File: scikit-learn-1.6-1.patch

package info (click to toggle)
python-gplearn 0.4.2-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,308 kB
  • sloc: python: 2,755; makefile: 158
file content (638 lines) | stat: -rw-r--r-- 26,532 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
From: Colin Watson <cjwatson@debian.org>
Date: Sun, 19 Oct 2025 02:05:19 +0100
Subject: Stop using private sklearn.utils._testing

Forwarded: https://github.com/trevorstephens/gplearn/pull/305
Bug-Debian: https://bugs.debian.org/1117991
Last-Update: 2025-10-19
---
 gplearn/tests/test_examples.py  |   2 +-
 gplearn/tests/test_fitness.py   |  40 +++++-----
 gplearn/tests/test_functions.py |  85 +++++++--------------
 gplearn/tests/test_genetic.py   | 165 ++++++++++++++++++++++++++--------------
 gplearn/tests/test_utils.py     |   8 +-
 5 files changed, 158 insertions(+), 142 deletions(-)

diff --git a/gplearn/tests/test_examples.py b/gplearn/tests/test_examples.py
index f4f3f89..7bf5b2a 100644
--- a/gplearn/tests/test_examples.py
+++ b/gplearn/tests/test_examples.py
@@ -6,13 +6,13 @@
 
 import numpy as np
 
+from numpy.testing import assert_almost_equal
 from sklearn.datasets import load_diabetes, load_breast_cancer
 from sklearn.datasets import make_moons, make_circles, make_classification
 from sklearn.linear_model import Ridge
 from sklearn.metrics import roc_auc_score
 from sklearn.model_selection import train_test_split
 from sklearn.preprocessing import StandardScaler
-from sklearn.utils._testing import assert_almost_equal
 from sklearn.utils.validation import check_random_state
 
 from gplearn.genetic import SymbolicClassifier, SymbolicRegressor
diff --git a/gplearn/tests/test_fitness.py b/gplearn/tests/test_fitness.py
index a189126..4046b73 100644
--- a/gplearn/tests/test_fitness.py
+++ b/gplearn/tests/test_fitness.py
@@ -7,9 +7,9 @@
 import pickle
 
 import numpy as np
+import pytest
 from sklearn.datasets import load_diabetes, load_breast_cancer
 from sklearn.metrics import mean_absolute_error
-from sklearn.utils._testing import assert_raises
 from sklearn.utils.validation import check_random_state
 
 from gplearn.genetic import SymbolicRegressor, SymbolicClassifier
@@ -35,35 +35,27 @@ def test_validate_fitness():
     # Check arg count checks
     _ = make_fitness(function=_mean_square_error, greater_is_better=True)
     # non-bool greater_is_better
-    assert_raises(ValueError,
-                  make_fitness,
-                  function=_mean_square_error,
-                  greater_is_better='Sure')
-    assert_raises(ValueError,
-                  make_fitness,
-                  function=_mean_square_error,
-                  greater_is_better=1)
+    with pytest.raises(ValueError):
+        make_fitness(function=_mean_square_error, greater_is_better='Sure')
+    with pytest.raises(ValueError):
+        make_fitness(function=_mean_square_error, greater_is_better=1)
     # non-bool wrap
-    assert_raises(ValueError,
-                  make_fitness,
-                  function=_mean_square_error,
-                  greater_is_better=True, wrap='f')
+    with pytest.raises(ValueError):
+        make_fitness(function=_mean_square_error,
+                     greater_is_better=True,
+                     wrap='f')
 
     # Check arg count tests
     def bad_fun1(x1, x2):
         return 1.0
-    assert_raises(ValueError,
-                  make_fitness,
-                  function=bad_fun1,
-                  greater_is_better=True)
+    with pytest.raises(ValueError):
+        make_fitness(function=bad_fun1, greater_is_better=True)
 
     # Check return type tests
     def bad_fun2(x1, x2, w):
         return 'ni'
-    assert_raises(ValueError,
-                  make_fitness,
-                  function=bad_fun2,
-                  greater_is_better=True)
+    with pytest.raises(ValueError):
+        make_fitness(function=bad_fun2, greater_is_better=True)
 
     def _custom_metric(y, y_pred, w):
         """Calculate the root mean square error."""
@@ -211,11 +203,13 @@ def test_parallel_custom_metric():
                             random_state=0,
                             n_jobs=2)
     est.fit(diabetes.data, diabetes.target)
-    assert_raises(AttributeError, pickle.dumps, est)
+    with pytest.raises(AttributeError):
+        pickle.dumps(est)
 
