File: genetic.py

package info (click to toggle)
python-gplearn 0.4.2-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,308 kB
  • sloc: python: 2,755; makefile: 158
file content (1575 lines) | stat: -rw-r--r-- 68,201 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
"""Genetic Programming in Python, with a scikit-learn inspired API

The :mod:`gplearn.genetic` module implements Genetic Programming. These
are supervised learning methods based on applying evolutionary operations on
computer programs.
"""

# Author: Trevor Stephens <trevorstephens.com>
#
# License: BSD 3 clause

import itertools
from abc import ABCMeta, abstractmethod
from time import time
from warnings import warn

import numpy as np
from joblib import Parallel, delayed
from scipy.stats import rankdata
from sklearn.base import BaseEstimator
from sklearn.base import RegressorMixin, TransformerMixin, ClassifierMixin
from sklearn.exceptions import NotFittedError
from sklearn.utils import compute_sample_weight
from sklearn.utils.validation import check_array, _check_sample_weight
from sklearn.utils.multiclass import check_classification_targets
from sklearn.utils.multiclass import type_of_target

from ._program import _Program
from .fitness import _fitness_map, _Fitness
from .functions import _function_map, _Function, sig1 as sigmoid
from .utils import _partition_estimators
from .utils import _sklearn_version_ge
from .utils import check_random_state

__all__ = ['SymbolicRegressor', 'SymbolicClassifier', 'SymbolicTransformer']

MAX_INT = np.iinfo(np.int32).max


def _parallel_evolve(n_programs, parents, X, y, sample_weight, seeds, params):
    """Private function used to build a batch of programs within a job."""
    n_samples, n_features = X.shape
    # Unpack parameters
    tournament_size = params['tournament_size']
    function_set = params['function_set']
    arities = params['arities']
    init_depth = params['init_depth']
    init_method = params['init_method']
    const_range = params['const_range']
    metric = params['_metric']
    transformer = params['_transformer']
    parsimony_coefficient = params['parsimony_coefficient']
    method_probs = params['method_probs']
    p_point_replace = params['p_point_replace']
    max_samples = params['max_samples']
    feature_names = params['feature_names']

    max_samples = int(max_samples * n_samples)

    def _tournament():
        """Find the fittest individual from a sub-population."""
        contenders = random_state.randint(0, len(parents), tournament_size)
        fitness = [parents[p].fitness_ for p in contenders]
        if metric.greater_is_better:
            parent_index = contenders[np.argmax(fitness)]
        else:
            parent_index = contenders[np.argmin(fitness)]
        return parents[parent_index], parent_index

    # Build programs
    programs = []

    for i in range(n_programs):

        random_state = check_random_state(seeds[i])

        if parents is None:
            program = None
            genome = None
        else:
            method = random_state.uniform()
            parent, parent_index = _tournament()

            if method < method_probs[0]:
                # crossover
                donor, donor_index = _tournament()
                program, removed, remains = parent.crossover(donor.program,
                                                             random_state)
                genome = {'method': 'Crossover',
                          'parent_idx': parent_index,
                          'parent_nodes': removed,
                          'donor_idx': donor_index,
                          'donor_nodes': remains}
            elif method < method_probs[1]:
                # subtree_mutation
                program, removed, _ = parent.subtree_mutation(random_state)
                genome = {'method': 'Subtree Mutation',
                          'parent_idx': parent_index,
                          'parent_nodes': removed}
            elif method < method_probs[2]:
                # hoist_mutation
                program, removed = parent.hoist_mutation(random_state)
                genome = {'method': 'Hoist Mutation',
                          'parent_idx': parent_index,
                          'parent_nodes': removed}
            elif method < method_probs[3]:
                # point_mutation
                program, mutated = parent.point_mutation(random_state)
                genome = {'method': 'Point Mutation',
                          'parent_idx': parent_index,
                          'parent_nodes': mutated}
            else:
                # reproduction
                program = parent.reproduce()
                genome = {'method': 'Reproduction',
                          'parent_idx': parent_index,
                          'parent_nodes': []}

        program = _Program(function_set=function_set,
                           arities=arities,
                           init_depth=init_depth,
                           init_method=init_method,
                           n_features=n_features,
                           metric=metric,
                           transformer=transformer,
                           const_range=const_range,
                           p_point_replace=p_point_replace,
                           parsimony_coefficient=parsimony_coefficient,
                           feature_names=feature_names,
                           random_state=random_state,
                           program=program)

        program.parents = genome

        # Draw samples, using sample weights, and then fit
        if sample_weight is None:
            curr_sample_weight = np.ones((n_samples,))
        else:
            curr_sample_weight = sample_weight.copy()
        oob_sample_weight = curr_sample_weight.copy()

        indices, not_indices = program.get_all_indices(n_samples,
                                                       max_samples,
                                                       random_state)

        curr_sample_weight[not_indices] = 0
        oob_sample_weight[indices] = 0

        program.raw_fitness_ = program.raw_fitness(X, y, curr_sample_weight)
        if max_samples < n_samples:
            # Calculate OOB fitness
            program.oob_fitness_ = program.raw_fitness(X, y, oob_sample_weight)

        programs.append(program)

    return programs


class BaseSymbolic(BaseEstimator, metaclass=ABCMeta):

    """Base class for symbolic regression / classification estimators.

    Warning: This class should not be used directly.
    Use derived classes instead.

    """

    @abstractmethod
    def __init__(self,
                 *,
                 population_size=1000,
                 hall_of_fame=None,
                 n_components=None,
                 generations=20,
                 tournament_size=20,
                 stopping_criteria=0.0,
                 const_range=(-1., 1.),
                 init_depth=(2, 6),
                 init_method='half and half',
                 function_set=('add', 'sub', 'mul', 'div'),
                 transformer=None,
                 metric='mean absolute error',
                 parsimony_coefficient=0.001,
                 p_crossover=0.9,
                 p_subtree_mutation=0.01,
                 p_hoist_mutation=0.01,
                 p_point_mutation=0.01,
                 p_point_replace=0.05,
                 max_samples=1.0,
                 class_weight=None,
                 feature_names=None,
                 warm_start=False,
                 low_memory=False,
                 n_jobs=1,
                 verbose=0,
                 random_state=None):

        self.population_size = population_size
        self.hall_of_fame = hall_of_fame
        self.n_components = n_components
        self.generations = generations
        self.tournament_size = tournament_size
        self.stopping_criteria = stopping_criteria
        self.const_range = const_range
        self.init_depth = init_depth
        self.init_method = init_method
        self.function_set = function_set
        self.transformer = transformer
        self.metric = metric
        self.parsimony_coefficient = parsimony_coefficient
        self.p_crossover = p_crossover
        self.p_subtree_mutation = p_subtree_mutation
        self.p_hoist_mutation = p_hoist_mutation
        self.p_point_mutation = p_point_mutation
        self.p_point_replace = p_point_replace
        self.max_samples = max_samples
        self.class_weight = class_weight
        self.feature_names = feature_names
        self.warm_start = warm_start
        self.low_memory = low_memory
        self.n_jobs = n_jobs
        self.verbose = verbose
        self.random_state = random_state

    def _verbose_reporter(self, run_details=None):
        """A report of the progress of the evolution process.

