1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
|
From: Colin Watson <cjwatson@debian.org>
Date: Sun, 19 Oct 2025 02:05:19 +0100
Subject: Stop using private sklearn.utils._testing
Forwarded: https://github.com/trevorstephens/gplearn/pull/305
Bug-Debian: https://bugs.debian.org/1117991
Last-Update: 2025-10-19
---
gplearn/tests/test_examples.py | 2 +-
gplearn/tests/test_fitness.py | 40 +++++-----
gplearn/tests/test_functions.py | 85 +++++++--------------
gplearn/tests/test_genetic.py | 165 ++++++++++++++++++++++++++--------------
gplearn/tests/test_utils.py | 8 +-
5 files changed, 158 insertions(+), 142 deletions(-)
diff --git a/gplearn/tests/test_examples.py b/gplearn/tests/test_examples.py
index f4f3f89..7bf5b2a 100644
--- a/gplearn/tests/test_examples.py
+++ b/gplearn/tests/test_examples.py
@@ -6,13 +6,13 @@
import numpy as np
+from numpy.testing import assert_almost_equal
from sklearn.datasets import load_diabetes, load_breast_cancer
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.linear_model import Ridge
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
-from sklearn.utils._testing import assert_almost_equal
from sklearn.utils.validation import check_random_state
from gplearn.genetic import SymbolicClassifier, SymbolicRegressor
diff --git a/gplearn/tests/test_fitness.py b/gplearn/tests/test_fitness.py
index a189126..4046b73 100644
--- a/gplearn/tests/test_fitness.py
+++ b/gplearn/tests/test_fitness.py
@@ -7,9 +7,9 @@
import pickle
import numpy as np
+import pytest
from sklearn.datasets import load_diabetes, load_breast_cancer
from sklearn.metrics import mean_absolute_error
-from sklearn.utils._testing import assert_raises
from sklearn.utils.validation import check_random_state
from gplearn.genetic import SymbolicRegressor, SymbolicClassifier
@@ -35,35 +35,27 @@ def test_validate_fitness():
# Check arg count checks
_ = make_fitness(function=_mean_square_error, greater_is_better=True)
# non-bool greater_is_better
- assert_raises(ValueError,
- make_fitness,
- function=_mean_square_error,
- greater_is_better='Sure')
- assert_raises(ValueError,
- make_fitness,
- function=_mean_square_error,
- greater_is_better=1)
+ with pytest.raises(ValueError):
+ make_fitness(function=_mean_square_error, greater_is_better='Sure')
+ with pytest.raises(ValueError):
+ make_fitness(function=_mean_square_error, greater_is_better=1)
# non-bool wrap
- assert_raises(ValueError,
- make_fitness,
- function=_mean_square_error,
- greater_is_better=True, wrap='f')
+ with pytest.raises(ValueError):
+ make_fitness(function=_mean_square_error,
+ greater_is_better=True,
+ wrap='f')
# Check arg count tests
def bad_fun1(x1, x2):
return 1.0
- assert_raises(ValueError,
- make_fitness,
- function=bad_fun1,
- greater_is_better=True)
+ with pytest.raises(ValueError):
+ make_fitness(function=bad_fun1, greater_is_better=True)
# Check return type tests
def bad_fun2(x1, x2, w):
return 'ni'
- assert_raises(ValueError,
- make_fitness,
- function=bad_fun2,
- greater_is_better=True)
+ with pytest.raises(ValueError):
+ make_fitness(function=bad_fun2, greater_is_better=True)
def _custom_metric(y, y_pred, w):
"""Calculate the root mean square error."""
