File: test_examples.py

package info (click to toggle)
python-gplearn 0.4.2-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,308 kB
  • sloc: python: 2,755; makefile: 158
file content (221 lines) | stat: -rw-r--r-- 10,425 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""Testing the examples from the documentation."""

# Author: Trevor Stephens <trevorstephens.com>
#
# License: BSD 3 clause

import numpy as np

from numpy.testing import assert_almost_equal
from sklearn.datasets import load_diabetes, load_breast_cancer
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.linear_model import Ridge
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils.validation import check_random_state

from gplearn.genetic import SymbolicClassifier, SymbolicRegressor
from gplearn.genetic import SymbolicTransformer
from gplearn.functions import make_function


def test_symbolic_regressor():
    """Check that SymbolicRegressor example works"""

    rng = check_random_state(0)
    X_train = rng.uniform(-1, 1, 100).reshape(50, 2)
    y_train = X_train[:, 0] ** 2 - X_train[:, 1] ** 2 + X_train[:, 1] - 1
    X_test = rng.uniform(-1, 1, 100).reshape(50, 2)
    y_test = X_test[:, 0] ** 2 - X_test[:, 1] ** 2 + X_test[:, 1] - 1

    est_gp = SymbolicRegressor(population_size=5000, generations=20,
                               stopping_criteria=0.01, p_crossover=0.7,
                               p_subtree_mutation=0.1, p_hoist_mutation=0.05,
                               p_point_mutation=0.1, max_samples=0.9,
                               parsimony_coefficient=0.01, random_state=0)
    est_gp.fit(X_train, y_train)

    assert(len(est_gp._programs) == 7)
    expected = 'sub(add(-0.999, X1), mul(sub(X1, X0), add(X0, X1)))'
    assert(est_gp.__str__() == expected)
    assert_almost_equal(est_gp.score(X_test, y_test), 0.99999, decimal=5)
    dot_data = est_gp._program.export_graphviz()
    expected = ('digraph program {\nnode [style=filled]\n0 [label="sub", '
                'fillcolor="#136ed4"] ;\n1 [label="add", fillcolor="#136ed4"] '
                ';\n2 [label="-0.999", fillcolor="#60a6f6"] ;\n3 [label="X1", '
                'fillcolor="#60a6f6"] ;\n1 -> 3 ;\n1 -> 2 ;\n4 [label="mul", '
                'fillcolor="#136ed4"] ;\n5 [label="sub", fillcolor="#136ed4"] '
                ';\n6 [label="X1", fillcolor="#60a6f6"] ;\n7 [label="X0", '
                'fillcolor="#60a6f6"] ;\n5 -> 7 ;\n5 -> 6 ;\n8 [label="add", '
                'fillcolor="#136ed4"] ;\n9 [label="X0", fillcolor="#60a6f6"] '
                ';\n10 [label="X1", fillcolor="#60a6f6"] ;\n8 -> 10 ;\n8 -> 9 '
                ';\n4 -> 8 ;\n4 -> 5 ;\n0 -> 4 ;\n0 -> 1 ;\n}')
    assert(dot_data == expected)
    assert(est_gp._program.parents == {'method': 'Crossover',
                                       'parent_idx': 1555,
                                       'parent_nodes': range(1, 4),
                                       'donor_idx': 78,
                                       'donor_nodes': []})
    idx = est_gp._program.parents['donor_idx']
    fade_nodes = est_gp._program.parents['donor_nodes']
    assert(est_gp._programs[-2][idx].__str__() == 'add(-0.999, X1)')
    assert_almost_equal(est_gp._programs[-2][idx].fitness_, 0.351803319075)
    dot_data = est_gp._programs[-2][idx].export_graphviz(fade_nodes=fade_nodes)
    expected = ('digraph program {\nnode [style=filled]\n0 [label="add", '
                'fillcolor="#136ed4"] ;\n1 [label="-0.999", '
                'fillcolor="#60a6f6"] ;\n2 [label="X1", fillcolor="#60a6f6"] '
                ';\n0 -> 2 ;\n0 -> 1 ;\n}')
    assert(dot_data == expected)
    idx = est_gp._program.parents['parent_idx']
    fade_nodes = est_gp._program.parents['parent_nodes']
    expected = 'sub(sub(X1, 0.939), mul(sub(X1, X0), add(X0, X1)))'
    assert(est_gp._programs[-2][idx].__str__() == expected)
    assert_almost_equal(est_gp._programs[-2][idx].fitness_, 0.17080204042)
    dot_data = est_gp._programs[-2][idx].export_graphviz(fade_nodes=fade_nodes)
    expected = ('digraph program {\nnode [style=filled]\n0 [label="sub", '
                'fillcolor="#136ed4"] ;\n1 [label="sub", fillcolor="#cecece"] '
                ';\n2 [label="X1", fillcolor="#cecece"] ;\n3 [label="0.939", '
                'fillcolor="#cecece"] ;\n1 -> 3 ;\n1 -> 2 ;\n4 [label="mul", '
                'fillcolor="#136ed4"] ;\n5 [label="sub", fillcolor="#136ed4"] '
                ';\n6 [label="X1", fillcolor="#60a6f6"] ;\n7 [label="X0", '
                'fillcolor="#60a6f6"] ;\n5 -> 7 ;\n5 -> 6 ;\n8 [label="add", '
                'fillcolor="#136ed4"] ;\n9 [label="X0", fillcolor="#60a6f6"] '
                ';\n10 [label="X1", fillcolor="#60a6f6"] ;\n8 -> 10 ;\n8 -> 9 '
                ';\n4 -> 8 ;\n4 -> 5 ;\n0 -> 4 ;\n0 -> 1 ;\n}')
    assert(dot_data == expected)