        Parameters
        ----------
        run_details : dict
            Information about the evolution.

        """
        if run_details is None:
            print('    |{:^25}|{:^42}|'.format('Population Average',
                                               'Best Individual'))
            print('-' * 4 + ' ' + '-' * 25 + ' ' + '-' * 42 + ' ' + '-' * 10)
            line_format = '{:>4} {:>8} {:>16} {:>8} {:>16} {:>16} {:>10}'
            print(line_format.format('Gen', 'Length', 'Fitness', 'Length',
                                     'Fitness', 'OOB Fitness', 'Time Left'))

        else:
            # Estimate remaining time for run
            gen = run_details['generation'][-1]
            generation_time = run_details['generation_time'][-1]
            remaining_time = (self.generations - gen - 1) * generation_time
            if remaining_time > 60:
                remaining_time = '{0:.2f}m'.format(remaining_time / 60.0)
            else:
                remaining_time = '{0:.2f}s'.format(remaining_time)

            oob_fitness = 'N/A'
            line_format = '{:4d} {:8.2f} {:16g} {:8d} {:16g} {:>16} {:>10}'
            if self.max_samples < 1.0:
                oob_fitness = run_details['best_oob_fitness'][-1]
                line_format = '{:4d} {:8.2f} {:16g} {:8d} {:16g} {:16g} {:>10}'

            print(line_format.format(run_details['generation'][-1],
                                     run_details['average_length'][-1],
                                     run_details['average_fitness'][-1],
                                     run_details['best_length'][-1],
                                     run_details['best_fitness'][-1],
                                     oob_fitness,
                                     remaining_time))

    def _validate_data(self, *args, **kwargs):
        try:
            # scikit-learn >= 1.6
            from sklearn.utils.validation import validate_data

            return validate_data(self, *args, **kwargs)
        except ImportError:
            # scikit-learn < 1.6
            return super()._validate_data(*args, **kwargs)

    def fit(self, X, y, sample_weight=None):
        """Fit the Genetic Program according to X, y.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples]
            Target values.

        sample_weight : array-like, shape = [n_samples], optional
            Weights applied to individual samples.

        Returns
        -------
        self : object
            Returns self.

        """
        random_state = check_random_state(self.random_state)

        # Check arrays
        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X)

        if isinstance(self, ClassifierMixin):
            X, y = self._validate_data(X, y, y_numeric=False)
            check_classification_targets(y)
            # Once we require scikit-learn >= 1.6, this should pass
            # raise_unknown=True rather than checking for "unknown"
            # manually.
            y_type = type_of_target(y, input_name="y")
            if y_type == "unknown":
                raise ValueError("Unknown label type for y: %r" % y)
            elif y_type != "binary":
                raise ValueError(
                    "Only binary classification is supported. The type of the "
                    "target is %s."
                    % y_type
                )

            if self.class_weight:
                if sample_weight is None:
                    sample_weight = 1.
                # modify the sample weights with the corresponding class weight
                sample_weight = (sample_weight *
                                 compute_sample_weight(self.class_weight, y))

            self.classes_, y = np.unique(y, return_inverse=True)
            n_trim_classes = np.count_nonzero(np.bincount(y, sample_weight))
            if n_trim_classes != 2:
                raise ValueError("y contains %d class after sample_weight "
                                 "trimmed classes with zero weights, while 2 "
                                 "classes are required."
                                 % n_trim_classes)
            self.n_classes_ = len(self.classes_)

        else:
            X, y = self._validate_data(X, y, y_numeric=True)

        hall_of_fame = self.hall_of_fame
        if hall_of_fame is None:
            hall_of_fame = self.population_size
        if hall_of_fame > self.population_size or hall_of_fame < 1:
            raise ValueError('hall_of_fame (%d) must be less than or equal to '
                             'population_size (%d).' % (self.hall_of_fame,
                                                        self.population_size))
        n_components = self.n_components
        if n_components is None:
            n_components = hall_of_fame
        if n_components > hall_of_fame or n_components < 1:
            raise ValueError('n_components (%d) must be less than or equal to '
                             'hall_of_fame (%d).' % (self.n_components,
                                                     self.hall_of_fame))

        self._function_set = []
        for function in self.function_set:
            if isinstance(function, str):
                if function not in _function_map:
                    raise ValueError('invalid function name %s found in '
                                     '`function_set`.' % function)
                self._function_set.append(_function_map[function])
            elif isinstance(function, _Function):
                self._function_set.append(function)
            else:
                raise ValueError('invalid type %s found in `function_set`.'
                                 % type(function))
        if not self._function_set:
            raise ValueError('No valid functions found in `function_set`.')

        # For point-mutation to find a compatible replacement node
        self._arities = {}
        for function in self._function_set:
            arity = function.arity
            self._arities[arity] = self._arities.get(arity, [])
            self._arities[arity].append(function)

        if isinstance(self.metric, _Fitness):
            self._metric = self.metric
        elif isinstance(self, RegressorMixin):
            if self.metric not in ('mean absolute error', 'mse', 'rmse',
                                   'pearson', 'spearman'):
                raise ValueError('Unsupported metric: %s' % self.metric)
            self._metric = _fitness_map[self.metric]
        elif isinstance(self, ClassifierMixin):
            if self.metric != 'log loss':
                raise ValueError('Unsupported metric: %s' % self.metric)
            self._metric = _fitness_map[self.metric]
        elif isinstance(self, TransformerMixin):
            if self.metric not in ('pearson', 'spearman'):
                raise ValueError('Unsupported metric: %s' % self.metric)
            self._metric = _fitness_map[self.metric]

        self._method_probs = np.array([self.p_crossover,
                                       self.p_subtree_mutation,
                                       self.p_hoist_mutation,
                                       self.p_point_mutation])
        self._method_probs = np.cumsum(self._method_probs)

        if self._method_probs[-1] > 1:
            raise ValueError('The sum of p_crossover, p_subtree_mutation, '
                             'p_hoist_mutation and p_point_mutation should '
                             'total to 1.0 or less.')