@@ -211,11 +203,13 @@ def test_parallel_custom_metric():
random_state=0,
n_jobs=2)
est.fit(diabetes.data, diabetes.target)
- assert_raises(AttributeError, pickle.dumps, est)
+ with pytest.raises(AttributeError):
+ pickle.dumps(est)
# Single threaded will also fail in non-interactive sessions
est = SymbolicRegressor(generations=2,
metric=custom_metric,
random_state=0)
est.fit(diabetes.data, diabetes.target)
- assert_raises(AttributeError, pickle.dumps, est)
+ with pytest.raises(AttributeError):
+ pickle.dumps(est)
diff --git a/gplearn/tests/test_functions.py b/gplearn/tests/test_functions.py
index 5b4df74..8053e7c 100644
--- a/gplearn/tests/test_functions.py
+++ b/gplearn/tests/test_functions.py
@@ -7,9 +7,9 @@
import pickle
import numpy as np
+import pytest
from numpy import maximum
from sklearn.datasets import load_diabetes, load_breast_cancer
-from sklearn.utils._testing import assert_raises
from sklearn.utils.validation import check_random_state
from gplearn.functions import _protected_sqrt, make_function
@@ -36,79 +36,48 @@ def test_validate_function():
# Check arity tests
_ = make_function(function=_protected_sqrt, name='sqrt', arity=1)
# non-integer arity
- assert_raises(ValueError,
- make_function,
- function=_protected_sqrt,
- name='sqrt',
- arity='1')
- assert_raises(ValueError,
- make_function,
- function=_protected_sqrt,
- name='sqrt',
- arity=1.0)
+ with pytest.raises(ValueError):
+ make_function(function=_protected_sqrt, name='sqrt', arity='1')
+ with pytest.raises(ValueError):
+ make_function(function=_protected_sqrt, name='sqrt', arity=1.0)
# non-bool wrap
- assert_raises(ValueError,
- make_function,
- function=_protected_sqrt,
- name='sqrt',
- arity=1,
- wrap='f')
+ with pytest.raises(ValueError):
+ make_function(function=_protected_sqrt, name='sqrt', arity=1, wrap='f')
# non-matching arity
- assert_raises(ValueError,
- make_function,
- function=_protected_sqrt,
- name='sqrt',
- arity=2)
- assert_raises(ValueError,
- make_function,
- function=maximum,
- name='max',
- arity=1)
+ with pytest.raises(ValueError):
+ make_function(function=_protected_sqrt, name='sqrt', arity=2)
+ with pytest.raises(ValueError):
+ make_function(function=maximum, name='max', arity=1)
# Check name test
- assert_raises(ValueError,
- make_function,
- function=_protected_sqrt,
- name=2,
- arity=1)
+ with pytest.raises(ValueError):
+ make_function(function=_protected_sqrt, name=2, arity=1)
# Check return type tests
def bad_fun1(x1, x2):
return 'ni'
- assert_raises(ValueError,
- make_function,
- function=bad_fun1,
- name='ni',
- arity=2)
+ with pytest.raises(ValueError):
+ make_function(function=bad_fun1, name='ni', arity=2)
# Check return shape tests
def bad_fun2(x1):
return np.ones((2, 1))
- assert_raises(ValueError,
- make_function,
- function=bad_fun2,
- name='ni',
- arity=1)
+ with pytest.raises(ValueError):
+ make_function(function=bad_fun2, name='ni', arity=1)
# Check closure for negatives test
def _unprotected_sqrt(x1):
with np.errstate(divide='ignore', invalid='ignore'):
return np.sqrt(x1)
- assert_raises(ValueError,
- make_function,
- function=_unprotected_sqrt,
- name='sqrt',
- arity=1)
+ with pytest.raises(ValueError):
+ make_function(function=_unprotected_sqrt, name='sqrt', arity=1)
# Check closure for zeros test
def _unprotected_div(x1, x2):
with np.errstate(divide='ignore', invalid='ignore'):
return np.divide(x1, x2)
- assert_raises(ValueError,
- make_function,
- function=_unprotected_div,
- name='div',
- arity=2)
+ with pytest.raises(ValueError):
+ make_function(function=_unprotected_div, name='div', arity=2)
def test_function_in_program():
@@ -160,14 +129,16 @@ def test_parallel_custom_function():
random_state=0,
n_jobs=2)
est.fit(diabetes.data, diabetes.target)
- assert_raises(AttributeError, pickle.dumps, est)
+ with pytest.raises(AttributeError):
+ pickle.dumps(est)
# Single threaded will also fail in non-interactive sessions
est = SymbolicRegressor(generations=2,
function_set=['add', 'sub', 'mul', 'div', logical],
random_state=0)
est.fit(diabetes.data, diabetes.target)
- assert_raises(AttributeError, pickle.dumps, est)
+ with pytest.raises(AttributeError):
+ pickle.dumps(est)
def test_parallel_custom_transformer():
@@ -197,11 +168,13 @@ def test_parallel_custom_transformer():
random_state=0,
n_jobs=2)
est.fit(cancer.data, cancer.target)
- assert_raises(AttributeError, pickle.dumps, est)
+ with pytest.raises(AttributeError):
+ pickle.dumps(est)
# Single threaded will also fail in non-interactive sessions
est = SymbolicClassifier(generations=2,
transformer=sigmoid,
random_state=0)
est.fit(cancer.data, cancer.target)
- assert_raises(AttributeError, pickle.dumps, est)
+ with pytest.raises(AttributeError):
+ pickle.dumps(est)
diff --git a/gplearn/tests/test_genetic.py b/gplearn/tests/test_genetic.py
index 1364d51..d7e59c0 100644
--- a/gplearn/tests/test_genetic.py
+++ b/gplearn/tests/test_genetic.py
@@ -7,11 +7,14 @@ gplearn.genetic.SymbolicRegressor and gplearn.genetic.SymbolicTransformer."""
