot; &quot;3:4&quot;, &quot;4:3&quot; &quot;4:5&quot;, &quot;5:4&quot; &quot;9:16&quot;, &quot;16:9&quot; &quot;21:9&quot;
          &quot;imageOutputOptions&quot;: { # The image output format for generated images. # Optional. The image output format for generated images.
            &quot;compressionQuality&quot;: 42, # Optional. The compression quality of the output image.
            &quot;mimeType&quot;: &quot;A String&quot;, # Optional. The image format that the output should be saved as.
          },
          &quot;personGeneration&quot;: &quot;A String&quot;, # Optional. Controls whether the model can generate people.
        },
        &quot;logprobs&quot;: 42, # Optional. The number of top log probabilities to return for each token. This can be used to see which other tokens were considered likely candidates for a given position. A higher value will return more options, but it will also increase the size of the response.
        &quot;maxOutputTokens&quot;: 42, # Optional. The maximum number of tokens to generate in the response. A token is approximately four characters. The default value varies by model. This parameter can be used to control the length of the generated text and prevent overly long responses.
        &quot;mediaResolution&quot;: &quot;A String&quot;, # Optional. The token resolution at which input media content is sampled. This is used to control the trade-off between the quality of the response and the number of tokens used to represent the media. A higher resolution allows the model to perceive more detail, which can lead to a more nuanced response, but it will also use more tokens. This does not affect the image dimensions sent to the model.
        &quot;modelConfig&quot;: { # Config for model selection. # Optional. Config for model selection.
          &quot;featureSelectionPreference&quot;: &quot;A String&quot;, # Required. Feature selection preference.
        },
        &quot;presencePenalty&quot;: 3.14, # Optional. Penalizes tokens that have already appeared in the generated text. A positive value encourages the model to generate more diverse and less repetitive text. Valid values can range from [-2.0, 2.0].
        &quot;responseJsonSchema&quot;: &quot;&quot;, # Optional. When this field is set, response_schema must be omitted and response_mime_type must be set to `application/json`.
        &quot;responseLogprobs&quot;: True or False, # Optional. If set to true, the log probabilities of the output tokens are returned. Log probabilities are the logarithm of the probability of a token appearing in the output. A higher log probability means the token is more likely to be generated. This can be useful for analyzing the model&#x27;s confidence in its own output and for debugging.
        &quot;responseMimeType&quot;: &quot;A String&quot;, # Optional. The IANA standard MIME type of the response. The model will generate output that conforms to this MIME type. Supported values include &#x27;text/plain&#x27; (default) and &#x27;application/json&#x27;. The model needs to be prompted to output the appropriate response type, otherwise the behavior is undefined. This is a preview feature.
        &quot;responseModalities&quot;: [ # Optional. The modalities of the response. The model will generate a response that includes all the specified modalities. For example, if this is set to `[TEXT, IMAGE]`, the response will include both text and an image.
          &quot;A String&quot;,
        ],
        &quot;responseSchema&quot;: { # Schema is used to define the format of input/output data. Represents a select subset of an [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema-object). More fields may be added in the future as needed. # Optional. Lets you to specify a schema for the model&#x27;s response, ensuring that the output conforms to a particular structure. This is useful for generating structured data such as JSON. The schema is a subset of the [OpenAPI 3.0 schema object](https://spec.openapis.org/oas/v3.0.3#schema) object. When this field is set, you must also set the `response_mime_type` to `application/json`.
          &quot;additionalProperties&quot;: &quot;&quot;, # Optional. Can either be a boolean or an object; controls the presence of additional properties.
          &quot;anyOf&quot;: [ # Optional. The value should be validated against any (one or more) of the subschemas in the list.
            # Object with schema name: GoogleCloudAiplatformV1beta1Schema
          ],
          &quot;default&quot;: &quot;&quot;, # Optional. Default value of the data.
          &quot;defs&quot;: { # Optional. A map of definitions for use by `ref` Only allowed at the root of the schema.
            &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
          },
          &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the data.
          &quot;enum&quot;: [ # Optional. Possible values of the element of primitive type with enum format. Examples: 1. We can define direction as : {type:STRING, format:enum, enum:[&quot;EAST&quot;, NORTH&quot;, &quot;SOUTH&quot;, &quot;WEST&quot;]} 2. We can define apartment number as : {type:INTEGER, format:enum, enum:[&quot;101&quot;, &quot;201&quot;, &quot;301&quot;]}
            &quot;A String&quot;,
          ],
          &quot;example&quot;: &quot;&quot;, # Optional. Example of the object. Will only populated when the object is the root.
          &quot;format&quot;: &quot;A String&quot;, # Optional. The format of the data. Supported formats: for NUMBER type: &quot;float&quot;, &quot;double&quot; for INTEGER type: &quot;int32&quot;, &quot;int64&quot; for STRING type: &quot;email&quot;, &quot;byte&quot;, etc
          &quot;items&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema # Optional. SCHEMA FIELDS FOR TYPE ARRAY Schema of the elements of Type.ARRAY.
          &quot;maxItems&quot;: &quot;A String&quot;, # Optional. Maximum number of the elements for Type.ARRAY.
          &quot;maxLength&quot;: &quot;A String&quot;, # Optional. Maximum length of the Type.STRING
          &quot;maxProperties&quot;: &quot;A String&quot;, # Optional. Maximum number of the properties for Type.OBJECT.
          &quot;maximum&quot;: 3.14, # Optional. Maximum value of the Type.INTEGER and Type.NUMBER
          &quot;minItems&quot;: &quot;A String&quot;, # Optional. Minimum number of the elements for Type.ARRAY.
          &quot;minLength&quot;: &quot;A String&quot;, # Optional. SCHEMA FIELDS FOR TYPE STRING Minimum length of the Type.STRING
          &quot;minProperties&quot;: &quot;A String&quot;, # Optional. Minimum number of the properties for Type.OBJECT.
          &quot;minimum&quot;: 3.14, # Optional. SCHEMA FIELDS FOR TYPE INTEGER and NUMBER Minimum value of the Type.INTEGER and Type.NUMBER
          &quot;nullable&quot;: True or False, # Optional. Indicates if the value may be null.
          &quot;pattern&quot;: &quot;A String&quot;, # Optional. Pattern of the Type.STRING to restrict a string to a regular expression.
          &quot;properties&quot;: { # Optional. SCHEMA FIELDS FOR TYPE OBJECT Properties of Type.OBJECT.
            &quot;a_key&quot;: # Object with schema name: GoogleCloudAiplatformV1beta1Schema
          },
          &quot;propertyOrdering&quot;: [ # Optional. The order of the properties. Not a standard field in open api spec. Only used to support the order of the properties.
            &quot;A String&quot;,
          ],
          &quot;ref&quot;: &quot;A String&quot;, # Optional. Allows indirect references between schema nodes. The value should be a valid reference to a child of the root `defs`. For example, the following schema defines a reference to a schema node named &quot;Pet&quot;: type: object properties: pet: ref: #/defs/Pet defs: Pet: type: object properties: name: type: string The value of the &quot;pet&quot; property is a reference to the schema node named &quot;Pet&quot;. See details in https://json-schema.org/understanding-json-schema/structuring
          &quot;required&quot;: [ # Optional. Required properties of Type.OBJECT.
            &quot;A String&quot;,
          ],
          &quot;title&quot;: &quot;A String&quot;, # Optional. The title of the Schema.