        if self.init_method not in ('half and half', 'grow', 'full'):
            raise ValueError('Valid program initializations methods include '
                             '"grow", "full" and "half and half". Given %s.'
                             % self.init_method)

        if not((isinstance(self.const_range, tuple) and
                len(self.const_range) == 2) or self.const_range is None):
            raise ValueError('const_range should be a tuple with length two, '
                             'or None.')

        if (not isinstance(self.init_depth, tuple) or
                len(self.init_depth) != 2):
            raise ValueError('init_depth should be a tuple with length two.')
        if self.init_depth[0] > self.init_depth[1]:
            raise ValueError('init_depth should be in increasing numerical '
                             'order: (min_depth, max_depth).')

        if self.feature_names is not None:
            if self.n_features_in_ != len(self.feature_names):
                raise ValueError('The supplied `feature_names` has different '
                                 'length to n_features. Expected %d, got %d.'
                                 % (self.n_features_in_,
                                    len(self.feature_names)))
            for feature_name in self.feature_names:
                if not isinstance(feature_name, str):
                    raise ValueError('invalid type %s found in '
                                     '`feature_names`.' % type(feature_name))

        if self.transformer is not None:
            if isinstance(self.transformer, _Function):
                self._transformer = self.transformer
            elif self.transformer == 'sigmoid':
                self._transformer = sigmoid
            else:
                raise ValueError('Invalid `transformer`. Expected either '
                                 '"sigmoid" or _Function object, got %s' %
                                 type(self.transformer))
            if self._transformer.arity != 1:
                raise ValueError('Invalid arity for `transformer`. Expected 1, '
                                 'got %d.' % (self._transformer.arity))

        params = self.get_params()
        params['_metric'] = self._metric
        if hasattr(self, '_transformer'):
            params['_transformer'] = self._transformer
        else:
            params['_transformer'] = None
        params['function_set'] = self._function_set
        params['arities'] = self._arities
        params['method_probs'] = self._method_probs

        if not self.warm_start or not hasattr(self, '_programs'):
            # Free allocated memory, if any
            self._programs = []
            self.run_details_ = {'generation': [],
                                 'average_length': [],
                                 'average_fitness': [],
                                 'best_length': [],
                                 'best_fitness': [],
                                 'best_oob_fitness': [],
                                 'generation_time': []}

        prior_generations = len(self._programs)
        n_more_generations = self.generations - prior_generations

        if n_more_generations < 0:
            raise ValueError('generations=%d must be larger or equal to '
                             'len(_programs)=%d when warm_start==True'
                             % (self.generations, len(self._programs)))
        elif n_more_generations == 0:
            fitness = [program.raw_fitness_ for program in self._programs[-1]]
            warn('Warm-start fitting without increasing n_estimators does not '
                 'fit new programs.')

        if self.warm_start:
            # Generate and discard seeds that would have been produced on the
            # initial fit call.
            for i in range(len(self._programs)):
                _ = random_state.randint(MAX_INT, size=self.population_size)

        if self.verbose:
            # Print header fields
            self._verbose_reporter()

        for gen in range(prior_generations, self.generations):

            start_time = time()

            if gen == 0:
                parents = None
            else:
                parents = self._programs[gen - 1]

            # Parallel loop
            n_jobs, n_programs, starts = _partition_estimators(
                self.population_size, self.n_jobs)
            seeds = random_state.randint(MAX_INT, size=self.population_size)

            population = Parallel(n_jobs=n_jobs,
                                  verbose=int(self.verbose > 1))(
                delayed(_parallel_evolve)(n_programs[i],
                                          parents,
                                          X,
                                          y,
                                          sample_weight,
                                          seeds[starts[i]:starts[i + 1]],
                                          params)
                for i in range(n_jobs))

            # Reduce, maintaining order across different n_jobs
            population = list(itertools.chain.from_iterable(population))

            fitness = [program.raw_fitness_ for program in population]
            length = [program.length_ for program in population]

            parsimony_coefficient = None
            if self.parsimony_coefficient == 'auto':
                parsimony_coefficient = (np.cov(length, fitness)[1, 0] /
                                         np.var(length))
            for program in population:
                program.fitness_ = program.fitness(parsimony_coefficient)

            self._programs.append(population)

            # Remove old programs that didn't make it into the new population.
            if not self.low_memory:
                for old_gen in np.arange(gen, 0, -1):
                    indices = []
                    for program in self._programs[old_gen]:
                        if program is not None:
                            for idx in program.parents:
                                if 'idx' in idx:
                                    indices.append(program.parents[idx])
                    indices = set(indices)
                    for idx in range(self.population_size):
                        if idx not in indices:
                            self._programs[old_gen - 1][idx] = None
            elif gen > 0:
                # Remove old generations
                self._programs[gen - 1] = None

            # Record run details
            if self._metric.greater_is_better:
                best_program = population[np.argmax(fitness)]
            else:
                best_program = population[np.argmin(fitness)]

            self.run_details_['generation'].append(gen)
            self.run_details_['average_length'].append(np.mean(length))
            self.run_details_['average_fitness'].append(np.mean(fitness))
            self.run_details_['best_length'].append(best_program.length_)
            self.run_details_['best_fitness'].append(best_program.raw_fitness_)
            oob_fitness = np.nan
            if self.max_samples < 1.0:
                oob_fitness = best_program.oob_fitness_
            self.run_details_['best_oob_fitness'].append(oob_fitness)
            generation_time = time() - start_time
            self.run_details_['generation_time'].append(generation_time)

            if self.verbose:
                self._verbose_reporter(self.run_details_)