     # Single threaded will also fail in non-interactive sessions
     est = SymbolicRegressor(generations=2,
                             metric=custom_metric,
                             random_state=0)
     est.fit(diabetes.data, diabetes.target)
-    assert_raises(AttributeError, pickle.dumps, est)
+    with pytest.raises(AttributeError):
+        pickle.dumps(est)
diff --git a/gplearn/tests/test_functions.py b/gplearn/tests/test_functions.py
index 5b4df74..8053e7c 100644
--- a/gplearn/tests/test_functions.py
+++ b/gplearn/tests/test_functions.py
@@ -7,9 +7,9 @@
 import pickle
 
 import numpy as np
+import pytest
 from numpy import maximum
 from sklearn.datasets import load_diabetes, load_breast_cancer
-from sklearn.utils._testing import assert_raises
 from sklearn.utils.validation import check_random_state
 
 from gplearn.functions import _protected_sqrt, make_function
@@ -36,79 +36,48 @@ def test_validate_function():
     # Check arity tests
     _ = make_function(function=_protected_sqrt, name='sqrt', arity=1)
     # non-integer arity
-    assert_raises(ValueError,
-                  make_function,
-                  function=_protected_sqrt,
-                  name='sqrt',
-                  arity='1')
-    assert_raises(ValueError,
-                  make_function,
-                  function=_protected_sqrt,
-                  name='sqrt',
-                  arity=1.0)
+    with pytest.raises(ValueError):
+        make_function(function=_protected_sqrt, name='sqrt', arity='1')
+    with pytest.raises(ValueError):
+        make_function(function=_protected_sqrt, name='sqrt', arity=1.0)
     # non-bool wrap
-    assert_raises(ValueError,
-                  make_function,
-                  function=_protected_sqrt,
-                  name='sqrt',
-                  arity=1,
-                  wrap='f')
+    with pytest.raises(ValueError):
+        make_function(function=_protected_sqrt, name='sqrt', arity=1, wrap='f')
     # non-matching arity
-    assert_raises(ValueError,
-                  make_function,
-                  function=_protected_sqrt,
-                  name='sqrt',
-                  arity=2)
-    assert_raises(ValueError,
-                  make_function,
-                  function=maximum,
-                  name='max',
-                  arity=1)
+    with pytest.raises(ValueError):
+        make_function(function=_protected_sqrt, name='sqrt', arity=2)
+    with pytest.raises(ValueError):
+        make_function(function=maximum, name='max', arity=1)
 
     # Check name test
-    assert_raises(ValueError,
-                  make_function,
-                  function=_protected_sqrt,
-                  name=2,
-                  arity=1)
+    with pytest.raises(ValueError):
+        make_function(function=_protected_sqrt, name=2, arity=1)
 
     # Check return type tests
     def bad_fun1(x1, x2):
         return 'ni'
-    assert_raises(ValueError,
-                  make_function,
-                  function=bad_fun1,
-                  name='ni',
-                  arity=2)
+    with pytest.raises(ValueError):
+        make_function(function=bad_fun1, name='ni', arity=2)
 
     # Check return shape tests
     def bad_fun2(x1):
         return np.ones((2, 1))
-    assert_raises(ValueError,
-                  make_function,
-                  function=bad_fun2,
-                  name='ni',
-                  arity=1)
+    with pytest.raises(ValueError):
+        make_function(function=bad_fun2, name='ni', arity=1)
 
     # Check closure for negatives test
     def _unprotected_sqrt(x1):
         with np.errstate(divide='ignore', invalid='ignore'):
             return np.sqrt(x1)
-    assert_raises(ValueError,
-                  make_function,
-                  function=_unprotected_sqrt,
-                  name='sqrt',
-                  arity=1)
+    with pytest.raises(ValueError):
+        make_function(function=_unprotected_sqrt, name='sqrt', arity=1)
 