          &quot;type&quot;: &quot;A String&quot;, # Optional. The type of the data.
        },
        &quot;routingConfig&quot;: { # The configuration for routing the request to a specific model. This can be used to control which model is used for the generation, either automatically or by specifying a model name. # Optional. Routing configuration.
          &quot;autoMode&quot;: { # The configuration for automated routing. When automated routing is specified, the routing will be determined by the pretrained routing model and customer provided model routing preference. # In this mode, the model is selected automatically based on the content of the request.
            &quot;modelRoutingPreference&quot;: &quot;A String&quot;, # The model routing preference.
          },
          &quot;manualMode&quot;: { # The configuration for manual routing. When manual routing is specified, the model will be selected based on the model name provided. # In this mode, the model is specified manually.
            &quot;modelName&quot;: &quot;A String&quot;, # The name of the model to use. Only public LLM models are accepted.
          },
        },
        &quot;seed&quot;: 42, # Optional. A seed for the random number generator. By setting a seed, you can make the model&#x27;s output mostly deterministic. For a given prompt and parameters (like temperature, top_p, etc.), the model will produce the same response every time. However, it&#x27;s not a guaranteed absolute deterministic behavior. This is different from parameters like `temperature`, which control the *level* of randomness. `seed` ensures that the &quot;random&quot; choices the model makes are the same on every run, making it essential for testing and ensuring reproducible results.
        &quot;speechConfig&quot;: { # Configuration for speech generation. # Optional. The speech generation config.
          &quot;languageCode&quot;: &quot;A String&quot;, # Optional. The language code (ISO 639-1) for the speech synthesis.
          &quot;multiSpeakerVoiceConfig&quot;: { # Configuration for a multi-speaker text-to-speech request. # The configuration for a multi-speaker text-to-speech request. This field is mutually exclusive with `voice_config`.
            &quot;speakerVoiceConfigs&quot;: [ # Required. A list of configurations for the voices of the speakers. Exactly two speaker voice configurations must be provided.
              { # Configuration for a single speaker in a multi-speaker setup.
                &quot;speaker&quot;: &quot;A String&quot;, # Required. The name of the speaker. This should be the same as the speaker name used in the prompt.
                &quot;voiceConfig&quot;: { # Configuration for a voice. # Required. The configuration for the voice of this speaker.
                  &quot;prebuiltVoiceConfig&quot;: { # Configuration for a prebuilt voice. # The configuration for a prebuilt voice.
                    &quot;voiceName&quot;: &quot;A String&quot;, # The name of the prebuilt voice to use.
                  },
                },
              },
            ],
          },
          &quot;voiceConfig&quot;: { # Configuration for a voice. # The configuration for the voice to use.
            &quot;prebuiltVoiceConfig&quot;: { # Configuration for a prebuilt voice. # The configuration for a prebuilt voice.
              &quot;voiceName&quot;: &quot;A String&quot;, # The name of the prebuilt voice to use.
            },
          },
        },
        &quot;stopSequences&quot;: [ # Optional. A list of character sequences that will stop the model from generating further tokens. If a stop sequence is generated, the output will end at that point. This is useful for controlling the length and structure of the output. For example, you can use [&quot;\n&quot;, &quot;###&quot;] to stop generation at a new line or a specific marker.
          &quot;A String&quot;,
        ],
        &quot;temperature&quot;: 3.14, # Optional. Controls the randomness of the output. A higher temperature results in more creative and diverse responses, while a lower temperature makes the output more predictable and focused. The valid range is (0.0, 2.0].
        &quot;thinkingConfig&quot;: { # Configuration for the model&#x27;s thinking features. &quot;Thinking&quot; is a process where the model breaks down a complex task into smaller, manageable steps. This allows the model to reason about the task, plan its approach, and execute the plan to generate a high-quality response. # Optional. Configuration for thinking features. An error will be returned if this field is set for models that don&#x27;t support thinking.
          &quot;includeThoughts&quot;: True or False, # Optional. If true, the model will include its thoughts in the response. &quot;Thoughts&quot; are the intermediate steps the model takes to arrive at the final response. They can provide insights into the model&#x27;s reasoning process and help with debugging. If this is true, thoughts are returned only when available.
          &quot;thinkingBudget&quot;: 42, # Optional. The token budget for the model&#x27;s thinking process. The model will make a best effort to stay within this budget. This can be used to control the trade-off between response quality and latency.
        },
        &quot;topK&quot;: 3.14, # Optional. Specifies the top-k sampling threshold. The model considers only the top k most probable tokens for the next token. This can be useful for generating more coherent and less random text. For example, a `top_k` of 40 means the model will choose the next word from the 40 most likely words.
        &quot;topP&quot;: 3.14, # Optional. Specifies the nucleus sampling threshold. The model considers only the smallest set of tokens whose cumulative probability is at least `top_p`. This helps generate more diverse and less repetitive responses. For example, a `top_p` of 0.9 means the model considers tokens until the cumulative probability of the tokens to select from reaches 0.9. It&#x27;s recommended to adjust either temperature or `top_p`, but not both.
      },
      &quot;samplingCount&quot;: 42, # Optional. Number of samples for each instance in the dataset. If not specified, the default is 4. Minimum value is 1, maximum value is 32.
    },
    &quot;promptTemplate&quot;: &quot;A String&quot;, # Template for the prompt used to generate rubrics. The details should be updated based on the most-recent recipe requirements.
    &quot;rubricContentType&quot;: &quot;A String&quot;, # The type of rubric content to be generated.
    &quot;rubricTypeOntology&quot;: [ # Optional. An optional, pre-defined list of allowed types for generated rubrics. If this field is provided, it implies `include_rubric_type` should be true, and the generated rubric types should be chosen from this ontology.
      &quot;A String&quot;,
    ],
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for EvaluationService.GenerateInstanceRubrics.
  &quot;generatedRubrics&quot;: [ # Output only. A list of generated rubrics.
    { # Message representing a single testable criterion for evaluation. One input prompt could have multiple rubrics.
      &quot;content&quot;: { # Content of the rubric, defining the testable criteria. # Required. The actual testable criteria for the rubric.
        &quot;property&quot;: { # Defines criteria based on a specific property. # Evaluation criteria based on a specific property.
          &quot;description&quot;: &quot;A String&quot;, # Description of the property being evaluated. Example: &quot;The model&#x27;s response is grammatically correct.&quot;
        },
      },
      &quot;importance&quot;: &quot;A String&quot;, # Optional. The relative importance of this rubric.
      &quot;rubricId&quot;: &quot;A String&quot;, # Unique identifier for the rubric. This ID is used to refer to this rubric, e.g., in RubricVerdict.
      &quot;type&quot;: &quot;A String&quot;, # Optional. A type designator for the rubric, which can inform how it&#x27;s evaluated or interpreted by systems or users. It&#x27;s recommended to use consistent, well-defined, upper snake_case strings. Examples: &quot;SUMMARIZATION_QUALITY&quot;, &quot;SAFETY_HARMFUL_CONTENT&quot;, &quot;INSTRUCTION_ADHERENCE&quot;.
    },
  ],
}</pre>
</div>