def test_symbolic_transformer():
    """Check that SymbolicTransformer example works"""

    rng = check_random_state(0)
    diabetes = load_diabetes()
    perm = rng.permutation(diabetes.target.size)
    diabetes.data = diabetes.data[perm]
    diabetes.target = diabetes.target[perm]

    est = Ridge()
    est.fit(diabetes.data[:300, :], diabetes.target[:300])
    assert_almost_equal(est.score(diabetes.data[300:, :],
                                  diabetes.target[300:]),
                        desired=0.43406, decimal=5)

    function_set = ['add', 'sub', 'mul', 'div', 'sqrt', 'log',
                    'abs', 'neg', 'inv', 'max', 'min']
    gp = SymbolicTransformer(generations=20, population_size=2000,
                             hall_of_fame=100, n_components=10,
                             function_set=function_set,
                             parsimony_coefficient=0.0005,
                             max_samples=0.9,
                             random_state=0)
    gp.fit(diabetes.data[:300, :], diabetes.target[:300])

    gp_features = gp.transform(diabetes.data)
    new_diabetes = np.hstack((diabetes.data, gp_features))

    est = Ridge()
    est.fit(new_diabetes[:300, :], diabetes.target[:300])
    assert_almost_equal(est.score(new_diabetes[300:, :],
                                  diabetes.target[300:]),
                        desired=0.53368, decimal=5)


def test_custom_functions():
    """Test the custom programs example works"""

    rng = check_random_state(0)
    diabetes = load_diabetes()
    perm = rng.permutation(diabetes.target.size)
    diabetes.data = diabetes.data[perm]
    diabetes.target = diabetes.target[perm]

    def logic(x1, x2, x3, x4):
        return np.where(x1 > x2, x3, x4)

    logical = make_function(function=logic,
                            name='logical',
                            arity=4)

    function_set = ['add', 'sub', 'mul', 'div', logical]
    gp = SymbolicTransformer(generations=2, population_size=2000,
                             hall_of_fame=100, n_components=10,
                             function_set=function_set,
                             parsimony_coefficient=0.0005,
                             max_samples=0.9, random_state=0)

    gp.fit(diabetes.data[:300, :], diabetes.target[:300])