# License: BSD 3 clause
import pickle
-import pytest
import sys
from io import StringIO
import numpy as np
+import pytest
+from numpy.testing import assert_almost_equal
+from numpy.testing import assert_array_equal
+from numpy.testing import assert_array_almost_equal
from scipy.stats import pearsonr, spearmanr
from sklearn.datasets import load_diabetes, load_breast_cancer
from sklearn.metrics import mean_absolute_error
@@ -19,10 +22,6 @@ from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeRegressor
-from sklearn.utils._testing import assert_almost_equal
-from sklearn.utils._testing import assert_array_equal
-from sklearn.utils._testing import assert_array_almost_equal
-from sklearn.utils._testing import assert_raises
from sklearn.utils.validation import check_random_state
from gplearn.genetic import SymbolicClassifier, SymbolicRegressor
@@ -175,14 +174,16 @@ def test_validate_program():
random_state, program=test_gp)
# Now try a couple that shouldn't be
- assert_raises(ValueError, _Program, function_set, arities, init_depth,
- init_method, n_features, const_range, metric,
- p_point_replace, parsimony_coefficient, random_state,
- program=test_gp[:-1])
- assert_raises(ValueError, _Program, function_set, arities, init_depth,
- init_method, n_features, const_range, metric,
- p_point_replace, parsimony_coefficient, random_state,
- program=test_gp + [1])
+ with pytest.raises(ValueError):
+ _Program(function_set, arities, init_depth,
+ init_method, n_features, const_range, metric,
+ p_point_replace, parsimony_coefficient, random_state,
+ program=test_gp[:-1])
+ with pytest.raises(ValueError):
+ _Program(function_set, arities, init_depth,
+ init_method, n_features, const_range, metric,
+ p_point_replace, parsimony_coefficient, random_state,
+ program=test_gp + [1])
def test_print_overloading():
@@ -304,12 +305,14 @@ def test_invalid_feature_names():
# Check invalid length feature_names
est = Symbolic(feature_names=['foo', 'bar'])
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
# Check invalid type feature_name
feature_names = [str(n) for n in range(12)] + [0]
est = Symbolic(feature_names=feature_names)
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
def test_execute():
@@ -435,21 +438,27 @@ def test_input_validation():
for Symbolic in (SymbolicRegressor, SymbolicTransformer):
# Check too much proba
est = Symbolic(p_point_mutation=.5)
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
# Check invalid init_method
est = Symbolic(init_method='ni')
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
# Check invalid const_ranges
est = Symbolic(const_range=2)
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
est = Symbolic(const_range=[2, 2])
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
est = Symbolic(const_range=(2, 2, 2))
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
est = Symbolic(const_range='ni')
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
# And check acceptable, but strange, representations of const_range
est = Symbolic(population_size=100, generations=1, const_range=(2, 2))
est.fit(diabetes.data, diabetes.target)
@@ -460,30 +469,40 @@ def test_input_validation():
# Check invalid init_depth
est = Symbolic(init_depth=2)
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
est = Symbolic(init_depth=2)
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
est = Symbolic(init_depth=[2, 2])
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
est = Symbolic(init_depth=(2, 2, 2))
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
est = Symbolic(init_depth='ni')
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
est = Symbolic(init_depth=(4, 2))
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
# And check acceptable, but strange, representations of init_depth
est = Symbolic(population_size=100, generations=1, init_depth=(2, 2))
est.fit(diabetes.data, diabetes.target)
# Check hall_of_fame and n_components for transformer
est = SymbolicTransformer(hall_of_fame=2000)
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
est = SymbolicTransformer(n_components=2000)
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
est = SymbolicTransformer(hall_of_fame=0)
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
est = SymbolicTransformer(n_components=0)
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
# Check regressor metrics
for m in ['mean absolute error', 'mse', 'rmse', 'pearson', 'spearman']:
@@ -491,7 +510,8 @@ def test_input_validation():
est.fit(diabetes.data, diabetes.target)
# And check a fake one
est = SymbolicRegressor(metric='the larch')
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
# Check transformer metrics
for m in ['pearson', 'spearman']:
est = SymbolicTransformer(population_size=100, generations=1, metric=m)
@@ -499,7 +519,8 @@ def test_input_validation():
# And check the regressor metrics as well as a fake one
for m in ['mean absolute error', 'mse', 'rmse', 'the larch']:
est = SymbolicTransformer(metric=m)
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
def test_input_validation_classifier():
@@ -507,21 +528,27 @@ def test_input_validation_classifier():
# Check too much proba
est = SymbolicClassifier(p_point_mutation=.5)
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
# Check invalid init_method
est = SymbolicClassifier(init_method='ni')