            # Check for early stopping
            if self._metric.greater_is_better:
                best_fitness = fitness[np.argmax(fitness)]
                if best_fitness >= self.stopping_criteria:
                    break
            else:
                best_fitness = fitness[np.argmin(fitness)]
                if best_fitness <= self.stopping_criteria:
                    break

        if isinstance(self, TransformerMixin):
            # Find the best individuals in the final generation
            fitness = np.array(fitness)
            if self._metric.greater_is_better:
                hall_of_fame = fitness.argsort()[::-1][:self.hall_of_fame]
            else:
                hall_of_fame = fitness.argsort()[:self.hall_of_fame]
            evaluation = np.array([gp.execute(X) for gp in
                                   [self._programs[-1][i] for
                                    i in hall_of_fame]])
            if self.metric == 'spearman':
                evaluation = np.apply_along_axis(rankdata, 1, evaluation)

            with np.errstate(divide='ignore', invalid='ignore'):
                correlations = np.abs(np.corrcoef(evaluation))
            np.fill_diagonal(correlations, 0.)
            components = list(range(self.hall_of_fame))
            indices = list(range(self.hall_of_fame))
            # Iteratively remove least fit individual of most correlated pair
            while len(components) > self.n_components:
                most_correlated = np.unravel_index(np.argmax(correlations),
                                                   correlations.shape)
                # The correlation matrix is sorted by fitness, so identifying
                # the least fit of the pair is simply getting the higher index
                worst = max(most_correlated)
                components.pop(worst)
                indices.remove(worst)
                correlations = correlations[:, indices][indices, :]
                indices = list(range(len(components)))
            self._best_programs = [self._programs[-1][i] for i in
                                   hall_of_fame[components]]

        else:
            # Find the best individual in the final generation
            if self._metric.greater_is_better:
                self._program = self._programs[-1][np.argmax(fitness)]
            else:
                self._program = self._programs[-1][np.argmin(fitness)]

        return self


class SymbolicRegressor(RegressorMixin, BaseSymbolic):

    """A Genetic Programming symbolic regressor.

    A symbolic regressor is an estimator that begins by building a population
    of naive random formulas to represent a relationship. The formulas are
    represented as tree-like structures with mathematical functions being
    recursively applied to variables and constants. Each successive generation
    of programs is then evolved from the one that came before it by selecting
    the fittest individuals from the population to undergo genetic operations
    such as crossover, mutation or reproduction.

    Parameters
    ----------
    population_size : integer, optional (default=1000)
        The number of programs in each generation.

    generations : integer, optional (default=20)
        The number of generations to evolve.

    tournament_size : integer, optional (default=20)
        The number of programs that will compete to become part of the next
        generation.

    stopping_criteria : float, optional (default=0.0)
        The required metric value required in order to stop evolution early.

    const_range : tuple of two floats, or None, optional (default=(-1., 1.))
        The range of constants to include in the formulas. If None then no
        constants will be included in the candidate programs.

    init_depth : tuple of two ints, optional (default=(2, 6))
        The range of tree depths for the initial population of naive formulas.
        Individual trees will randomly choose a maximum depth from this range.
        When combined with `init_method='half and half'` this yields the well-
        known 'ramped half and half' initialization method.

    init_method : str, optional (default='half and half')
        - 'grow' : Nodes are chosen at random from both functions and
          terminals, allowing for smaller trees than `init_depth` allows. Tends
          to grow asymmetrical trees.
        - 'full' : Functions are chosen until the `init_depth` is reached, and
          then terminals are selected. Tends to grow 'bushy' trees.
        - 'half and half' : Trees are grown through a 50/50 mix of 'full' and
          'grow', making for a mix of tree shapes in the initial population.

    function_set : iterable, optional (default=('add', 'sub', 'mul', 'div'))
        The functions to use when building and evolving programs. This iterable
        can include strings to indicate either individual functions as outlined
        below, or you can also include your own functions as built using the
        ``make_function`` factory from the ``functions`` module.

        Available individual functions are:

        - 'add' : addition, arity=2.
        - 'sub' : subtraction, arity=2.
        - 'mul' : multiplication, arity=2.
        - 'div' : protected division where a denominator near-zero returns 1.,
          arity=2.
        - 'sqrt' : protected square root where the absolute value of the
          argument is used, arity=1.
        - 'log' : protected log where the absolute value of the argument is
          used and a near-zero argument returns 0., arity=1.
        - 'abs' : absolute value, arity=1.
        - 'neg' : negative, arity=1.
        - 'inv' : protected inverse where a near-zero argument returns 0.,
          arity=1.
        - 'max' : maximum, arity=2.
        - 'min' : minimum, arity=2.
        - 'sin' : sine (radians), arity=1.
        - 'cos' : cosine (radians), arity=1.
        - 'tan' : tangent (radians), arity=1.

    metric : str, optional (default='mean absolute error')
        The name of the raw fitness metric. Available options include:

        - 'mean absolute error'.
        - 'mse' for mean squared error.
        - 'rmse' for root mean squared error.
        - 'pearson', for Pearson's product-moment correlation coefficient.
        - 'spearman' for Spearman's rank-order correlation coefficient.

        Note that 'pearson' and 'spearman' will not directly predict the target
        but could be useful as value-added features in a second-step estimator.
        This would allow the user to generate one engineered feature at a time,
        using the SymbolicTransformer would allow creation of multiple features
        at once.

    parsimony_coefficient : float or "auto", optional (default=0.001)
        This constant penalizes large programs by adjusting their fitness to
        be less favorable for selection. Larger values penalize the program
        more which can control the phenomenon known as 'bloat'. Bloat is when
        evolution is increasing the size of programs without a significant
        increase in fitness, which is costly for computation time and makes for
        a less understandable final result. This parameter may need to be tuned
        over successive runs.

        If "auto" the parsimony coefficient is recalculated for each generation
        using c = Cov(l,f)/Var( l), where Cov(l,f) is the covariance between
        program size l and program fitness f in the population, and Var(l) is
        the variance of program sizes.

    p_crossover : float, optional (default=0.9)
        The probability of performing crossover on a tournament winner.
        Crossover takes the winner of a tournament and selects a random subtree
        from it to be replaced. A second tournament is performed to find a
        donor. The donor also has a subtree selected at random and this is
        inserted into the original parent to form an offspring in the next
        generation.

    p_subtree_mutation : float, optional (default=0.01)
        The probability of performing subtree mutation on a tournament winner.
        Subtree mutation takes the winner of a tournament and selects a random
        subtree from it to be replaced. A donor subtree is generated at random
        and this is inserted into the original parent to form an offspring in
        the next generation.

    p_hoist_mutation : float, optional (default=0.01)
        The probability of performing hoist mutation on a tournament winner.
        Hoist mutation takes the winner of a tournament and selects a random
        subtree from it. A random subtree of that subtree is then selected
        and this is 'hoisted' into the original subtrees location to form an
        offspring in the next generation. This method helps to control bloat.

    p_point_mutation : float, optional (default=0.01)
        The probability of performing point mutation on a tournament winner.
        Point mutation takes the winner of a tournament and selects random
        nodes from it to be replaced. Terminals are replaced by other terminals
        and functions are replaced by other functions that require the same
        number of arguments as the original node. The resulting tree forms an
        offspring in the next generation.