<div class="method">
    <code class="details" id="generateSyntheticData">generateSyntheticData(location, body=None, x__xgafv=None)</code>
  <pre>Generates synthetic data based on the provided configuration.

Args:
  location: string, Required. The resource name of the Location to run the job. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for DataFoundryService.GenerateSyntheticData.
  &quot;count&quot;: 42, # Required. The number of synthetic examples to generate. For this stateless API, the count is limited to a small number.
  &quot;examples&quot;: [ # Optional. A list of few-shot examples to guide the model&#x27;s output style and format.
    { # Represents a single synthetic example, composed of multiple fields. Used for providing few-shot examples in the request and for returning generated examples in the response.
      &quot;fields&quot;: [ # Required. A list of fields that constitute an example.
        { # Represents a single named field within a SyntheticExample.
          &quot;content&quot;: { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message. # Required. The content of the field.
            &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
              { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
                  &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                  &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                },
                &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
                  &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                  &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                },
                &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
                  &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
                },
                &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                  &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
                    { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                      &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                        &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                        &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                        &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                      },
                      &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                        &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                        &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                        &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                      },
                    },
                  ],
                  &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                },
                &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
                  &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
                &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
                &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                  &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                  &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
                  &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                },
              },
            ],
            &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
          },
          &quot;fieldName&quot;: &quot;A String&quot;, # Optional. The name of the field.
        },
      ],
    },
  ],
  &quot;outputFieldSpecs&quot;: [ # Required. The schema of the desired output, defined by a list of fields.
    { # Defines a specification for a single output field.
      &quot;fieldName&quot;: &quot;A String&quot;, # Required. The name of the output field.
      &quot;fieldType&quot;: &quot;A String&quot;, # Optional. The data type of the field. Defaults to CONTENT if not set.
      &quot;guidance&quot;: &quot;A String&quot;, # Optional. Optional, but recommended. Additional guidance specific to this field to provide targeted instructions for the LLM to generate the content of a single output field. While the LLM can sometimes infer content from the field name, providing explicit guidance is preferred.
    },
  ],
  &quot;taskDescription&quot;: { # Defines a generation strategy based on a high-level task description. # Generate data from a high-level task description.
    &quot;taskDescription&quot;: &quot;A String&quot;, # Required. A high-level description of the synthetic data to be generated.
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # The response containing the generated data.
  &quot;syntheticExamples&quot;: [ # A list of generated synthetic examples.
    { # Represents a single synthetic example, composed of multiple fields. Used for providing few-shot examples in the request and for returning generated examples in the response.
      &quot;fields&quot;: [ # Required. A list of fields that constitute an example.
        { # Represents a single named field within a SyntheticExample.
          &quot;content&quot;: { # The structured data content of a message. A Content message contains a `role` field, which indicates the producer of the content, and a `parts` field, which contains the multi-part data of the message. # Required. The content of the field.
            &quot;parts&quot;: [ # Required. A list of Part objects that make up a single message. Parts of a message can have different MIME types. A Content message must have at least one Part.
              { # A datatype containing media that is part of a multi-part Content message. A `Part` consists of data which has an associated datatype. A `Part` can only contain one of the accepted types in `Part.data`. For media types that are not text, `Part` must have a fixed IANA MIME type identifying the type and subtype of the media if `inline_data` or `file_data` field is filled with raw bytes.
                &quot;codeExecutionResult&quot;: { # Result of executing the [ExecutableCode]. Only generated when using the [CodeExecution] tool, and always follows a `part` containing the [ExecutableCode]. # Optional. The result of executing the ExecutableCode.
                  &quot;outcome&quot;: &quot;A String&quot;, # Required. Outcome of the code execution.
                  &quot;output&quot;: &quot;A String&quot;, # Optional. Contains stdout when code execution is successful, stderr or other description otherwise.
                },
                &quot;executableCode&quot;: { # Code generated by the model that is meant to be executed, and the result returned to the model. Generated when using the [CodeExecution] tool, in which the code will be automatically executed, and a corresponding [CodeExecutionResult] will also be generated. # Optional. Code generated by the model that is intended to be executed.
                  &quot;code&quot;: &quot;A String&quot;, # Required. The code to be executed.
                  &quot;language&quot;: &quot;A String&quot;, # Required. Programming language of the `code`.
                },
                &quot;fileData&quot;: { # URI-based data. A FileData message contains a URI pointing to data of a specific media type. It is used to represent images, audio, and video stored in Google Cloud Storage. # Optional. The URI-based data of the part. This can be used to include files from Google Cloud Storage.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the file. Used to provide a label or filename to distinguish files. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                  &quot;fileUri&quot;: &quot;A String&quot;, # Required. The URI of the file in Google Cloud Storage.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;functionCall&quot;: { # A predicted [FunctionCall] returned from the model that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing the parameters and their values. # Optional. A predicted function call returned from the model. This contains the name of the function to call and the arguments to pass to the function.
                  &quot;args&quot;: { # Optional. The function parameters and values in JSON object format. See [FunctionDeclaration.parameters] for parameter details.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The unique id of the function call. If populated, the client to execute the `function_call` and return the response with the matching `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Optional. The name of the function to call. Matches [FunctionDeclaration.name].
                },
                &quot;functionResponse&quot;: { # The result output from a [FunctionCall] that contains a string representing the [FunctionDeclaration.name] and a structured JSON object containing any output from the function is used as context to the model. This should contain the result of a [FunctionCall] made based on model prediction. # Optional. The result of a function call. This is used to provide the model with the result of a function call that it predicted.
                  &quot;id&quot;: &quot;A String&quot;, # Optional. The id of the function call this response is for. Populated by the client to match the corresponding function call `id`.
                  &quot;name&quot;: &quot;A String&quot;, # Required. The name of the function to call. Matches [FunctionDeclaration.name] and [FunctionCall.name].
                  &quot;parts&quot;: [ # Optional. Ordered `Parts` that constitute a function response. Parts may have different IANA MIME types.
                    { # A datatype containing media that is part of a `FunctionResponse` message. A `FunctionResponsePart` consists of data which has an associated datatype. A `FunctionResponsePart` can only contain one of the accepted types in `FunctionResponsePart.data`. A `FunctionResponsePart` must have a fixed IANA MIME type identifying the type and subtype of the media if the `inline_data` field is filled with raw bytes.
                      &quot;fileData&quot;: { # URI based data for function response. # URI based data.
                        &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the file data. Used to provide a label or filename to distinguish file datas. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                        &quot;fileUri&quot;: &quot;A String&quot;, # Required. URI.
                        &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                      },
                      &quot;inlineData&quot;: { # Raw media bytes for function response. Text should not be sent as raw bytes, use the &#x27;text&#x27; field. # Inline media bytes.
                        &quot;data&quot;: &quot;A String&quot;, # Required. Raw bytes.
                        &quot;displayName&quot;: &quot;A String&quot;, # Optional. Display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in PromptMessage for prompt management. It is currently used in the Gemini GenerateContent calls only when server side tools (code_execution, google_search, and url_context) are enabled.
                        &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                      },
                    },
                  ],
                  &quot;response&quot;: { # Required. The function response in JSON object format. Use &quot;output&quot; key to specify function output and &quot;error&quot; key to specify error details (if any). If &quot;output&quot; and &quot;error&quot; keys are not specified, then whole &quot;response&quot; is treated as function output.
                    &quot;a_key&quot;: &quot;&quot;, # Properties of the object.
                  },
                },
                &quot;inlineData&quot;: { # A content blob. A Blob contains data of a specific media type. It is used to represent images, audio, and video. # Optional. The inline data content of the part. This can be used to include images, audio, or video in a request.
                  &quot;data&quot;: &quot;A String&quot;, # Required. The raw bytes of the data.
                  &quot;displayName&quot;: &quot;A String&quot;, # Optional. The display name of the blob. Used to provide a label or filename to distinguish blobs. This field is only returned in `PromptMessage` for prompt management. It is used in the Gemini calls only when server-side tools (`code_execution`, `google_search`, and `url_context`) are enabled.
                  &quot;mimeType&quot;: &quot;A String&quot;, # Required. The IANA standard MIME type of the source data.
                },
                &quot;text&quot;: &quot;A String&quot;, # Optional. The text content of the part.
                &quot;thought&quot;: True or False, # Optional. Indicates whether the `part` represents the model&#x27;s thought process or reasoning.
                &quot;thoughtSignature&quot;: &quot;A String&quot;, # Optional. An opaque signature for the thought so it can be reused in subsequent requests.
                &quot;videoMetadata&quot;: { # Provides metadata for a video, including the start and end offsets for clipping and the frame rate. # Optional. Video metadata. The metadata should only be specified while the video data is presented in inline_data or file_data.
                  &quot;endOffset&quot;: &quot;A String&quot;, # Optional. The end offset of the video.
                  &quot;fps&quot;: 3.14, # Optional. The frame rate of the video sent to the model. If not specified, the default value is 1.0. The valid range is (0.0, 24.0].
                  &quot;startOffset&quot;: &quot;A String&quot;, # Optional. The start offset of the video.
                },
              },
            ],
            &quot;role&quot;: &quot;A String&quot;, # Optional. The producer of the content. Must be either &#x27;user&#x27; or &#x27;model&#x27;. If not set, the service will default to &#x27;user&#x27;.
          },
          &quot;fieldName&quot;: &quot;A String&quot;, # Optional. The name of the field.
        },
      ],
    },
  ],
}</pre>
</div>