     # Check closure for zeros test
     def _unprotected_div(x1, x2):
         with np.errstate(divide='ignore', invalid='ignore'):
             return np.divide(x1, x2)
-    assert_raises(ValueError,
-                  make_function,
-                  function=_unprotected_div,
-                  name='div',
-                  arity=2)
+    with pytest.raises(ValueError):
+        make_function(function=_unprotected_div, name='div', arity=2)
 
 
 def test_function_in_program():
@@ -160,14 +129,16 @@ def test_parallel_custom_function():
                             random_state=0,
                             n_jobs=2)
     est.fit(diabetes.data, diabetes.target)
-    assert_raises(AttributeError, pickle.dumps, est)
+    with pytest.raises(AttributeError):
+        pickle.dumps(est)
 
     # Single threaded will also fail in non-interactive sessions
     est = SymbolicRegressor(generations=2,
                             function_set=['add', 'sub', 'mul', 'div', logical],
                             random_state=0)
     est.fit(diabetes.data, diabetes.target)
-    assert_raises(AttributeError, pickle.dumps, est)
+    with pytest.raises(AttributeError):
+        pickle.dumps(est)
 
 
 def test_parallel_custom_transformer():
@@ -197,11 +168,13 @@ def test_parallel_custom_transformer():
                              random_state=0,
                              n_jobs=2)
     est.fit(cancer.data, cancer.target)
-    assert_raises(AttributeError, pickle.dumps, est)
+    with pytest.raises(AttributeError):
+        pickle.dumps(est)
 
     # Single threaded will also fail in non-interactive sessions
     est = SymbolicClassifier(generations=2,
                              transformer=sigmoid,
                              random_state=0)
     est.fit(cancer.data, cancer.target)
-    assert_raises(AttributeError, pickle.dumps, est)
+    with pytest.raises(AttributeError):
+        pickle.dumps(est)
diff --git a/gplearn/tests/test_genetic.py b/gplearn/tests/test_genetic.py
index 1364d51..d7e59c0 100644
--- a/gplearn/tests/test_genetic.py
+++ b/gplearn/tests/test_genetic.py
@@ -7,11 +7,14 @@ gplearn.genetic.SymbolicRegressor and gplearn.genetic.SymbolicTransformer."""
 # License: BSD 3 clause
 
 import pickle
-import pytest
 import sys
 from io import StringIO
 
 import numpy as np
+import pytest
+from numpy.testing import assert_almost_equal
+from numpy.testing import assert_array_equal
+from numpy.testing import assert_array_almost_equal
 from scipy.stats import pearsonr, spearmanr
 from sklearn.datasets import load_diabetes, load_breast_cancer
 from sklearn.metrics import mean_absolute_error
@@ -19,10 +22,6 @@ from sklearn.model_selection import GridSearchCV
 from sklearn.pipeline import make_pipeline
 from sklearn.preprocessing import StandardScaler
 from sklearn.tree import DecisionTreeRegressor
-from sklearn.utils._testing import assert_almost_equal
-from sklearn.utils._testing import assert_array_equal
-from sklearn.utils._testing import assert_array_almost_equal
-from sklearn.utils._testing import assert_raises
 from sklearn.utils.validation import check_random_state
 
 from gplearn.genetic import SymbolicClassifier, SymbolicRegressor
@@ -175,14 +174,16 @@ def test_validate_program():
                  random_state, program=test_gp)
 
     # Now try a couple that shouldn't be
-    assert_raises(ValueError, _Program, function_set, arities, init_depth,
-                  init_method, n_features, const_range, metric,
-                  p_point_replace, parsimony_coefficient, random_state,
-                  program=test_gp[:-1])
-    assert_raises(ValueError, _Program, function_set, arities, init_depth,
-                  init_method, n_features, const_range, metric,
-                  p_point_replace, parsimony_coefficient, random_state,
-                  program=test_gp + [1])
+    with pytest.raises(ValueError):
+        _Program(function_set, arities, init_depth,
+                 init_method, n_features, const_range, metric,
+                 p_point_replace, parsimony_coefficient, random_state,
+                 program=test_gp[:-1])
+    with pytest.raises(ValueError):
+        _Program(function_set, arities, init_depth,
+                 init_method, n_features, const_range, metric,
+                 p_point_replace, parsimony_coefficient, random_state,
+                 program=test_gp + [1])
 
 
 def test_print_overloading():
@@ -304,12 +305,14 @@ def test_invalid_feature_names():
 
         # Check invalid length feature_names
         est = Symbolic(feature_names=['foo', 'bar'])
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
 
