1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
"""Testing the examples from the documentation."""
# Author: Trevor Stephens <trevorstephens.com>
#
# License: BSD 3 clause
import numpy as np
from numpy.testing import assert_almost_equal
from sklearn.datasets import load_diabetes, load_breast_cancer
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.linear_model import Ridge
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.utils.validation import check_random_state
from gplearn.genetic import SymbolicClassifier, SymbolicRegressor
from gplearn.genetic import SymbolicTransformer
from gplearn.functions import make_function
def test_symbolic_regressor():
"""Check that SymbolicRegressor example works"""
rng = check_random_state(0)
X_train = rng.uniform(-1, 1, 100).reshape(50, 2)
y_train = X_train[:, 0] ** 2 - X_train[:, 1] ** 2 + X_train[:, 1] - 1
X_test = rng.uniform(-1, 1, 100).reshape(50, 2)
y_test = X_test[:, 0] ** 2 - X_test[:, 1] ** 2 + X_test[:, 1] - 1
est_gp = SymbolicRegressor(population_size=5000, generations=20,
stopping_criteria=0.01, p_crossover=0.7,
p_subtree_mutation=0.1, p_hoist_mutation=0.05,
p_point_mutation=0.1, max_samples=0.9,
parsimony_coefficient=0.01, random_state=0)
est_gp.fit(X_train, y_train)
assert(len(est_gp._programs) == 7)
expected = 'sub(add(-0.999, X1), mul(sub(X1, X0), add(X0, X1)))'
assert(est_gp.__str__() == expected)
assert_almost_equal(est_gp.score(X_test, y_test), 0.99999, decimal=5)
dot_data = est_gp._program.export_graphviz()
expected = ('digraph program {\nnode [style=filled]\n0 [label="sub", '
'fillcolor="#136ed4"] ;\n1 [label="add", fillcolor="#136ed4"] '
';\n2 [label="-0.999", fillcolor="#60a6f6"] ;\n3 [label="X1", '
'fillcolor="#60a6f6"] ;\n1 -> 3 ;\n1 -> 2 ;\n4 [label="mul", '
'fillcolor="#136ed4"] ;\n5 [label="sub", fillcolor="#136ed4"] '
';\n6 [label="X1", fillcolor="#60a6f6"] ;\n7 [label="X0", '
'fillcolor="#60a6f6"] ;\n5 -> 7 ;\n5 -> 6 ;\n8 [label="add", '
'fillcolor="#136ed4"] ;\n9 [label="X0", fillcolor="#60a6f6"] '
';\n10 [label="X1", fillcolor="#60a6f6"] ;\n8 -> 10 ;\n8 -> 9 '
';\n4 -> 8 ;\n4 -> 5 ;\n0 -> 4 ;\n0 -> 1 ;\n}')
assert(dot_data == expected)
assert(est_gp._program.parents == {'method': 'Crossover',
'parent_idx': 1555,
'parent_nodes': range(1, 4),
'donor_idx': 78,
'donor_nodes': []})
idx = est_gp._program.parents['donor_idx']
fade_nodes = est_gp._program.parents['donor_nodes']
assert(est_gp._programs[-2][idx].__str__() == 'add(-0.999, X1)')
assert_almost_equal(est_gp._programs[-2][idx].fitness_, 0.351803319075)
dot_data = est_gp._programs[-2][idx].export_graphviz(fade_nodes=fade_nodes)
expected = ('digraph program {\nnode [style=filled]\n0 [label="add", '
'fillcolor="#136ed4"] ;\n1 [label="-0.999", '
'fillcolor="#60a6f6"] ;\n2 [label="X1", fillcolor="#60a6f6"] '
';\n0 -> 2 ;\n0 -> 1 ;\n}')
assert(dot_data == expected)
idx = est_gp._program.parents['parent_idx']
fade_nodes = est_gp._program.parents['parent_nodes']
expected = 'sub(sub(X1, 0.939), mul(sub(X1, X0), add(X0, X1)))'
assert(est_gp._programs[-2][idx].__str__() == expected)
assert_almost_equal(est_gp._programs[-2][idx].fitness_, 0.17080204042)
dot_data = est_gp._programs[-2][idx].export_graphviz(fade_nodes=fade_nodes)
expected = ('digraph program {\nnode [style=filled]\n0 [label="sub", '
'fillcolor="#136ed4"] ;\n1 [label="sub", fillcolor="#cecece"] '
';\n2 [label="X1", fillcolor="#cecece"] ;\n3 [label="0.939", '
'fillcolor="#cecece"] ;\n1 -> 3 ;\n1 -> 2 ;\n4 [label="mul", '
'fillcolor="#136ed4"] ;\n5 [label="sub", fillcolor="#136ed4"] '
';\n6 [label="X1", fillcolor="#60a6f6"] ;\n7 [label="X0", '
'fillcolor="#60a6f6"] ;\n5 -> 7 ;\n5 -> 6 ;\n8 [label="add", '
'fillcolor="#136ed4"] ;\n9 [label="X0", fillcolor="#60a6f6"] '
';\n10 [label="X1", fillcolor="#60a6f6"] ;\n8 -> 10 ;\n8 -> 9 '
';\n4 -> 8 ;\n4 -> 5 ;\n0 -> 4 ;\n0 -> 1 ;\n}')
assert(dot_data == expected)
def test_symbolic_transformer():
"""Check that SymbolicTransformer example works"""
rng = check_random_state(0)
diabetes = load_diabetes()
perm = rng.permutation(diabetes.target.size)
diabetes.data = diabetes.data[perm]
