File: scikit-learn-1.6-3.patch

package info (click to toggle)
python-gplearn 0.4.2-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,308 kB
  • sloc: python: 2,755; makefile: 158
file content (254 lines) | stat: -rw-r--r-- 9,476 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
From: Colin Watson <cjwatson@debian.org>
Date: Sun, 19 Oct 2025 02:17:51 +0100
Subject: Handle estimator checking changes in scikit-learn 1.6

Forwarded: https://github.com/trevorstephens/gplearn/pull/305
Bug-Debian: https://bugs.debian.org/1117991
Last-Update: 2025-10-19
---
 .github/workflows/build.yml            |  2 +-
 doc/rtd-pip-requirements               |  2 +-
 gplearn/genetic.py                     | 71 +++++++++++++++++++++++++++-------
 gplearn/tests/test_estimator_checks.py | 11 +++++-
 gplearn/utils.py                       |  8 ++++
 setup.py                               |  3 +-
 6 files changed, 80 insertions(+), 17 deletions(-)

diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml
index 3b198b8..5df8e5b 100644
--- a/.github/workflows/build.yml
+++ b/.github/workflows/build.yml
@@ -41,7 +41,7 @@ jobs:
         python -m pip install pandas
     - name: Install minimal dependencies
       if: ${{ matrix.python_version == '3.8' }}
-      run: python -m pip install scikit-learn==1.0.2 joblib==1.0.0
+      run: python -m pip install scikit-learn==1.1.0 joblib==1.0.0
     - name: Install gplearn
       run: python -m pip install .
     - name: Describe Python environment
diff --git a/doc/rtd-pip-requirements b/doc/rtd-pip-requirements
index 947fdee..fbf725e 100644
--- a/doc/rtd-pip-requirements
+++ b/doc/rtd-pip-requirements
@@ -1,5 +1,5 @@
 numpy>=1.8.1
 numpydoc>=0.5
 scipy>=0.13
-scikit-learn>=0.22.1
+scikit-learn>=1.1.0
 joblib>=0.13.0
diff --git a/gplearn/genetic.py b/gplearn/genetic.py
index 157bc92..d64dedb 100644
--- a/gplearn/genetic.py
+++ b/gplearn/genetic.py
@@ -23,11 +23,13 @@ from sklearn.exceptions import NotFittedError
 from sklearn.utils import compute_sample_weight
 from sklearn.utils.validation import check_array, _check_sample_weight
 from sklearn.utils.multiclass import check_classification_targets
+from sklearn.utils.multiclass import type_of_target
 
 from ._program import _Program
 from .fitness import _fitness_map, _Fitness
 from .functions import _function_map, _Function, sig1 as sigmoid
 from .utils import _partition_estimators
+from .utils import _sklearn_version_ge
 from .utils import check_random_state
 
 __all__ = ['SymbolicRegressor', 'SymbolicClassifier', 'SymbolicTransformer']
@@ -301,6 +303,18 @@ class BaseSymbolic(BaseEstimator, metaclass=ABCMeta):
         if isinstance(self, ClassifierMixin):
             X, y = self._validate_data(X, y, y_numeric=False)
             check_classification_targets(y)
+            # Once we require scikit-learn >= 1.6, this should pass
+            # raise_unknown=True rather than checking for "unknown"
+            # manually.
+            y_type = type_of_target(y, input_name="y")
+            if y_type == "unknown":
+                raise ValueError("Unknown label type for y: %r" % y)
+            elif y_type != "binary":
+                raise ValueError(
+                    "Only binary classification is supported. The type of the "
+                    "target is %s."
+                    % y_type
+                )
 
             if self.class_weight:
                 if sample_weight is None:
@@ -599,7 +613,7 @@ class BaseSymbolic(BaseEstimator, metaclass=ABCMeta):
         return self
 
 
-class SymbolicRegressor(BaseSymbolic, RegressorMixin):
+class SymbolicRegressor(RegressorMixin, BaseSymbolic):
 
     """A Genetic Programming symbolic regressor.
 
@@ -868,7 +882,15 @@ class SymbolicRegressor(BaseSymbolic, RegressorMixin):
         if not hasattr(self, '_program'):
             raise NotFittedError('SymbolicRegressor not fitted.')
 
-        X = check_array(X)
+        try:
+            # scikit-learn >= 1.6
+            from sklearn.utils.validation import validate_data
+
+            X = validate_data(self, X, reset=False)
+        except ImportError:
+            # scikit-learn < 1.6
+            X = check_array(X)
+
         _, n_features = X.shape
         if self.n_features_in_ != n_features:
             raise ValueError('Number of features of the model must match the '
@@ -881,7 +903,7 @@ class SymbolicRegressor(BaseSymbolic, RegressorMixin):
         return y
 
 
-class SymbolicClassifier(BaseSymbolic, ClassifierMixin):
+class SymbolicClassifier(ClassifierMixin, BaseSymbolic):
 
     """A Genetic Programming symbolic classifier.
 