         # Check invalid type feature_name
         feature_names = [str(n) for n in range(12)] + [0]
         est = Symbolic(feature_names=feature_names)
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
 
 
 def test_execute():
@@ -435,21 +438,27 @@ def test_input_validation():
     for Symbolic in (SymbolicRegressor, SymbolicTransformer):
         # Check too much proba
         est = Symbolic(p_point_mutation=.5)
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
 
         # Check invalid init_method
         est = Symbolic(init_method='ni')
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
 
         # Check invalid const_ranges
         est = Symbolic(const_range=2)
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
         est = Symbolic(const_range=[2, 2])
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
         est = Symbolic(const_range=(2, 2, 2))
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
         est = Symbolic(const_range='ni')
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
         # And check acceptable, but strange, representations of const_range
         est = Symbolic(population_size=100, generations=1, const_range=(2, 2))
         est.fit(diabetes.data, diabetes.target)
@@ -460,30 +469,40 @@ def test_input_validation():
 
         # Check invalid init_depth
         est = Symbolic(init_depth=2)
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
         est = Symbolic(init_depth=2)
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
         est = Symbolic(init_depth=[2, 2])
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
         est = Symbolic(init_depth=(2, 2, 2))
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
         est = Symbolic(init_depth='ni')
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
         est = Symbolic(init_depth=(4, 2))
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
         # And check acceptable, but strange, representations of init_depth
         est = Symbolic(population_size=100, generations=1, init_depth=(2, 2))
         est.fit(diabetes.data, diabetes.target)
 
     # Check hall_of_fame and n_components for transformer
     est = SymbolicTransformer(hall_of_fame=2000)
-    assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+    with pytest.raises(ValueError):
+        est.fit(diabetes.data, diabetes.target)
     est = SymbolicTransformer(n_components=2000)
-    assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+    with pytest.raises(ValueError):
+        est.fit(diabetes.data, diabetes.target)
     est = SymbolicTransformer(hall_of_fame=0)
-    assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+    with pytest.raises(ValueError):
+        est.fit(diabetes.data, diabetes.target)
     est = SymbolicTransformer(n_components=0)
-    assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+    with pytest.raises(ValueError):
+        est.fit(diabetes.data, diabetes.target)
 
     # Check regressor metrics
     for m in ['mean absolute error', 'mse', 'rmse', 'pearson', 'spearman']:
@@ -491,7 +510,8 @@ def test_input_validation():
         est.fit(diabetes.data, diabetes.target)
     # And check a fake one
     est = SymbolicRegressor(metric='the larch')
-    assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+    with pytest.raises(ValueError):
+        est.fit(diabetes.data, diabetes.target)
     # Check transformer metrics
     for m in ['pearson', 'spearman']:
         est = SymbolicTransformer(population_size=100, generations=1, metric=m)
@@ -499,7 +519,8 @@ def test_input_validation():
     # And check the regressor metrics as well as a fake one
     for m in ['mean absolute error', 'mse', 'rmse', 'the larch']:
         est = SymbolicTransformer(metric=m)
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
 
 
 def test_input_validation_classifier():
@@ -507,21 +528,27 @@ def test_input_validation_classifier():
 
     # Check too much proba
     est = SymbolicClassifier(p_point_mutation=.5)
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
 
     # Check invalid init_method
     est = SymbolicClassifier(init_method='ni')
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
 
     # Check invalid const_ranges
     est = SymbolicClassifier(const_range=2)
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
     est = SymbolicClassifier(const_range=[2, 2])
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
     est = SymbolicClassifier(const_range=(2, 2, 2))
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
     est = SymbolicClassifier(const_range='ni')
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
     # And check acceptable, but strange, representations of const_range
     est = SymbolicClassifier(population_size=100, generations=1,
                              const_range=(2, 2))
@@ -535,17 +562,23 @@ def test_input_validation_classifier():
 
     # Check invalid init_depth
     est = SymbolicClassifier(init_depth=2)
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
     est = SymbolicClassifier(init_depth=2)
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
     est = SymbolicClassifier(init_depth=[2, 2])
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
     est = SymbolicClassifier(init_depth=(2, 2, 2))
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
     est = SymbolicClassifier(init_depth='ni')
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
     est = SymbolicClassifier(init_depth=(4, 2))
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
     # And check acceptable, but strange, representations of init_depth
     est = SymbolicClassifier(population_size=100, generations=1,
                              init_depth=(2, 2))
@@ -557,7 +590,8 @@ def test_input_validation_classifier():
         est.fit(cancer.data, cancer.target)
     # And check a fake one
     est = SymbolicClassifier(metric='the larch')
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
 