diabetes.target = diabetes.target[perm]
est = Ridge()
est.fit(diabetes.data[:300, :], diabetes.target[:300])
assert_almost_equal(est.score(diabetes.data[300:, :],
diabetes.target[300:]),
desired=0.43406, decimal=5)
function_set = ['add', 'sub', 'mul', 'div', 'sqrt', 'log',
'abs', 'neg', 'inv', 'max', 'min']
gp = SymbolicTransformer(generations=20, population_size=2000,
hall_of_fame=100, n_components=10,
function_set=function_set,
parsimony_coefficient=0.0005,
max_samples=0.9,
random_state=0)
gp.fit(diabetes.data[:300, :], diabetes.target[:300])
gp_features = gp.transform(diabetes.data)
new_diabetes = np.hstack((diabetes.data, gp_features))
est = Ridge()
est.fit(new_diabetes[:300, :], diabetes.target[:300])
assert_almost_equal(est.score(new_diabetes[300:, :],
diabetes.target[300:]),
desired=0.53368, decimal=5)
def test_custom_functions():
"""Test the custom programs example works"""
rng = check_random_state(0)
diabetes = load_diabetes()
perm = rng.permutation(diabetes.target.size)
diabetes.data = diabetes.data[perm]
diabetes.target = diabetes.target[perm]
def logic(x1, x2, x3, x4):
return np.where(x1 > x2, x3, x4)
logical = make_function(function=logic,
name='logical',
arity=4)
function_set = ['add', 'sub', 'mul', 'div', logical]
gp = SymbolicTransformer(generations=2, population_size=2000,
hall_of_fame=100, n_components=10,
function_set=function_set,
parsimony_coefficient=0.0005,
max_samples=0.9, random_state=0)
gp.fit(diabetes.data[:300, :], diabetes.target[:300])
expected = ('add(X3, logical(div(X5, sub(X5, X5)), '
'add(X9, -0.621), X8, X4))')
assert(gp._programs[0][3].__str__() == expected)
dot_data = gp._programs[0][3].export_graphviz()
expected = ('digraph program {\nnode [style=filled]\n0 [label="add", '
'fillcolor="#136ed4"] ;\n1 [label="X3", fillcolor="#60a6f6"] ;'
'\n2 [label="logical", fillcolor="#136ed4"] ;\n3 [label="div",'
' fillcolor="#136ed4"] ;\n4 [label="X5", fillcolor="#60a6f6"] '
';\n5 [label="sub", fillcolor="#136ed4"] ;\n6 [label="X5", '
'fillcolor="#60a6f6"] ;\n7 [label="X5", fillcolor="#60a6f6"] '
';\n5 -> 7 ;\n5 -> 6 ;\n3 -> 5 ;\n3 -> 4 ;\n8 [label="add", '
'fillcolor="#136ed4"] ;\n9 [label="X9", fillcolor="#60a6f6"] '
';\n10 [label="-0.621", fillcolor="#60a6f6"] ;\n8 -> 10 ;\n8 '
'-> 9 ;\n11 [label="X8", fillcolor="#60a6f6"] ;\n12 '
'[label="X4", fillcolor="#60a6f6"] ;\n2 -> 12 ;\n2 -> 11 ;\n2 '
'-> 8 ;\n2 -> 3 ;\n0 -> 2 ;\n0 -> 1 ;\n}')
assert(dot_data == expected)
def test_classifier_comparison():
"""Test the classifier comparison example works"""
X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)
datasets = [make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable]
scores = []
for ds in datasets:
X, y = ds
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=.4, random_state=42)
clf = SymbolicClassifier(random_state=0)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
scores.append(('%.2f' % score).lstrip('0'))
assert(scores == ['.95', '.93', '.95'])
def test_symbolic_classifier():
"""Check that SymbolicClassifier example works"""
rng = check_random_state(0)
cancer = load_breast_cancer()
perm = rng.permutation(cancer.target.size)
cancer.data = cancer.data[perm]
cancer.target = cancer.target[perm]
est = SymbolicClassifier(parsimony_coefficient=.01,
feature_names=cancer.feature_names,
random_state=1)
est.fit(cancer.data[:400], cancer.target[:400])
y_true = cancer.target[400:]
y_score = est.predict_proba(cancer.data[400:])[:, 1]
assert_almost_equal(roc_auc_score(y_true, y_score), 0.96937869822485212)
dot_data = est._program.export_graphviz()
expected = ('digraph program {\nnode [style=filled]\n0 [label="sub", '
'fillcolor="#136ed4"] ;\n1 [label="div", fillcolor="#136ed4"] '
';\n2 [label="worst fractal dimension", fillcolor="#60a6f6"] '
';\n3 [label="mean concave points", fillcolor="#60a6f6"] '
';\n1 -> 3 ;\n1 -> 2 ;\n4 [label="mul", fillcolor="#136ed4"] '
';\n5 [label="mean concave points", fillcolor="#60a6f6"] ;\n6 '
'[label="area error", fillcolor="#60a6f6"] ;\n4 -> 6 ;\n4 -> '
'5 ;\n0 -> 4 ;\n0 -> 1 ;\n}')
assert(dot_data == expected)
|