File: test_genetic.py

package info (click to toggle)
python-gplearn 0.4.2-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,308 kB
  • sloc: python: 2,755; makefile: 158
file content (1324 lines) | stat: -rw-r--r-- 50,258 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
"""Testing the Genetic Programming module's underlying datastructure
(gplearn.genetic._Program) as well as the classes that use it,
gplearn.genetic.SymbolicRegressor and gplearn.genetic.SymbolicTransformer."""

# Author: Trevor Stephens <trevorstephens.com>
#
# License: BSD 3 clause

import pickle
import sys
from io import StringIO

import numpy as np
import pytest
from numpy.testing import assert_almost_equal
from numpy.testing import assert_array_equal
from numpy.testing import assert_array_almost_equal
from scipy.stats import pearsonr, spearmanr
from sklearn.datasets import load_diabetes, load_breast_cancer
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeRegressor
from sklearn.utils.validation import check_random_state

from gplearn.genetic import SymbolicClassifier, SymbolicRegressor
from gplearn.genetic import SymbolicTransformer
from gplearn.fitness import weighted_pearson, weighted_spearman
from gplearn._program import _Program
from gplearn.fitness import _fitness_map
from gplearn.functions import (add2, sub2, mul2, div2, sqrt1, log1, abs1, max2,
                               min2)
from gplearn.functions import _Function

# load the diabetes dataset and randomly permute it
rng = check_random_state(0)
diabetes = load_diabetes()
perm = rng.permutation(diabetes.target.size)
diabetes.data = diabetes.data[perm]
diabetes.target = diabetes.target[perm]

# load the breast cancer dataset and randomly permute it
rng = check_random_state(0)
cancer = load_breast_cancer()
perm = rng.permutation(cancer.target.size)
cancer.data = cancer.data[perm]
cancer.target = cancer.target[perm]


def test_weighted_correlations():
    """Check weighted Pearson correlation coefficient matches scipy"""

    random_state = check_random_state(415)
    x1 = random_state.uniform(size=500)
    x2 = random_state.uniform(size=500)
    w1 = np.ones(500)
    w2 = random_state.uniform(size=500)

    # Pearson's correlation coefficient
    scipy_pearson = pearsonr(x1, x2)[0]
    # Check with constant weights (should be equal)
    gplearn_pearson = weighted_pearson(x1, x2, w1)
    assert_almost_equal(scipy_pearson, gplearn_pearson)
    # Check with irregular weights (should be different)
    gplearn_pearson = weighted_pearson(x1, x2, w2)
    assert(abs(scipy_pearson - gplearn_pearson) > 0.01)

    # Spearman's correlation coefficient
    scipy_spearman = spearmanr(x1, x2)[0]
    # Check with constant weights (should be equal)
    gplearn_spearman = weighted_spearman(x1, x2, w1)
    assert_almost_equal(scipy_spearman, gplearn_spearman)
    # Check with irregular weights (should be different)
    gplearn_spearman = weighted_pearson(x1, x2, w2)
    assert(abs(scipy_spearman - gplearn_spearman) > 0.01)


def test_program_init_method():
    """Check 'full' creates longer and deeper programs than other methods"""

    params = {'function_set': [add2, sub2, mul2, div2, sqrt1, log1, abs1, max2,
                               min2],
              'arities': {1: [sqrt1, log1, abs1],
                          2: [add2, sub2, mul2, div2, max2, min2]},
              'init_depth': (2, 6),
              'n_features': 10,
              'const_range': (-1.0, 1.0),
              'metric': 'mean absolute error',
              'p_point_replace': 0.05,
              'parsimony_coefficient': 0.1}
    random_state = check_random_state(415)
    programs = []
    for _ in range(20):
        programs.append(_Program(init_method='full',
                                 random_state=random_state, **params))
    full_length = np.mean([gp.length_ for gp in programs])
    full_depth = np.mean([gp.depth_ for gp in programs])
    programs = []
    for _ in range(20):
        programs.append(_Program(init_method='half and half',
                                 random_state=random_state, **params))
    hnh_length = np.mean([gp.length_ for gp in programs])
    hnh_depth = np.mean([gp.depth_ for gp in programs])
    programs = []
    for _ in range(20):
        programs.append(_Program(init_method='grow',
                                 random_state=random_state, **params))
    grow_length = np.mean([gp.length_ for gp in programs])
    grow_depth = np.mean([gp.depth_ for gp in programs])