<div class="method">
    <code class="details" id="get">get(name, x__xgafv=None)</code>
  <pre>Gets information about a location.

Args:
  name: string, Resource name for the location. (required)
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # A resource that represents a Google Cloud location.
  &quot;displayName&quot;: &quot;A String&quot;, # The friendly name for this location, typically a nearby city name. For example, &quot;Tokyo&quot;.
  &quot;labels&quot;: { # Cross-service attributes for the location. For example {&quot;cloud.googleapis.com/region&quot;: &quot;us-east1&quot;}
    &quot;a_key&quot;: &quot;A String&quot;,
  },
  &quot;locationId&quot;: &quot;A String&quot;, # The canonical id for this location. For example: `&quot;us-east1&quot;`.
  &quot;metadata&quot;: { # Service-specific metadata. For example the available capacity at the given location.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # Resource name for the location, which may vary between implementations. For example: `&quot;projects/example-project/locations/us-east1&quot;`
}</pre>
</div>

<div class="method">
    <code class="details" id="getRagEngineConfig">getRagEngineConfig(name, x__xgafv=None)</code>
  <pre>Gets a RagEngineConfig.

Args:
  name: string, Required. The name of the RagEngineConfig resource. Format: `projects/{project}/locations/{location}/ragEngineConfig` (required)
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Config for RagEngine.
  &quot;name&quot;: &quot;A String&quot;, # Identifier. The name of the RagEngineConfig. Format: `projects/{project}/locations/{location}/ragEngineConfig`
  &quot;ragManagedDbConfig&quot;: { # Configuration message for RagManagedDb used by RagEngine. # The config of the RagManagedDb used by RagEngine.
    &quot;basic&quot;: { # Basic tier is a cost-effective and low compute tier suitable for the following cases: * Experimenting with RagManagedDb. * Small data size. * Latency insensitive workload. * Only using RAG Engine with external vector DBs. NOTE: This is the default tier if not explicitly chosen. # Sets the RagManagedDb to the Basic tier.
    },
    &quot;enterprise&quot;: { # Enterprise tier offers production grade performance along with autoscaling functionality. It is suitable for customers with large amounts of data or performance sensitive workloads. # Sets the RagManagedDb to the Enterprise tier.
    },
    &quot;scaled&quot;: { # Scaled tier offers production grade performance along with autoscaling functionality. It is suitable for customers with large amounts of data or performance sensitive workloads. # Sets the RagManagedDb to the Scaled tier. This is the default tier if not explicitly chosen.
    },
    &quot;unprovisioned&quot;: { # Disables the RAG Engine service and deletes all your data held within this service. This will halt the billing of the service. NOTE: Once deleted the data cannot be recovered. To start using RAG Engine again, you will need to update the tier by calling the UpdateRagEngineConfig API. # Sets the RagManagedDb to the Unprovisioned tier.
    },
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="list">list(name, extraLocationTypes=None, filter=None, pageSize=None, pageToken=None, x__xgafv=None)</code>
  <pre>Lists information about the supported locations for this service.

Args:
  name: string, The resource that owns the locations collection, if applicable. (required)
  extraLocationTypes: string, Optional. Do not use this field. It is unsupported and is ignored unless explicitly documented otherwise. This is primarily for internal usage. (repeated)
  filter: string, A filter to narrow down results to a preferred subset. The filtering language accepts strings like `&quot;displayName=tokyo&quot;`, and is documented in more detail in [AIP-160](https://google.aip.dev/160).
  pageSize: integer, The maximum number of results to return. If not set, the service selects a default.
  pageToken: string, A page token received from the `next_page_token` field in the response. Send that page token to receive the subsequent page.
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # The response message for Locations.ListLocations.
  &quot;locations&quot;: [ # A list of locations that matches the specified filter in the request.
    { # A resource that represents a Google Cloud location.
      &quot;displayName&quot;: &quot;A String&quot;, # The friendly name for this location, typically a nearby city name. For example, &quot;Tokyo&quot;.
      &quot;labels&quot;: { # Cross-service attributes for the location. For example {&quot;cloud.googleapis.com/region&quot;: &quot;us-east1&quot;}
        &quot;a_key&quot;: &quot;A String&quot;,
      },
      &quot;locationId&quot;: &quot;A String&quot;, # The canonical id for this location. For example: `&quot;us-east1&quot;`.
      &quot;metadata&quot;: { # Service-specific metadata. For example the available capacity at the given location.
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
      &quot;name&quot;: &quot;A String&quot;, # Resource name for the location, which may vary between implementations. For example: `&quot;projects/example-project/locations/us-east1&quot;`
    },
  ],
  &quot;nextPageToken&quot;: &quot;A String&quot;, # The standard List next-page token.
}</pre>
</div>

<div class="method">
    <code class="details" id="list_next">list_next()</code>
  <pre>Retrieves the next page of results.