        Note : The above genetic operation probabilities must sum to less than
        one. The balance of probability is assigned to 'reproduction', where a
        tournament winner is cloned and enters the next generation unmodified.

    p_point_replace : float, optional (default=0.05)
        For point mutation only, the probability that any given node will be
        mutated.

    max_samples : float, optional (default=1.0)
        The fraction of samples to draw from X to evaluate each program on.

    feature_names : list, optional (default=None)
        Optional list of feature names, used purely for representations in
        the `print` operation or `export_graphviz`. If None, then X0, X1, etc
        will be used for representations.

    warm_start : bool, optional (default=False)
        When set to ``True``, reuse the solution of the previous call to fit
        and add more generations to the evolution, otherwise, just fit a new
        evolution.

    low_memory : bool, optional (default=False)
        When set to ``True``, only the current generation is retained. Parent
        information is discarded. For very large populations or runs with many
        generations, this can result in substantial memory use reduction.

    n_jobs : integer, optional (default=1)
        The number of jobs to run in parallel for `fit`. If -1, then the number
        of jobs is set to the number of cores.

    verbose : int, optional (default=0)
        Controls the verbosity of the evolution building process.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Attributes
    ----------
    run_details_ : dict
        Details of the evolution process. Includes the following elements:

        - 'generation' : The generation index.
        - 'average_length' : The average program length of the generation.
        - 'average_fitness' : The average program fitness of the generation.
        - 'best_length' : The length of the best program in the generation.
        - 'best_fitness' : The fitness of the best program in the generation.
        - 'best_oob_fitness' : The out of bag fitness of the best program in
          the generation (requires `max_samples` < 1.0).
        - 'generation_time' : The time it took for the generation to evolve.

    See Also
    --------
    SymbolicTransformer

    References
    ----------
    .. [1] J. Koza, "Genetic Programming", 1992.

    .. [2] R. Poli, et al. "A Field Guide to Genetic Programming", 2008.

    """

    def __init__(self,
                 *,
                 population_size=1000,
                 generations=20,
                 tournament_size=20,
                 stopping_criteria=0.0,
                 const_range=(-1., 1.),
                 init_depth=(2, 6),
                 init_method='half and half',
                 function_set=('add', 'sub', 'mul', 'div'),
                 metric='mean absolute error',
                 parsimony_coefficient=0.001,
                 p_crossover=0.9,
                 p_subtree_mutation=0.01,
                 p_hoist_mutation=0.01,
                 p_point_mutation=0.01,
                 p_point_replace=0.05,
                 max_samples=1.0,
                 feature_names=None,
                 warm_start=False,
                 low_memory=False,
                 n_jobs=1,
                 verbose=0,
                 random_state=None):
        super(SymbolicRegressor, self).__init__(
            population_size=population_size,
            generations=generations,
            tournament_size=tournament_size,
            stopping_criteria=stopping_criteria,
            const_range=const_range,
            init_depth=init_depth,
            init_method=init_method,
            function_set=function_set,
            metric=metric,
            parsimony_coefficient=parsimony_coefficient,
            p_crossover=p_crossover,
            p_subtree_mutation=p_subtree_mutation,
            p_hoist_mutation=p_hoist_mutation,
            p_point_mutation=p_point_mutation,
            p_point_replace=p_point_replace,
            max_samples=max_samples,
            feature_names=feature_names,
            warm_start=warm_start,
            low_memory=low_memory,
            n_jobs=n_jobs,
            verbose=verbose,
            random_state=random_state)

    def __str__(self):
        """Overloads `print` output of the object to resemble a LISP tree."""
        if not hasattr(self, '_program'):
            return self.__repr__()
        return self._program.__str__()

    def predict(self, X):
        """Perform regression on test vectors X.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Input vectors, where n_samples is the number of samples
            and n_features is the number of features.

        Returns
        -------
        y : array, shape = [n_samples]
            Predicted values for X.

        """
        if not hasattr(self, '_program'):
            raise NotFittedError('SymbolicRegressor not fitted.')

        try:
            # scikit-learn >= 1.6
            from sklearn.utils.validation import validate_data

            X = validate_data(self, X, reset=False)
        except ImportError:
            # scikit-learn < 1.6
            X = check_array(X)

        _, n_features = X.shape
        if self.n_features_in_ != n_features:
            raise ValueError('Number of features of the model must match the '
                             'input. Model n_features is %s and input '
                             'n_features is %s.'
                             % (self.n_features_in_, n_features))

        y = self._program.execute(X)

        return y


class SymbolicClassifier(ClassifierMixin, BaseSymbolic):

    """A Genetic Programming symbolic classifier.

    A symbolic classifier is an estimator that begins by building a population
    of naive random formulas to represent a relationship. The formulas are
    represented as tree-like structures with mathematical functions being
    recursively applied to variables and constants. Each successive generation
    of programs is then evolved from the one that came before it by selecting
    the fittest individuals from the population to undergo genetic operations
    such as crossover, mutation or reproduction.

    Parameters
    ----------
    population_size : integer, optional (default=500)
        The number of programs in each generation.

    generations : integer, optional (default=10)
        The number of generations to evolve.

    tournament_size : integer, optional (default=20)
        The number of programs that will compete to become part of the next
        generation.

    stopping_criteria : float, optional (default=0.0)
        The required metric value required in order to stop evolution early.

    const_range : tuple of two floats, or None, optional (default=(-1., 1.))
        The range of constants to include in the formulas. If None then no
        constants will be included in the candidate programs.

    init_depth : tuple of two ints, optional (default=(2, 6))
        The range of tree depths for the initial population of naive formulas.
        Individual trees will randomly choose a maximum depth from this range.
        When combined with `init_method='half and half'` this yields the well-
        known 'ramped half and half' initialization method.

    init_method : str, optional (default='half and half')
        - 'grow' : Nodes are chosen at random from both functions and
          terminals, allowing for smaller trees than `init_depth` allows. Tends
          to grow asymmetrical trees.
        - 'full' : Functions are chosen until the `init_depth` is reached, and
          then terminals are selected. Tends to grow 'bushy' trees.
        - 'half and half' : Trees are grown through a 50/50 mix of 'full' and
          'grow', making for a mix of tree shapes in the initial population.

    function_set : iterable, optional (default=('add', 'sub', 'mul', 'div'))
        The functions to use when building and evolving programs. This iterable
        can include strings to indicate either individual functions as outlined
        below, or you can also include your own functions as built using the
        ``make_function`` factory from the ``functions`` module.