    assert(full_length > hnh_length)
    assert(hnh_length > grow_length)
    assert(full_depth > hnh_depth)
    assert(hnh_depth > grow_depth)


def test_program_init_depth():
    """Check 'full' creates constant depth programs for single depth limit"""

    params = {'function_set': [add2, sub2, mul2, div2, sqrt1, log1, abs1, max2,
                               min2],
              'arities': {1: [sqrt1, log1, abs1],
                          2: [add2, sub2, mul2, div2, max2, min2]},
              'init_depth': (6, 6),
              'n_features': 10,
              'const_range': (-1.0, 1.0),
              'metric': 'mean absolute error',
              'p_point_replace': 0.05,
              'parsimony_coefficient': 0.1}
    random_state = check_random_state(415)
    programs = []
    for _ in range(20):
        programs.append(_Program(init_method='full',
                                 random_state=random_state, **params))
    full_depth = np.bincount([gp.depth_ for gp in programs])
    programs = []
    for _ in range(20):
        programs.append(_Program(init_method='half and half',
                                 random_state=random_state, **params))
    hnh_depth = np.bincount([gp.depth_ for gp in programs])
    programs = []
    for _ in range(20):
        programs.append(_Program(init_method='grow',
                                 random_state=random_state, **params))
    grow_depth = np.bincount([gp.depth_ for gp in programs])

    assert(full_depth[-1] == 20)
    assert(hnh_depth[-1] != 20)
    assert(grow_depth[-1] != 20)


def test_validate_program():
    """Check that valid programs are accepted & invalid ones raise error"""

    function_set = [add2, sub2, mul2, div2, sqrt1, log1, abs1, max2, min2]
    arities = {1: [sqrt1, log1, abs1],
               2: [add2, sub2, mul2, div2, max2, min2]},
    init_depth = (2, 6)
    init_method = 'half and half'
    n_features = 10
    const_range = (-1.0, 1.0)
    metric = 'mean absolute error'
    p_point_replace = 0.05
    parsimony_coefficient = 0.1

    random_state = check_random_state(415)
    test_gp = [sub2, abs1, sqrt1, log1, log1, sqrt1, 7, abs1, abs1, abs1, log1,
               sqrt1, 2]

    # This one should be fine
    _ = _Program(function_set, arities, init_depth, init_method, n_features,
                 const_range, metric, p_point_replace, parsimony_coefficient,
                 random_state, program=test_gp)

    # Now try a couple that shouldn't be
    with pytest.raises(ValueError):
        _Program(function_set, arities, init_depth,
                 init_method, n_features, const_range, metric,
                 p_point_replace, parsimony_coefficient, random_state,
                 program=test_gp[:-1])
    with pytest.raises(ValueError):
        _Program(function_set, arities, init_depth,
                 init_method, n_features, const_range, metric,
                 p_point_replace, parsimony_coefficient, random_state,
                 program=test_gp + [1])


def test_print_overloading():
    """Check that printing a program object results in 'pretty' output"""

    params = {'function_set': [add2, sub2, mul2, div2],
              'arities': {2: [add2, sub2, mul2, div2]},
              'init_depth': (2, 6),
              'init_method': 'half and half',
              'n_features': 10,
              'const_range': (-1.0, 1.0),
              'metric': 'mean absolute error',
              'p_point_replace': 0.05,
              'parsimony_coefficient': 0.1}
    random_state = check_random_state(415)

    test_gp = [mul2, div2, 8, 1, sub2, 9, .5]

    gp = _Program(random_state=random_state, program=test_gp, **params)

    orig_stdout = sys.stdout
    try:
        out = StringIO()
        sys.stdout = out
        print(gp)
        output = out.getvalue().strip()
    finally:
        sys.stdout = orig_stdout

    lisp = "mul(div(X8, X1), sub(X9, 0.500))"
    assert(output == lisp)

    # Test with feature names
    params['feature_names'] = [str(n) for n in range(10)]
    gp = _Program(random_state=random_state, program=test_gp, **params)

    orig_stdout = sys.stdout
    try:
        out = StringIO()
        sys.stdout = out
        print(gp)
        output = out.getvalue().strip()
    finally:
        sys.stdout = orig_stdout

    lisp = "mul(div(8, 1), sub(9, 0.500))"
    assert(output == lisp)


def test_export_graphviz():
    """Check output of a simple program to Graphviz"""

    params = {'function_set': [add2, sub2, mul2, div2],
              'arities': {2: [add2, sub2, mul2, div2]},
              'init_depth': (2, 6),
              'init_method': 'half and half',
              'n_features': 10,
              'const_range': (-1.0, 1.0),
              'metric': 'mean absolute error',
              'p_point_replace': 0.05,
              'parsimony_coefficient': 0.1}
    random_state = check_random_state(415)