        Args:
          previous_request: The request for the previous page. (required)
          previous_response: The response from the request for the previous page. (required)

        Returns:
          A request object that you can call &#x27;execute()&#x27; on to request the next
          page. Returns None if there are no more items in the collection.
        </pre>
</div>

<div class="method">
    <code class="details" id="recommendSpec">recommendSpec(parent, body=None, x__xgafv=None)</code>
  <pre>Gets a Model&#x27;s spec recommendations. This API is called by UI, SDK, and internal.

Args:
  parent: string, Required. The resource name of the Location from which to recommend specs. The users must have permission to make a call in the project. Format: `projects/{project}/locations/{location}`. (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for ModelService.RecommendSpec.
  &quot;checkMachineAvailability&quot;: True or False, # Optional. If true, check machine availability for the recommended regions. Only return the machine spec in regions where the machine is available.
  &quot;checkUserQuota&quot;: True or False, # Optional. If true, check user quota for the recommended regions. Returns all the machine spec in regions they are available, and also the user quota state for each machine type in each region.
  &quot;gcsUri&quot;: &quot;A String&quot;, # Required. The Google Cloud Storage URI of the custom model, storing weights and config files (which can be used to infer the base model).
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for ModelService.RecommendSpec.
  &quot;baseModel&quot;: &quot;A String&quot;, # Output only. The base model used to finetune the custom model.
  &quot;recommendations&quot;: [ # Output only. Recommendations of deployment options for the given custom weights model.
    { # Recommendation of one deployment option for the given custom weights model in one region. Contains the machine and container spec, and user accelerator quota state.
      &quot;region&quot;: &quot;A String&quot;, # The region for the deployment spec (machine).
      &quot;spec&quot;: { # A machine and model container spec. # Output only. The machine and model container specs.
        &quot;containerSpec&quot;: { # Specification of a container for serving predictions. Some fields in this message correspond to fields in the [Kubernetes Container v1 core specification](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). # Output only. The model container spec.
          &quot;args&quot;: [ # Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container&#x27;s [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify this field as an array of executable and arguments, similar to a Docker `CMD`&#x27;s &quot;default parameters&quot; form. If you don&#x27;t specify this field but do specify the command field, then the command from the `command` field runs without any additional arguments. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container&#x27;s `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). If you don&#x27;t specify this field and don&#x27;t specify the `command` field, then the container&#x27;s [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd) and `CMD` determine what runs based on their default behavior. See the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `args` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
            &quot;A String&quot;,
          ],
          &quot;command&quot;: [ # Immutable. Specifies the command that runs when the container starts. This overrides the container&#x27;s [ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint). Specify this field as an array of executable and arguments, similar to a Docker `ENTRYPOINT`&#x27;s &quot;exec&quot; form, not its &quot;shell&quot; form. If you do not specify this field, then the container&#x27;s `ENTRYPOINT` runs, in conjunction with the args field or the container&#x27;s [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), if either exists. If this field is not specified and the container does not have an `ENTRYPOINT`, then refer to the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). If you specify this field, then you can also specify the `args` field to provide additional arguments for this command. However, if you specify this field, then the container&#x27;s `CMD` is ignored. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container&#x27;s `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `command` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
            &quot;A String&quot;,
          ],
          &quot;deploymentTimeout&quot;: &quot;A String&quot;, # Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
          &quot;env&quot;: [ # Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables. Additionally, the command and args fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable `VAR_2` to have the value `foo bar`: ```json [ { &quot;name&quot;: &quot;VAR_1&quot;, &quot;value&quot;: &quot;foo&quot; }, { &quot;name&quot;: &quot;VAR_2&quot;, &quot;value&quot;: &quot;$(VAR_1) bar&quot; } ] ``` If you switch the order of the variables in the example, then the expansion does not occur. This field corresponds to the `env` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
            { # Represents an environment variable present in a Container or Python Module.
              &quot;name&quot;: &quot;A String&quot;, # Required. Name of the environment variable. Must be a valid C identifier.
              &quot;value&quot;: &quot;A String&quot;, # Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not.
            },
          ],
          &quot;grpcPorts&quot;: [ # Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, gRPC requests to the container will be disabled. Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers v1 core API.
            { # Represents a network port in a container.
              &quot;containerPort&quot;: 42, # The number of the port to expose on the pod&#x27;s IP address. Must be a valid port number, between 1 and 65535 inclusive.
            },
          ],
          &quot;healthProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes readiness probe.
            &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
              &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
                &quot;A String&quot;,
              ],
            },
            &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
            &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
              &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
              &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
            },
            &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
              &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
              &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
                { # HttpHeader describes a custom header to be used in HTTP probes
                  &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
                  &quot;value&quot;: &quot;A String&quot;, # The header field value
                },
              ],
              &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
              &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
              &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
            },
            &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
            &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
            &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
            &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
              &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
              &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
            },
            &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
          },
          &quot;healthRoute&quot;: &quot;A String&quot;, # Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container&#x27;s IP address and port to check that the container is healthy. Read more about [health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#health). For example, if you set this field to `/bar`, then Vertex AI intermittently sends a GET request to the `/bar` path on the port of your container specified by the first value of this `ModelContainerSpec`&#x27;s ports field. If you don&#x27;t specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
          &quot;imageUri&quot;: &quot;A String&quot;, # Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the [container publishing requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#publishing), including permissions requirements for the Vertex AI Service Agent. The container image is ingested upon ModelService.UploadModel, stored internally, and this original path is afterwards not used. To learn about the requirements for the Docker image itself, see [Custom container requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#). You can use the URI to one of Vertex AI&#x27;s [pre-built container images for prediction](https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers) in this field.
          &quot;invokeRoutePrefix&quot;: &quot;A String&quot;, # Immutable. Invoke route prefix for the custom container. &quot;/*&quot; is the only supported value right now. By setting this field, any non-root route on this model will be accessible with invoke http call eg: &quot;/invoke/foo/bar&quot;, however the [PredictionService.Invoke] RPC is not supported yet. Only one of `predict_route` or `invoke_route_prefix` can be set, and we default to using `predict_route` if this field is not set. If this field is set, the Model can only be deployed to dedicated endpoint.
          &quot;livenessProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes liveness probe.
            &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
              &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
                &quot;A String&quot;,
              ],
            },
            &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
            &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
              &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
              &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
            },
            &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
              &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
              &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
                { # HttpHeader describes a custom header to be used in HTTP probes
                  &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
                  &quot;value&quot;: &quot;A String&quot;, # The header field value
                },
              ],
              &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
              &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
              &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
            },
            &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
            &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
            &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
            &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