        Available individual functions are:

        - 'add' : addition, arity=2.
        - 'sub' : subtraction, arity=2.
        - 'mul' : multiplication, arity=2.
        - 'div' : protected division where a denominator near-zero returns 1.,
          arity=2.
        - 'sqrt' : protected square root where the absolute value of the
          argument is used, arity=1.
        - 'log' : protected log where the absolute value of the argument is
          used and a near-zero argument returns 0., arity=1.
        - 'abs' : absolute value, arity=1.
        - 'neg' : negative, arity=1.
        - 'inv' : protected inverse where a near-zero argument returns 0.,
          arity=1.
        - 'max' : maximum, arity=2.
        - 'min' : minimum, arity=2.
        - 'sin' : sine (radians), arity=1.
        - 'cos' : cosine (radians), arity=1.
        - 'tan' : tangent (radians), arity=1.

    transformer : str, optional (default='sigmoid')
        The name of the function through which the raw decision function is
        passed. This function will transform the raw decision function into
        probabilities of each class.

        This can also be replaced by your own functions as built using the
        ``make_function`` factory from the ``functions`` module.

    metric : str, optional (default='log loss')
        The name of the raw fitness metric. Available options include:

        - 'log loss' aka binary cross-entropy loss.

    parsimony_coefficient : float or "auto", optional (default=0.001)
        This constant penalizes large programs by adjusting their fitness to
        be less favorable for selection. Larger values penalize the program
        more which can control the phenomenon known as 'bloat'. Bloat is when
        evolution is increasing the size of programs without a significant
        increase in fitness, which is costly for computation time and makes for
        a less understandable final result. This parameter may need to be tuned
        over successive runs.

        If "auto" the parsimony coefficient is recalculated for each generation
        using c = Cov(l,f)/Var( l), where Cov(l,f) is the covariance between
        program size l and program fitness f in the population, and Var(l) is
        the variance of program sizes.

    p_crossover : float, optional (default=0.9)
        The probability of performing crossover on a tournament winner.
        Crossover takes the winner of a tournament and selects a random subtree
        from it to be replaced. A second tournament is performed to find a
        donor. The donor also has a subtree selected at random and this is
        inserted into the original parent to form an offspring in the next
        generation.

    p_subtree_mutation : float, optional (default=0.01)
        The probability of performing subtree mutation on a tournament winner.
        Subtree mutation takes the winner of a tournament and selects a random
        subtree from it to be replaced. A donor subtree is generated at random
        and this is inserted into the original parent to form an offspring in
        the next generation.

    p_hoist_mutation : float, optional (default=0.01)
        The probability of performing hoist mutation on a tournament winner.
        Hoist mutation takes the winner of a tournament and selects a random
        subtree from it. A random subtree of that subtree is then selected
        and this is 'hoisted' into the original subtrees location to form an
        offspring in the next generation. This method helps to control bloat.

    p_point_mutation : float, optional (default=0.01)
        The probability of performing point mutation on a tournament winner.
        Point mutation takes the winner of a tournament and selects random
        nodes from it to be replaced. Terminals are replaced by other terminals
        and functions are replaced by other functions that require the same
        number of arguments as the original node. The resulting tree forms an
        offspring in the next generation.

        Note : The above genetic operation probabilities must sum to less than
        one. The balance of probability is assigned to 'reproduction', where a
        tournament winner is cloned and enters the next generation unmodified.

    p_point_replace : float, optional (default=0.05)
        For point mutation only, the probability that any given node will be
        mutated.

    max_samples : float, optional (default=1.0)
        The fraction of samples to draw from X to evaluate each program on.

    class_weight : dict, 'balanced' or None, optional (default=None)
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

    feature_names : list, optional (default=None)
        Optional list of feature names, used purely for representations in
        the `print` operation or `export_graphviz`. If None, then X0, X1, etc
        will be used for representations.

    warm_start : bool, optional (default=False)
        When set to ``True``, reuse the solution of the previous call to fit
        and add more generations to the evolution, otherwise, just fit a new
        evolution.

    low_memory : bool, optional (default=False)
        When set to ``True``, only the current generation is retained. Parent
        information is discarded. For very large populations or runs with many
        generations, this can result in substantial memory use reduction.

    n_jobs : integer, optional (default=1)
        The number of jobs to run in parallel for `fit`. If -1, then the number
        of jobs is set to the number of cores.

    verbose : int, optional (default=0)
        Controls the verbosity of the evolution building process.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Attributes
    ----------
    run_details_ : dict
        Details of the evolution process. Includes the following elements:

        - 'generation' : The generation index.
        - 'average_length' : The average program length of the generation.
        - 'average_fitness' : The average program fitness of the generation.
        - 'best_length' : The length of the best program in the generation.
        - 'best_fitness' : The fitness of the best program in the generation.
        - 'best_oob_fitness' : The out of bag fitness of the best program in
          the generation (requires `max_samples` < 1.0).
        - 'generation_time' : The time it took for the generation to evolve.

    See Also
    --------
    SymbolicTransformer

    References
    ----------
    .. [1] J. Koza, "Genetic Programming", 1992.

    .. [2] R. Poli, et al. "A Field Guide to Genetic Programming", 2008.

    """

    def __init__(self,
                 *,
                 population_size=1000,
                 generations=20,
                 tournament_size=20,
                 stopping_criteria=0.0,
                 const_range=(-1., 1.),
                 init_depth=(2, 6),
                 init_method='half and half',
                 function_set=('add', 'sub', 'mul', 'div'),
                 transformer='sigmoid',
                 metric='log loss',
                 parsimony_coefficient=0.001,
                 p_crossover=0.9,
                 p_subtree_mutation=0.01,
                 p_hoist_mutation=0.01,
                 p_point_mutation=0.01,
                 p_point_replace=0.05,
                 max_samples=1.0,
                 class_weight=None,
                 feature_names=None,
                 warm_start=False,
                 low_memory=False,
                 n_jobs=1,
                 verbose=0,
                 random_state=None):
        super(SymbolicClassifier, self).__init__(
            population_size=population_size,
            generations=generations,
            tournament_size=tournament_size,
            stopping_criteria=stopping_criteria,
            const_range=const_range,
            init_depth=init_depth,
            init_method=init_method,
            function_set=function_set,
            transformer=transformer,
            metric=metric,
            parsimony_coefficient=parsimony_coefficient,
            p_crossover=p_crossover,
            p_subtree_mutation=p_subtree_mutation,
            p_hoist_mutation=p_hoist_mutation,
            p_point_mutation=p_point_mutation,
            p_point_replace=p_point_replace,
            max_samples=max_samples,
            class_weight=class_weight,
            feature_names=feature_names,
            warm_start=warm_start,
            low_memory=low_memory,
            n_jobs=n_jobs,
            verbose=verbose,
            random_state=random_state)

    def __str__(self):
        """Overloads `print` output of the object to resemble a LISP tree."""
        if not hasattr(self, '_program'):
            return self.__repr__()
        return self._program.__str__()

    def __sklearn_tags__(self):
        tags = super().__sklearn_tags__()
        tags.classifier_tags.multi_class = False
        return tags

    def _more_tags(self):
        return {'binary_only': True}

    def predict_proba(self, X):
        """Predict probabilities on test vectors X.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Input vectors, where n_samples is the number of samples
            and n_features is the number of features.