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
# Check invalid const_ranges
est = SymbolicClassifier(const_range=2)
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
est = SymbolicClassifier(const_range=[2, 2])
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
est = SymbolicClassifier(const_range=(2, 2, 2))
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
est = SymbolicClassifier(const_range='ni')
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
# And check acceptable, but strange, representations of const_range
est = SymbolicClassifier(population_size=100, generations=1,
const_range=(2, 2))
@@ -535,17 +562,23 @@ def test_input_validation_classifier():
# Check invalid init_depth
est = SymbolicClassifier(init_depth=2)
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
est = SymbolicClassifier(init_depth=2)
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
est = SymbolicClassifier(init_depth=[2, 2])
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
est = SymbolicClassifier(init_depth=(2, 2, 2))
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
est = SymbolicClassifier(init_depth='ni')
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
est = SymbolicClassifier(init_depth=(4, 2))
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
# And check acceptable, but strange, representations of init_depth
est = SymbolicClassifier(population_size=100, generations=1,
init_depth=(2, 2))
@@ -557,7 +590,8 @@ def test_input_validation_classifier():
est.fit(cancer.data, cancer.target)
# And check a fake one
est = SymbolicClassifier(metric='the larch')
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
# Check classifier transformers
for t in ['sigmoid']:
@@ -566,10 +600,12 @@ def test_input_validation_classifier():
est.fit(cancer.data, cancer.target)
# And check an incompatible one with wrong arity
est = SymbolicClassifier(transformer=sub2)
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
# And check a fake one
est = SymbolicClassifier(transformer='the larch')
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
def test_none_const_range():
@@ -997,7 +1033,8 @@ def test_transformer_iterable():
assert np.allclose(fitted_iter, expected_iter, atol=1)
# Check IndexError
- assert_raises(IndexError, est.__getitem__, 10)
+ with pytest.raises(IndexError):
+ est[10]
def test_print_overloading_estimator():
@@ -1137,12 +1174,15 @@ def test_validate_functions():
# These should fail
est = Symbolic(generations=2, random_state=0,
function_set=('ni', 'sub', 'mul', div2))
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
est = Symbolic(generations=2, random_state=0,
function_set=(7, 'sub', 'mul', div2))
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
est = Symbolic(generations=2, random_state=0, function_set=())
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
# Now for the classifier... These should be fine
est = SymbolicClassifier(population_size=100, generations=2,
@@ -1157,12 +1197,15 @@ def test_validate_functions():
# These should fail
est = SymbolicClassifier(generations=2, random_state=0,
function_set=('ni', 'sub', 'mul', div2))
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
est = SymbolicClassifier(generations=2, random_state=0,
function_set=(7, 'sub', 'mul', div2))
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
est = SymbolicClassifier(generations=2, random_state=0, function_set=())
- assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+ with pytest.raises(ValueError):
+ est.fit(cancer.data, cancer.target)
def test_indices():
@@ -1181,13 +1224,16 @@ def test_indices():
test_gp = [mul2, div2, 8, 1, sub2, 9, .5]
gp = _Program(random_state=random_state, program=test_gp, **params)
- assert_raises(ValueError, gp.get_all_indices)
- assert_raises(ValueError, gp._indices)
+ with pytest.raises(ValueError):
+ gp.get_all_indices()
+ with pytest.raises(ValueError):
+ gp._indices()
def get_indices_property():
return gp.indices_
- assert_raises(ValueError, get_indices_property)
+ with pytest.raises(ValueError):
+ get_indices_property()
indices, _ = gp.get_all_indices(10, 7, random_state)
@@ -1222,7 +1268,8 @@ def test_warm_start():
# Check fitting fewer generations raises error
est.set_params(generations=5, warm_start=True)
- assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+ with pytest.raises(ValueError):
+ est.fit(diabetes.data, diabetes.target)
# Check fitting the same number of generations warns
est.set_params(generations=10, warm_start=True)
diff --git a/gplearn/tests/test_utils.py b/gplearn/tests/test_utils.py
index 6420e7a..82b8333 100644
--- a/gplearn/tests/test_utils.py
+++ b/gplearn/tests/test_utils.py
@@ -5,7 +5,7 @@
# License: BSD 3 clause
import numpy as np
-from sklearn.utils._testing import assert_raises
+import pytest
from gplearn.utils import _get_n_jobs, check_random_state, cpu_count
@@ -25,7 +25,8 @@ def test_check_random_state():
rng_42 = np.random.RandomState(42)
assert(check_random_state(43).randint(100) != rng_42.randint(100))
- assert_raises(ValueError, check_random_state, "some invalid seed")
+ with pytest.raises(ValueError):
+ check_random_state("some invalid seed")
def test_get_n_jobs():
@@ -39,4 +40,5 @@ def test_get_n_jobs():
jobs = _get_n_jobs(jobs)
assert(jobs == expected)
- assert_raises(ValueError, _get_n_jobs, 0)
+ with pytest.raises(ValueError):
+ _get_n_jobs(0)
|