              &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
              &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
            },
            &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
          },
          &quot;ports&quot;: [ # Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends [liveness and health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#liveness) to this port. If you do not specify this field, it defaults to following value: ```json [ { &quot;containerPort&quot;: 8080 } ] ``` Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
            { # Represents a network port in a container.
              &quot;containerPort&quot;: 42, # The number of the port to expose on the pod&#x27;s IP address. Must be a valid port number, between 1 and 65535 inclusive.
            },
          ],
          &quot;predictRoute&quot;: &quot;A String&quot;, # Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using projects.locations.endpoints.predict to this path on the container&#x27;s IP address and port. Vertex AI then returns the container&#x27;s response in the API response. For example, if you set this field to `/foo`, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the `/foo` path on the port of your container specified by the first value of this `ModelContainerSpec`&#x27;s ports field. If you don&#x27;t specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
          &quot;sharedMemorySizeMb&quot;: &quot;A String&quot;, # Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.
          &quot;startupProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes startup probe.
            &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
              &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
                &quot;A String&quot;,
              ],
            },
            &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
            &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
              &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
              &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
            },
            &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
              &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
              &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
                { # HttpHeader describes a custom header to be used in HTTP probes
                  &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
                  &quot;value&quot;: &quot;A String&quot;, # The header field value
                },
              ],
              &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
              &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
              &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
            },
            &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
            &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
            &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
            &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
              &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
              &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
            },
            &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
          },
        },
        &quot;machineSpec&quot;: { # Specification of a single machine. # Output only. The machine spec.
          &quot;acceleratorCount&quot;: 42, # The number of accelerators to attach to the machine.
          &quot;acceleratorType&quot;: &quot;A String&quot;, # Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
          &quot;gpuPartitionSize&quot;: &quot;A String&quot;, # Optional. Immutable. The Nvidia GPU partition size. When specified, the requested accelerators will be partitioned into smaller GPU partitions. For example, if the request is for 8 units of NVIDIA A100 GPUs, and gpu_partition_size=&quot;1g.10gb&quot;, the service will create 8 * 7 = 56 partitioned MIG instances. The partition size must be a value supported by the requested accelerator. Refer to [Nvidia GPU Partitioning](https://cloud.google.com/kubernetes-engine/docs/how-to/gpus-multi#multi-instance_gpu_partitions) for the available partition sizes. If set, the accelerator_count should be set to 1.
          &quot;machineType&quot;: &quot;A String&quot;, # Immutable. The type of the machine. See the [list of machine types supported for prediction](https://cloud.google.com/vertex-ai/docs/predictions/configure-compute#machine-types) See the [list of machine types supported for custom training](https://cloud.google.com/vertex-ai/docs/training/configure-compute#machine-types). For DeployedModel this field is optional, and the default value is `n1-standard-2`. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
          &quot;multihostGpuNodeCount&quot;: 42, # Optional. Immutable. The number of nodes per replica for multihost GPU deployments.
          &quot;reservationAffinity&quot;: { # A ReservationAffinity can be used to configure a Vertex AI resource (e.g., a DeployedModel) to draw its Compute Engine resources from a Shared Reservation, or exclusively from on-demand capacity. # Optional. Immutable. Configuration controlling how this resource pool consumes reservation.
            &quot;key&quot;: &quot;A String&quot;, # Optional. Corresponds to the label key of a reservation resource. To target a SPECIFIC_RESERVATION by name, use `compute.googleapis.com/reservation-name` as the key and specify the name of your reservation as its value.
            &quot;reservationAffinityType&quot;: &quot;A String&quot;, # Required. Specifies the reservation affinity type.
            &quot;values&quot;: [ # Optional. Corresponds to the label values of a reservation resource. This must be the full resource name of the reservation or reservation block.
              &quot;A String&quot;,
            ],
          },
          &quot;tpuTopology&quot;: &quot;A String&quot;, # Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: &quot;2x2x1&quot;).
        },
      },
      &quot;userQuotaState&quot;: &quot;A String&quot;, # Output only. The user accelerator quota state.
    },
  ],
  &quot;specs&quot;: [ # Output only. The machine and model container specs.
    { # A machine and model container spec.
      &quot;containerSpec&quot;: { # Specification of a container for serving predictions. Some fields in this message correspond to fields in the [Kubernetes Container v1 core specification](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). # Output only. The model container spec.
        &quot;args&quot;: [ # Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container&#x27;s [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify this field as an array of executable and arguments, similar to a Docker `CMD`&#x27;s &quot;default parameters&quot; form. If you don&#x27;t specify this field but do specify the command field, then the command from the `command` field runs without any additional arguments. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container&#x27;s `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). If you don&#x27;t specify this field and don&#x27;t specify the `command` field, then the container&#x27;s [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd) and `CMD` determine what runs based on their default behavior. See the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `args` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
          &quot;A String&quot;,
        ],
        &quot;command&quot;: [ # Immutable. Specifies the command that runs when the container starts. This overrides the container&#x27;s [ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint). Specify this field as an array of executable and arguments, similar to a Docker `ENTRYPOINT`&#x27;s &quot;exec&quot; form, not its &quot;shell&quot; form. If you do not specify this field, then the container&#x27;s `ENTRYPOINT` runs, in conjunction with the args field or the container&#x27;s [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), if either exists. If this field is not specified and the container does not have an `ENTRYPOINT`, then refer to the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). If you specify this field, then you can also specify the `args` field to provide additional arguments for this command. However, if you specify this field, then the container&#x27;s `CMD` is ignored. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container&#x27;s `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `command` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
          &quot;A String&quot;,
        ],
        &quot;deploymentTimeout&quot;: &quot;A String&quot;, # Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
        &quot;env&quot;: [ # Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables. Additionally, the command and args fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable `VAR_2` to have the value `foo bar`: ```json [ { &quot;name&quot;: &quot;VAR_1&quot;, &quot;value&quot;: &quot;foo&quot; }, { &quot;name&quot;: &quot;VAR_2&quot;, &quot;value&quot;: &quot;$(VAR_1) bar&quot; } ] ``` If you switch the order of the variables in the example, then the expansion does not occur. This field corresponds to the `env` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
          { # Represents an environment variable present in a Container or Python Module.
            &quot;name&quot;: &quot;A String&quot;, # Required. Name of the environment variable. Must be a valid C identifier.
            &quot;value&quot;: &quot;A String&quot;, # Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not.
          },
        ],
        &quot;grpcPorts&quot;: [ # Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, gRPC requests to the container will be disabled. Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers v1 core API.
          { # Represents a network port in a container.
            &quot;containerPort&quot;: 42, # The number of the port to expose on the pod&#x27;s IP address. Must be a valid port number, between 1 and 65535 inclusive.
          },
        ],
        &quot;healthProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes readiness probe.
          &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
            &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
              &quot;A String&quot;,
            ],
          },
          &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
          &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
            &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
            &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
          },
          &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
            &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
            &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
              { # HttpHeader describes a custom header to be used in HTTP probes
                &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
                &quot;value&quot;: &quot;A String&quot;, # The header field value
              },
            ],
            &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