        Returns
        -------
        proba : array, shape = [n_samples, n_classes]
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute `classes_`.

        """
        if not hasattr(self, '_program'):
            raise NotFittedError('SymbolicClassifier not fitted.')

        try:
            # scikit-learn >= 1.6
            from sklearn.utils.validation import validate_data

            X = validate_data(self, X, reset=False)
        except ImportError:
            # scikit-learn < 1.6
            X = check_array(X)

        _, n_features = X.shape
        if self.n_features_in_ != n_features:
            raise ValueError('Number of features of the model must match the '
                             'input. Model n_features is %s and input '
                             'n_features is %s.'
                             % (self.n_features_in_, n_features))

        scores = self._program.execute(X)
        proba = self._transformer(scores)
        proba = np.vstack([1 - proba, proba]).T
        return proba

    def predict(self, X):
        """Predict classes on test vectors X.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Input vectors, where n_samples is the number of samples
            and n_features is the number of features.

        Returns
        -------
        y : array, shape = [n_samples,]
            The predicted classes of the input samples.

        """
        proba = self.predict_proba(X)
        return self.classes_.take(np.argmax(proba, axis=1), axis=0)


class SymbolicTransformer(TransformerMixin, BaseSymbolic):

    """A Genetic Programming symbolic transformer.

    A symbolic transformer is a supervised transformer that begins by building
    a population of naive random formulas to represent a relationship. The
    formulas are represented as tree-like structures with mathematical
    functions being recursively applied to variables and constants. Each
    successive generation of programs is then evolved from the one that came
    before it by selecting the fittest individuals from the population to
    undergo genetic operations such as crossover, mutation or reproduction.
    The final population is searched for the fittest individuals with the least
    correlation to one another.

    Parameters
    ----------
    population_size : integer, optional (default=1000)
        The number of programs in each generation.

    hall_of_fame : integer, or None, optional (default=100)
        The number of fittest programs to compare from when finding the
        least-correlated individuals for the n_components. If `None`, the
        entire final generation will be used.

    n_components : integer, or None, optional (default=10)
        The number of best programs to return after searching the hall_of_fame
        for the least-correlated individuals. If `None`, the entire
        hall_of_fame will be used.

    generations : integer, optional (default=20)
        The number of generations to evolve.

    tournament_size : integer, optional (default=20)
        The number of programs that will compete to become part of the next
        generation.

    stopping_criteria : float, optional (default=1.0)
        The required metric value required in order to stop evolution early.

    const_range : tuple of two floats, or None, optional (default=(-1., 1.))
        The range of constants to include in the formulas. If None then no
        constants will be included in the candidate programs.

    init_depth : tuple of two ints, optional (default=(2, 6))
        The range of tree depths for the initial population of naive formulas.
        Individual trees will randomly choose a maximum depth from this range.
        When combined with `init_method='half and half'` this yields the well-
        known 'ramped half and half' initialization method.

    init_method : str, optional (default='half and half')
        - 'grow' : Nodes are chosen at random from both functions and
          terminals, allowing for smaller trees than `init_depth` allows. Tends
          to grow asymmetrical trees.
        - 'full' : Functions are chosen until the `init_depth` is reached, and
          then terminals are selected. Tends to grow 'bushy' trees.
        - 'half and half' : Trees are grown through a 50/50 mix of 'full' and
          'grow', making for a mix of tree shapes in the initial population.

    function_set : iterable, optional (default=('add', 'sub', 'mul', 'div'))
        The functions to use when building and evolving programs. This iterable
        can include strings to indicate either individual functions as outlined
        below, or you can also include your own functions as built using the
        ``make_function`` factory from the ``functions`` module.

        Available individual functions are:

        - 'add' : addition, arity=2.
        - 'sub' : subtraction, arity=2.
        - 'mul' : multiplication, arity=2.
        - 'div' : protected division where a denominator near-zero returns 1.,
          arity=2.
        - 'sqrt' : protected square root where the absolute value of the
          argument is used, arity=1.
        - 'log' : protected log where the absolute value of the argument is
          used and a near-zero argument returns 0., arity=1.
        - 'abs' : absolute value, arity=1.
        - 'neg' : negative, arity=1.
        - 'inv' : protected inverse where a near-zero argument returns 0.,
          arity=1.
        - 'max' : maximum, arity=2.
        - 'min' : minimum, arity=2.
        - 'sin' : sine (radians), arity=1.
        - 'cos' : cosine (radians), arity=1.
        - 'tan' : tangent (radians), arity=1.

    metric : str, optional (default='pearson')
        The name of the raw fitness metric. Available options include:

        - 'pearson', for Pearson's product-moment correlation coefficient.
        - 'spearman' for Spearman's rank-order correlation coefficient.

    parsimony_coefficient : float or "auto", optional (default=0.001)
        This constant penalizes large programs by adjusting their fitness to
        be less favorable for selection. Larger values penalize the program
        more which can control the phenomenon known as 'bloat'. Bloat is when
        evolution is increasing the size of programs without a significant
        increase in fitness, which is costly for computation time and makes for
        a less understandable final result. This parameter may need to be tuned
        over successive runs.

        If "auto" the parsimony coefficient is recalculated for each generation
        using c = Cov(l,f)/Var( l), where Cov(l,f) is the covariance between
        program size l and program fitness f in the population, and Var(l) is
        the variance of program sizes.

    p_crossover : float, optional (default=0.9)
        The probability of performing crossover on a tournament winner.
        Crossover takes the winner of a tournament and selects a random subtree
        from it to be replaced. A second tournament is performed to find a
        donor. The donor also has a subtree selected at random and this is
        inserted into the original parent to form an offspring in the next
        generation.

    p_subtree_mutation : float, optional (default=0.01)
        The probability of performing subtree mutation on a tournament winner.
        Subtree mutation takes the winner of a tournament and selects a random
        subtree from it to be replaced. A donor subtree is generated at random
        and this is inserted into the original parent to form an offspring in
        the next generation.

    p_hoist_mutation : float, optional (default=0.01)
        The probability of performing hoist mutation on a tournament winner.
        Hoist mutation takes the winner of a tournament and selects a random
        subtree from it. A random subtree of that subtree is then selected
        and this is 'hoisted' into the original subtrees location to form an
        offspring in the next generation. This method helps to control bloat.

    p_point_mutation : float, optional (default=0.01)
        The probability of performing point mutation on a tournament winner.
        Point mutation takes the winner of a tournament and selects random
        nodes from it to be replaced. Terminals are replaced by other terminals
        and functions are replaced by other functions that require the same
        number of arguments as the original node. The resulting tree forms an
        offspring in the next generation.