    expected = ('add(X3, logical(div(X5, sub(X5, X5)), '
                'add(X9, -0.621), X8, X4))')
    assert(gp._programs[0][3].__str__() == expected)

    dot_data = gp._programs[0][3].export_graphviz()
    expected = ('digraph program {\nnode [style=filled]\n0 [label="add", '
                'fillcolor="#136ed4"] ;\n1 [label="X3", fillcolor="#60a6f6"] ;'
                '\n2 [label="logical", fillcolor="#136ed4"] ;\n3 [label="div",'
                ' fillcolor="#136ed4"] ;\n4 [label="X5", fillcolor="#60a6f6"] '
                ';\n5 [label="sub", fillcolor="#136ed4"] ;\n6 [label="X5", '
                'fillcolor="#60a6f6"] ;\n7 [label="X5", fillcolor="#60a6f6"] '
                ';\n5 -> 7 ;\n5 -> 6 ;\n3 -> 5 ;\n3 -> 4 ;\n8 [label="add", '
                'fillcolor="#136ed4"] ;\n9 [label="X9", fillcolor="#60a6f6"] '
                ';\n10 [label="-0.621", fillcolor="#60a6f6"] ;\n8 -> 10 ;\n8 '
                '-> 9 ;\n11 [label="X8", fillcolor="#60a6f6"] ;\n12 '
                '[label="X4", fillcolor="#60a6f6"] ;\n2 -> 12 ;\n2 -> 11 ;\n2 '
                '-> 8 ;\n2 -> 3 ;\n0 -> 2 ;\n0 -> 1 ;\n}')
    assert(dot_data == expected)


def test_classifier_comparison():
    """Test the classifier comparison example works"""

    X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
                               random_state=1, n_clusters_per_class=1)
    rng = np.random.RandomState(2)
    X += 2 * rng.uniform(size=X.shape)
    linearly_separable = (X, y)
    datasets = [make_moons(noise=0.3, random_state=0),
                make_circles(noise=0.2, factor=0.5, random_state=1),
                linearly_separable]
    scores = []
    for ds in datasets:
        X, y = ds
        X = StandardScaler().fit_transform(X)
        X_train, X_test, y_train, y_test = \
            train_test_split(X, y, test_size=.4, random_state=42)
        clf = SymbolicClassifier(random_state=0)
        clf.fit(X_train, y_train)
        score = clf.score(X_test, y_test)
        scores.append(('%.2f' % score).lstrip('0'))

    assert(scores == ['.95', '.93', '.95'])


def test_symbolic_classifier():
    """Check that SymbolicClassifier example works"""

    rng = check_random_state(0)
    cancer = load_breast_cancer()
    perm = rng.permutation(cancer.target.size)
    cancer.data = cancer.data[perm]
    cancer.target = cancer.target[perm]

    est = SymbolicClassifier(parsimony_coefficient=.01,
                             feature_names=cancer.feature_names,
                             random_state=1)
    est.fit(cancer.data[:400], cancer.target[:400])

    y_true = cancer.target[400:]
    y_score = est.predict_proba(cancer.data[400:])[:, 1]
    assert_almost_equal(roc_auc_score(y_true, y_score), 0.96937869822485212)

    dot_data = est._program.export_graphviz()
    expected = ('digraph program {\nnode [style=filled]\n0 [label="sub", '
                'fillcolor="#136ed4"] ;\n1 [label="div", fillcolor="#136ed4"] '
                ';\n2 [label="worst fractal dimension", fillcolor="#60a6f6"] '
                ';\n3 [label="mean concave points", fillcolor="#60a6f6"] '
                ';\n1 -> 3 ;\n1 -> 2 ;\n4 [label="mul", fillcolor="#136ed4"] '
                ';\n5 [label="mean concave points", fillcolor="#60a6f6"] ;\n6 '
                '[label="area error", fillcolor="#60a6f6"] ;\n4 -> 6 ;\n4 -> '
                '5 ;\n0 -> 4 ;\n0 -> 1 ;\n}')
    assert(dot_data == expected)