            &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
            &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
          },
          &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
          &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
          &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
          &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
            &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
            &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
          },
          &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
        },
        &quot;healthRoute&quot;: &quot;A String&quot;, # Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container&#x27;s IP address and port to check that the container is healthy. Read more about [health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#health). For example, if you set this field to `/bar`, then Vertex AI intermittently sends a GET request to the `/bar` path on the port of your container specified by the first value of this `ModelContainerSpec`&#x27;s ports field. If you don&#x27;t specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
        &quot;imageUri&quot;: &quot;A String&quot;, # Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the [container publishing requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#publishing), including permissions requirements for the Vertex AI Service Agent. The container image is ingested upon ModelService.UploadModel, stored internally, and this original path is afterwards not used. To learn about the requirements for the Docker image itself, see [Custom container requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#). You can use the URI to one of Vertex AI&#x27;s [pre-built container images for prediction](https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers) in this field.
        &quot;invokeRoutePrefix&quot;: &quot;A String&quot;, # Immutable. Invoke route prefix for the custom container. &quot;/*&quot; is the only supported value right now. By setting this field, any non-root route on this model will be accessible with invoke http call eg: &quot;/invoke/foo/bar&quot;, however the [PredictionService.Invoke] RPC is not supported yet. Only one of `predict_route` or `invoke_route_prefix` can be set, and we default to using `predict_route` if this field is not set. If this field is set, the Model can only be deployed to dedicated endpoint.
        &quot;livenessProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes liveness probe.
          &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
            &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
              &quot;A String&quot;,
            ],
          },
          &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
          &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
            &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
            &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
          },
          &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
            &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
            &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
              { # HttpHeader describes a custom header to be used in HTTP probes
                &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
                &quot;value&quot;: &quot;A String&quot;, # The header field value
              },
            ],
            &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
            &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
            &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
          },
          &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
          &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
          &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
          &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
            &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
            &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
          },
          &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
        },
        &quot;ports&quot;: [ # Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends [liveness and health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#liveness) to this port. If you do not specify this field, it defaults to following value: ```json [ { &quot;containerPort&quot;: 8080 } ] ``` Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
          { # Represents a network port in a container.
            &quot;containerPort&quot;: 42, # The number of the port to expose on the pod&#x27;s IP address. Must be a valid port number, between 1 and 65535 inclusive.
          },
        ],
        &quot;predictRoute&quot;: &quot;A String&quot;, # Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using projects.locations.endpoints.predict to this path on the container&#x27;s IP address and port. Vertex AI then returns the container&#x27;s response in the API response. For example, if you set this field to `/foo`, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the `/foo` path on the port of your container specified by the first value of this `ModelContainerSpec`&#x27;s ports field. If you don&#x27;t specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
        &quot;sharedMemorySizeMb&quot;: &quot;A String&quot;, # Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.
        &quot;startupProbe&quot;: { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes startup probe.
          &quot;exec&quot;: { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
            &quot;command&quot;: [ # Command is the command line to execute inside the container, the working directory for the command is root (&#x27;/&#x27;) in the container&#x27;s filesystem. The command is simply exec&#x27;d, it is not run inside a shell, so traditional shell instructions (&#x27;|&#x27;, etc) won&#x27;t work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
              &quot;A String&quot;,
            ],
          },
          &quot;failureThreshold&quot;: 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument &#x27;failureThreshold&#x27;.
          &quot;grpc&quot;: { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
            &quot;port&quot;: 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
            &quot;service&quot;: &quot;A String&quot;, # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
          },
          &quot;httpGet&quot;: { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
            &quot;host&quot;: &quot;A String&quot;, # Host name to connect to, defaults to the model serving container&#x27;s IP. You probably want to set &quot;Host&quot; in httpHeaders instead.
            &quot;httpHeaders&quot;: [ # Custom headers to set in the request. HTTP allows repeated headers.
              { # HttpHeader describes a custom header to be used in HTTP probes
                &quot;name&quot;: &quot;A String&quot;, # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
                &quot;value&quot;: &quot;A String&quot;, # The header field value
              },
            ],
            &quot;path&quot;: &quot;A String&quot;, # Path to access on the HTTP server.
            &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
            &quot;scheme&quot;: &quot;A String&quot;, # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are &quot;HTTP&quot; or &quot;HTTPS&quot;.
          },
          &quot;initialDelaySeconds&quot;: 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument &#x27;initialDelaySeconds&#x27;.
          &quot;periodSeconds&quot;: 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument &#x27;periodSeconds&#x27;.
          &quot;successThreshold&quot;: 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument &#x27;successThreshold&#x27;.
          &quot;tcpSocket&quot;: { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
            &quot;host&quot;: &quot;A String&quot;, # Optional: Host name to connect to, defaults to the model serving container&#x27;s IP.
            &quot;port&quot;: 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
          },
          &quot;timeoutSeconds&quot;: 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument &#x27;timeoutSeconds&#x27;.
        },
      },
      &quot;machineSpec&quot;: { # Specification of a single machine. # Output only. The machine spec.
        &quot;acceleratorCount&quot;: 42, # The number of accelerators to attach to the machine.
        &quot;acceleratorType&quot;: &quot;A String&quot;, # Immutable. The type of accelerator(s) that may be attached to the machine as per accelerator_count.
        &quot;gpuPartitionSize&quot;: &quot;A String&quot;, # Optional. Immutable. The Nvidia GPU partition size. When specified, the requested accelerators will be partitioned into smaller GPU partitions. For example, if the request is for 8 units of NVIDIA A100 GPUs, and gpu_partition_size=&quot;1g.10gb&quot;, the service will create 8 * 7 = 56 partitioned MIG instances. The partition size must be a value supported by the requested accelerator. Refer to [Nvidia GPU Partitioning](https://cloud.google.com/kubernetes-engine/docs/how-to/gpus-multi#multi-instance_gpu_partitions) for the available partition sizes. If set, the accelerator_count should be set to 1.
        &quot;machineType&quot;: &quot;A String&quot;, # Immutable. The type of the machine. See the [list of machine types supported for prediction](https://cloud.google.com/vertex-ai/docs/predictions/configure-compute#machine-types) See the [list of machine types supported for custom training](https://cloud.google.com/vertex-ai/docs/training/configure-compute#machine-types). For DeployedModel this field is optional, and the default value is `n1-standard-2`. For BatchPredictionJob or as part of WorkerPoolSpec this field is required.
        &quot;multihostGpuNodeCount&quot;: 42, # Optional. Immutable. The number of nodes per replica for multihost GPU deployments.
        &quot;reservationAffinity&quot;: { # A ReservationAffinity can be used to configure a Vertex AI resource (e.g., a DeployedModel) to draw its Compute Engine resources from a Shared Reservation, or exclusively from on-demand capacity. # Optional. Immutable. Configuration controlling how this resource pool consumes reservation.
          &quot;key&quot;: &quot;A String&quot;, # Optional. Corresponds to the label key of a reservation resource. To target a SPECIFIC_RESERVATION by name, use `compute.googleapis.com/reservation-name` as the key and specify the name of your reservation as its value.
          &quot;reservationAffinityType&quot;: &quot;A String&quot;, # Required. Specifies the reservation affinity type.
          &quot;values&quot;: [ # Optional. Corresponds to the label values of a reservation resource. This must be the full resource name of the reservation or reservation block.
            &quot;A String&quot;,
          ],
        },
        &quot;tpuTopology&quot;: &quot;A String&quot;, # Immutable. The topology of the TPUs. Corresponds to the TPU topologies available from GKE. (Example: tpu_topology: &quot;2x2x1&quot;).
      },
    },
  ],
}</pre>
</div>