     # Check classifier transformers
     for t in ['sigmoid']:
@@ -566,10 +600,12 @@ def test_input_validation_classifier():
         est.fit(cancer.data, cancer.target)
     # And check an incompatible one with wrong arity
     est = SymbolicClassifier(transformer=sub2)
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
     # And check a fake one
     est = SymbolicClassifier(transformer='the larch')
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
 
 
 def test_none_const_range():
@@ -997,7 +1033,8 @@ def test_transformer_iterable():
     assert np.allclose(fitted_iter, expected_iter, atol=1)
 
     # Check IndexError
-    assert_raises(IndexError, est.__getitem__, 10)
+    with pytest.raises(IndexError):
+        est[10]
 
 
 def test_print_overloading_estimator():
@@ -1137,12 +1174,15 @@ def test_validate_functions():
         # These should fail
         est = Symbolic(generations=2, random_state=0,
                        function_set=('ni', 'sub', 'mul', div2))
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
         est = Symbolic(generations=2, random_state=0,
                        function_set=(7, 'sub', 'mul', div2))
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
         est = Symbolic(generations=2, random_state=0, function_set=())
-        assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+        with pytest.raises(ValueError):
+            est.fit(diabetes.data, diabetes.target)
 
     # Now for the classifier... These should be fine
     est = SymbolicClassifier(population_size=100, generations=2,
@@ -1157,12 +1197,15 @@ def test_validate_functions():
     # These should fail
     est = SymbolicClassifier(generations=2, random_state=0,
                              function_set=('ni', 'sub', 'mul', div2))
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
     est = SymbolicClassifier(generations=2, random_state=0,
                              function_set=(7, 'sub', 'mul', div2))
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
     est = SymbolicClassifier(generations=2, random_state=0, function_set=())
-    assert_raises(ValueError, est.fit, cancer.data, cancer.target)
+    with pytest.raises(ValueError):
+        est.fit(cancer.data, cancer.target)
 
 
 def test_indices():
@@ -1181,13 +1224,16 @@ def test_indices():
     test_gp = [mul2, div2, 8, 1, sub2, 9, .5]
     gp = _Program(random_state=random_state, program=test_gp, **params)
 
-    assert_raises(ValueError, gp.get_all_indices)
-    assert_raises(ValueError, gp._indices)
+    with pytest.raises(ValueError):
+        gp.get_all_indices()
+    with pytest.raises(ValueError):
+        gp._indices()
 
     def get_indices_property():
         return gp.indices_
 
-    assert_raises(ValueError, get_indices_property)
+    with pytest.raises(ValueError):
+        get_indices_property()
 
     indices, _ = gp.get_all_indices(10, 7, random_state)
 
@@ -1222,7 +1268,8 @@ def test_warm_start():
 
     # Check fitting fewer generations raises error
     est.set_params(generations=5, warm_start=True)
-    assert_raises(ValueError, est.fit, diabetes.data, diabetes.target)
+    with pytest.raises(ValueError):
+        est.fit(diabetes.data, diabetes.target)
 
     # Check fitting the same number of generations warns
     est.set_params(generations=10, warm_start=True)
diff --git a/gplearn/tests/test_utils.py b/gplearn/tests/test_utils.py
index 6420e7a..82b8333 100644
--- a/gplearn/tests/test_utils.py
+++ b/gplearn/tests/test_utils.py
@@ -5,7 +5,7 @@
 # License: BSD 3 clause
 
 import numpy as np
-from sklearn.utils._testing import assert_raises
+import pytest
 
 from gplearn.utils import _get_n_jobs, check_random_state, cpu_count
 
@@ -25,7 +25,8 @@ def test_check_random_state():
     rng_42 = np.random.RandomState(42)
     assert(check_random_state(43).randint(100) != rng_42.randint(100))
 
-    assert_raises(ValueError, check_random_state, "some invalid seed")
+    with pytest.raises(ValueError):
+        check_random_state("some invalid seed")
 
 
 def test_get_n_jobs():
@@ -39,4 +40,5 @@ def test_get_n_jobs():
     jobs = _get_n_jobs(jobs)
     assert(jobs == expected)
 
-    assert_raises(ValueError, _get_n_jobs, 0)
+    with pytest.raises(ValueError):
+        _get_n_jobs(0)