        Note : The above genetic operation probabilities must sum to less than
        one. The balance of probability is assigned to 'reproduction', where a
        tournament winner is cloned and enters the next generation unmodified.

    p_point_replace : float, optional (default=0.05)
        For point mutation only, the probability that any given node will be
        mutated.

    max_samples : float, optional (default=1.0)
        The fraction of samples to draw from X to evaluate each program on.

    feature_names : list, optional (default=None)
        Optional list of feature names, used purely for representations in
        the `print` operation or `export_graphviz`. If None, then X0, X1, etc
        will be used for representations.

    warm_start : bool, optional (default=False)
        When set to ``True``, reuse the solution of the previous call to fit
        and add more generations to the evolution, otherwise, just fit a new
        evolution.

    low_memory : bool, optional (default=False)
        When set to ``True``, only the current generation is retained. Parent
        information is discarded. For very large populations or runs with many
        generations, this can result in substantial memory use reduction.

    n_jobs : integer, optional (default=1)
        The number of jobs to run in parallel for `fit`. If -1, then the number
        of jobs is set to the number of cores.

    verbose : int, optional (default=0)
        Controls the verbosity of the evolution building process.

    random_state : int, RandomState instance or None, optional (default=None)
        If int, random_state is the seed used by the random number generator;
        If RandomState instance, random_state is the random number generator;
        If None, the random number generator is the RandomState instance used
        by `np.random`.

    Attributes
    ----------
    run_details_ : dict
        Details of the evolution process. Includes the following elements:

        - 'generation' : The generation index.
        - 'average_length' : The average program length of the generation.
        - 'average_fitness' : The average program fitness of the generation.
        - 'best_length' : The length of the best program in the generation.
        - 'best_fitness' : The fitness of the best program in the generation.
        - 'best_oob_fitness' : The out of bag fitness of the best program in
          the generation (requires `max_samples` < 1.0).
        - 'generation_time' : The time it took for the generation to evolve.

    See Also
    --------
    SymbolicRegressor

    References
    ----------
    .. [1] J. Koza, "Genetic Programming", 1992.

    .. [2] R. Poli, et al. "A Field Guide to Genetic Programming", 2008.

    """

    def __init__(self,
                 *,
                 population_size=1000,
                 hall_of_fame=100,
                 n_components=10,
                 generations=20,
                 tournament_size=20,
                 stopping_criteria=1.0,
                 const_range=(-1., 1.),
                 init_depth=(2, 6),
                 init_method='half and half',
                 function_set=('add', 'sub', 'mul', 'div'),
                 metric='pearson',
                 parsimony_coefficient=0.001,
                 p_crossover=0.9,
                 p_subtree_mutation=0.01,
                 p_hoist_mutation=0.01,
                 p_point_mutation=0.01,
                 p_point_replace=0.05,
                 max_samples=1.0,
                 feature_names=None,
                 warm_start=False,
                 low_memory=False,
                 n_jobs=1,
                 verbose=0,
                 random_state=None):
        super(SymbolicTransformer, self).__init__(
            population_size=population_size,
            hall_of_fame=hall_of_fame,
            n_components=n_components,
            generations=generations,
            tournament_size=tournament_size,
            stopping_criteria=stopping_criteria,
            const_range=const_range,
            init_depth=init_depth,
            init_method=init_method,
            function_set=function_set,
            metric=metric,
            parsimony_coefficient=parsimony_coefficient,
            p_crossover=p_crossover,
            p_subtree_mutation=p_subtree_mutation,
            p_hoist_mutation=p_hoist_mutation,
            p_point_mutation=p_point_mutation,
            p_point_replace=p_point_replace,
            max_samples=max_samples,
            feature_names=feature_names,
            warm_start=warm_start,
            low_memory=low_memory,
            n_jobs=n_jobs,
            verbose=verbose,
            random_state=random_state)

    def __len__(self):
        """Overloads `len` output to be the number of fitted components."""
        if not hasattr(self, '_best_programs'):
            return 0
        return self.n_components

    def __getitem__(self, item):
        """Return the ith item of the fitted components."""
        if item >= len(self):
            raise IndexError
        return self._best_programs[item]

    def __str__(self):
        """Overloads `print` output of the object to resemble LISP trees."""
        if not hasattr(self, '_best_programs'):
            return self.__repr__()
        output = str([gp.__str__() for gp in self])
        return output.replace("',", ",\n").replace("'", "")

    if not _sklearn_version_ge("1.6"):
        def _more_tags(self):
            return {
                "_xfail_checks": {
                    "check_sample_weights_invariance": (
                        "zero sample_weight is not equivalent to removing "
                        "samples"
                    ),
                }
            }

    def transform(self, X):
        """Transform X according to the fitted transformer.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Input vectors, where n_samples is the number of samples
            and n_features is the number of features.

        Returns
        -------
        X_new : array-like, shape = [n_samples, n_components]
            Transformed array.

        """
        if not hasattr(self, '_best_programs'):
            raise NotFittedError('SymbolicTransformer not fitted.')

        try:
            # scikit-learn >= 1.6
            from sklearn.utils.validation import validate_data

            X = validate_data(self, X, reset=False)
        except ImportError:
            # scikit-learn < 1.6
            X = check_array(X)

        _, n_features = X.shape
        if self.n_features_in_ != n_features:
            raise ValueError('Number of features of the model must match the '
                             'input. Model n_features is %s and input '
                             'n_features is %s.'
                             % (self.n_features_in_, n_features))

        X_new = np.array([gp.execute(X) for gp in self._best_programs]).T

        return X_new

    def fit_transform(self, X, y, sample_weight=None):
        """Fit to data, then transform it.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.

        y : array-like, shape = [n_samples]
            Target values.

        sample_weight : array-like, shape = [n_samples], optional
            Weights applied to individual samples.

        Returns
        -------
        X_new : array-like, shape = [n_samples, n_components]
            Transformed array.

        """
        return self.fit(X, y, sample_weight).transform(X)