<div class="method">
    <code class="details" id="retrieveContexts">retrieveContexts(parent, body=None, x__xgafv=None)</code>
  <pre>Retrieves relevant contexts for a query.

Args:
  parent: string, Required. The resource name of the Location from which to retrieve RagContexts. The users must have permission to make a call in the project. Format: `projects/{project}/locations/{location}`. (required)
  body: object, The request body.
    The object takes the form of:

{ # Request message for VertexRagService.RetrieveContexts.
  &quot;query&quot;: { # A query to retrieve relevant contexts. # Required. Single RAG retrieve query.
    &quot;ragRetrievalConfig&quot;: { # Specifies the context retrieval config. # Optional. The retrieval config for the query.
      &quot;filter&quot;: { # Config for filters. # Optional. Config for filters.
        &quot;metadataFilter&quot;: &quot;A String&quot;, # Optional. String for metadata filtering.
        &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only returns contexts with vector distance smaller than the threshold.
        &quot;vectorSimilarityThreshold&quot;: 3.14, # Optional. Only returns contexts with vector similarity larger than the threshold.
      },
      &quot;hybridSearch&quot;: { # Config for Hybrid Search. # Optional. Config for Hybrid Search.
        &quot;alpha&quot;: 3.14, # Optional. Alpha value controls the weight between dense and sparse vector search results. The range is [0, 1], while 0 means sparse vector search only and 1 means dense vector search only. The default value is 0.5 which balances sparse and dense vector search equally.
      },
      &quot;ranking&quot;: { # Config for ranking and reranking. # Optional. Config for ranking and reranking.
        &quot;llmRanker&quot;: { # Config for LlmRanker. # Optional. Config for LlmRanker.
          &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name used for ranking. See [Supported models](https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/inference#supported-models).
        },
        &quot;rankService&quot;: { # Config for Rank Service. # Optional. Config for Rank Service.
          &quot;modelName&quot;: &quot;A String&quot;, # Optional. The model name of the rank service. Format: `semantic-ranker-512@latest`
        },
      },
      &quot;topK&quot;: 42, # Optional. The number of contexts to retrieve.
    },
    &quot;ranking&quot;: { # Configurations for hybrid search results ranking. # Optional. Configurations for hybrid search results ranking.
      &quot;alpha&quot;: 3.14, # Optional. Alpha value controls the weight between dense and sparse vector search results. The range is [0, 1], while 0 means sparse vector search only and 1 means dense vector search only. The default value is 0.5 which balances sparse and dense vector search equally.
    },
    &quot;similarityTopK&quot;: 42, # Optional. The number of contexts to retrieve.
    &quot;text&quot;: &quot;A String&quot;, # Optional. The query in text format to get relevant contexts.
  },
  &quot;vertexRagStore&quot;: { # The data source for Vertex RagStore. # The data source for Vertex RagStore.
    &quot;ragCorpora&quot;: [ # Optional. Deprecated. Please use rag_resources to specify the data source.
      &quot;A String&quot;,
    ],
    &quot;ragResources&quot;: [ # Optional. The representation of the rag source. It can be used to specify corpus only or ragfiles. Currently only support one corpus or multiple files from one corpus. In the future we may open up multiple corpora support.
      { # The definition of the Rag resource.
        &quot;ragCorpus&quot;: &quot;A String&quot;, # Optional. RagCorpora resource name. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}`
        &quot;ragFileIds&quot;: [ # Optional. rag_file_id. The files should be in the same rag_corpus set in rag_corpus field.
          &quot;A String&quot;,
        ],
      },
    ],
    &quot;vectorDistanceThreshold&quot;: 3.14, # Optional. Only return contexts with vector distance smaller than the threshold.
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for VertexRagService.RetrieveContexts.
  &quot;contexts&quot;: { # Relevant contexts for one query. # The contexts of the query.
    &quot;contexts&quot;: [ # All its contexts.
      { # A context of the query.
        &quot;chunk&quot;: { # A RagChunk includes the content of a chunk of a RagFile, and associated metadata. # Context of the retrieved chunk.
          &quot;pageSpan&quot;: { # Represents where the chunk starts and ends in the document. # If populated, represents where the chunk starts and ends in the document.
            &quot;firstPage&quot;: 42, # Page where chunk starts in the document. Inclusive. 1-indexed.
            &quot;lastPage&quot;: 42, # Page where chunk ends in the document. Inclusive. 1-indexed.
          },
          &quot;text&quot;: &quot;A String&quot;, # The content of the chunk.
        },
        &quot;distance&quot;: 3.14, # The distance between the query dense embedding vector and the context text vector.
        &quot;score&quot;: 3.14, # According to the underlying Vector DB and the selected metric type, the score can be either the distance or the similarity between the query and the context and its range depends on the metric type. For example, if the metric type is COSINE_DISTANCE, it represents the distance between the query and the context. The larger the distance, the less relevant the context is to the query. The range is [0, 2], while 0 means the most relevant and 2 means the least relevant.
        &quot;sourceDisplayName&quot;: &quot;A String&quot;, # The file display name.
        &quot;sourceUri&quot;: &quot;A String&quot;, # If the file is imported from Cloud Storage or Google Drive, source_uri will be original file URI in Cloud Storage or Google Drive; if file is uploaded, source_uri will be file display name.
        &quot;sparseDistance&quot;: 3.14, # The distance between the query sparse embedding vector and the context text vector.
        &quot;text&quot;: &quot;A String&quot;, # The text chunk.
      },
    ],
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="updateRagEngineConfig">updateRagEngineConfig(name, body=None, x__xgafv=None)</code>
  <pre>Updates a RagEngineConfig.

Args:
  name: string, Identifier. The name of the RagEngineConfig. Format: `projects/{project}/locations/{location}/ragEngineConfig` (required)
  body: object, The request body.
    The object takes the form of:

{ # Config for RagEngine.
  &quot;name&quot;: &quot;A String&quot;, # Identifier. The name of the RagEngineConfig. Format: `projects/{project}/locations/{location}/ragEngineConfig`
  &quot;ragManagedDbConfig&quot;: { # Configuration message for RagManagedDb used by RagEngine. # The config of the RagManagedDb used by RagEngine.
    &quot;basic&quot;: { # Basic tier is a cost-effective and low compute tier suitable for the following cases: * Experimenting with RagManagedDb. * Small data size. * Latency insensitive workload. * Only using RAG Engine with external vector DBs. NOTE: This is the default tier if not explicitly chosen. # Sets the RagManagedDb to the Basic tier.
    },
    &quot;enterprise&quot;: { # Enterprise tier offers production grade performance along with autoscaling functionality. It is suitable for customers with large amounts of data or performance sensitive workloads. # Sets the RagManagedDb to the Enterprise tier.
    },
    &quot;scaled&quot;: { # Scaled tier offers production grade performance along with autoscaling functionality. It is suitable for customers with large amounts of data or performance sensitive workloads. # Sets the RagManagedDb to the Scaled tier. This is the default tier if not explicitly chosen.
    },
    &quot;unprovisioned&quot;: { # Disables the RAG Engine service and deletes all your data held within this service. This will halt the billing of the service. NOTE: Once deleted the data cannot be recovered. To start using RAG Engine again, you will need to update the tier by calling the UpdateRagEngineConfig API. # Sets the RagManagedDb to the Unprovisioned tier.
    },
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # This resource represents a long-running operation that is the result of a network API call.
  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  &quot;response&quot;: { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>

</body></html>