@@ -1142,6 +1164,11 @@ class SymbolicClassifier(BaseSymbolic, ClassifierMixin):
             return self.__repr__()
         return self._program.__str__()
 
+    def __sklearn_tags__(self):
+        tags = super().__sklearn_tags__()
+        tags.classifier_tags.multi_class = False
+        return tags
+
     def _more_tags(self):
         return {'binary_only': True}
 
@@ -1164,7 +1191,15 @@ class SymbolicClassifier(BaseSymbolic, ClassifierMixin):
         if not hasattr(self, '_program'):
             raise NotFittedError('SymbolicClassifier not fitted.')
 
-        X = check_array(X)
+        try:
+            # scikit-learn >= 1.6
+            from sklearn.utils.validation import validate_data
+
+            X = validate_data(self, X, reset=False)
+        except ImportError:
+            # scikit-learn < 1.6
+            X = check_array(X)
+
         _, n_features = X.shape
         if self.n_features_in_ != n_features:
             raise ValueError('Number of features of the model must match the '
@@ -1196,7 +1231,7 @@ class SymbolicClassifier(BaseSymbolic, ClassifierMixin):
         return self.classes_.take(np.argmax(proba, axis=1), axis=0)
 
 
-class SymbolicTransformer(BaseSymbolic, TransformerMixin):
+class SymbolicTransformer(TransformerMixin, BaseSymbolic):
 
     """A Genetic Programming symbolic transformer.
 
@@ -1467,14 +1502,16 @@ class SymbolicTransformer(BaseSymbolic, TransformerMixin):
         output = str([gp.__str__() for gp in self])
         return output.replace("',", ",\n").replace("'", "")
 
-    def _more_tags(self):
-        return {
-            "_xfail_checks": {
-                "check_sample_weights_invariance": (
-                    "zero sample_weight is not equivalent to removing samples"
-                ),
+    if not _sklearn_version_ge("1.6"):
+        def _more_tags(self):
+            return {
+                "_xfail_checks": {
+                    "check_sample_weights_invariance": (
+                        "zero sample_weight is not equivalent to removing "
+                        "samples"
+                    ),
+                }
             }
-        }
 
     def transform(self, X):
         """Transform X according to the fitted transformer.
@@ -1494,7 +1531,15 @@ class SymbolicTransformer(BaseSymbolic, TransformerMixin):
         if not hasattr(self, '_best_programs'):
             raise NotFittedError('SymbolicTransformer not fitted.')
 
-        X = check_array(X)
+        try:
+            # scikit-learn >= 1.6
+            from sklearn.utils.validation import validate_data
+
+            X = validate_data(self, X, reset=False)
+        except ImportError:
+            # scikit-learn < 1.6
+            X = check_array(X)
+
         _, n_features = X.shape
         if self.n_features_in_ != n_features:
             raise ValueError('Number of features of the model must match the '
diff --git a/gplearn/tests/test_estimator_checks.py b/gplearn/tests/test_estimator_checks.py
index af57fb3..534b50e 100644
--- a/gplearn/tests/test_estimator_checks.py
+++ b/gplearn/tests/test_estimator_checks.py
@@ -10,6 +10,7 @@ from sklearn.utils.estimator_checks import check_estimator
 
 from gplearn.genetic import SymbolicClassifier, SymbolicRegressor
 from gplearn.genetic import SymbolicTransformer
+from gplearn.utils import _sklearn_version_ge
 
 
 def test_sklearn_regressor_checks():
@@ -29,6 +30,14 @@ def test_sklearn_classifier_checks():
 def test_sklearn_transformer_checks():
     """Run the sklearn estimator validation checks on SymbolicTransformer"""
 
+    kwargs = {}
+    if _sklearn_version_ge("1.6"):
+        kwargs["expected_failed_checks"] = {
+            "check_sample_weights_invariance": (
+                "zero sample_weight is not equivalent to removing samples"
+            ),
+        }
     check_estimator(SymbolicTransformer(population_size=50,
                                         hall_of_fame=10,
-                                        generations=5))
+                                        generations=5),
+                    **kwargs)
diff --git a/gplearn/utils.py b/gplearn/utils.py
index 7eee1bd..a210dec 100644
--- a/gplearn/utils.py
+++ b/gplearn/utils.py
@@ -6,10 +6,18 @@ order to maintain compatibility across different versions of scikit-learn.
 
 """
 
+import importlib.metadata
 import numbers
 
 import numpy as np
 from joblib import cpu_count
+from packaging.version import Version
+
+
+def _sklearn_version_ge(min_version):
+    """Check whether we have at least min_version of scikit-learn."""
+    sklearn_version = importlib.metadata.version("scikit-learn")
+    return Version(sklearn_version) >= Version(min_version)
 
 
 def check_random_state(seed):
diff --git a/setup.py b/setup.py
index 1eef653..72b13fd 100644
--- a/setup.py
+++ b/setup.py
@@ -34,5 +34,6 @@ setup(name='gplearn',
                                       '*.tests.*']),
       zip_safe=False,
       package_data={'': ['LICENSE']},
-      install_requires=['scikit-learn>=1.0.2',
+      install_requires=['packaging',
+                        'scikit-learn>=1.1.0',
                         'joblib>=1.0.0'])