    # Test for a small program
    test_gp = [mul2, div2, 8, 1, sub2, 9, .5]
    gp = _Program(random_state=random_state, program=test_gp, **params)
    output = gp.export_graphviz()
    tree = 'digraph program {\n' \
           'node [style=filled]\n' \
           '0 [label="mul", fillcolor="#136ed4"] ;\n' \
           '1 [label="div", fillcolor="#136ed4"] ;\n' \
           '2 [label="X8", fillcolor="#60a6f6"] ;\n' \
           '3 [label="X1", fillcolor="#60a6f6"] ;\n' \
           '1 -> 3 ;\n1 -> 2 ;\n' \
           '4 [label="sub", fillcolor="#136ed4"] ;\n' \
           '5 [label="X9", fillcolor="#60a6f6"] ;\n' \
           '6 [label="0.500", fillcolor="#60a6f6"] ;\n' \
           '4 -> 6 ;\n4 -> 5 ;\n0 -> 4 ;\n0 -> 1 ;\n}'
    assert(output == tree)

    # Test with feature names
    params['feature_names'] = [str(n) for n in range(10)]
    gp = _Program(random_state=random_state, program=test_gp, **params)
    output = gp.export_graphviz()
    tree = tree.replace('X', '')
    assert(output == tree)

    # Test with fade_nodes
    params['feature_names'] = None
    gp = _Program(random_state=random_state, program=test_gp, **params)
    output = gp.export_graphviz(fade_nodes=[0, 1, 2, 3])
    tree = 'digraph program {\n' \
           'node [style=filled]\n' \
           '0 [label="mul", fillcolor="#cecece"] ;\n' \
           '1 [label="div", fillcolor="#cecece"] ;\n' \
           '2 [label="X8", fillcolor="#cecece"] ;\n' \
           '3 [label="X1", fillcolor="#cecece"] ;\n' \
           '1 -> 3 ;\n1 -> 2 ;\n' \
           '4 [label="sub", fillcolor="#136ed4"] ;\n' \
           '5 [label="X9", fillcolor="#60a6f6"] ;\n' \
           '6 [label="0.500", fillcolor="#60a6f6"] ;\n' \
           '4 -> 6 ;\n4 -> 5 ;\n0 -> 4 ;\n0 -> 1 ;\n}'
    assert(output == tree)

    # Test a degenerative single-node program
    test_gp = [1]
    gp = _Program(random_state=random_state, program=test_gp, **params)
    output = gp.export_graphviz()
    tree = 'digraph program {\n' \
           'node [style=filled]\n' \
           '0 [label="X1", fillcolor="#60a6f6"] ;\n}'
    assert(output == tree)


def test_invalid_feature_names():
    """Check invalid feature names raise errors"""

    for Symbolic in (SymbolicRegressor, SymbolicTransformer):

        # Check invalid length feature_names
        est = Symbolic(feature_names=['foo', 'bar'])
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)

        # Check invalid type feature_name
        feature_names = [str(n) for n in range(12)] + [0]
        est = Symbolic(feature_names=feature_names)
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)


def test_execute():
    """Check executing the program works"""

    params = {'function_set': [add2, sub2, mul2, div2],
              'arities': {2: [add2, sub2, mul2, div2]},
              'init_depth': (2, 6),
              'init_method': 'half and half',
              'n_features': 10,
              'const_range': (-1.0, 1.0),
              'metric': 'mean absolute error',
              'p_point_replace': 0.05,
              'parsimony_coefficient': 0.1}
    random_state = check_random_state(415)

    # Test for a small program
    test_gp = [mul2, div2, 8, 1, sub2, 9, .5]
    X = np.reshape(random_state.uniform(size=50), (5, 10))
    gp = _Program(random_state=random_state, program=test_gp, **params)
    result = gp.execute(X)
    expected = [-0.19656208, 0.78197782, -1.70123845, -0.60175969, -0.01082618]
    assert_array_almost_equal(result, expected)


def test_all_metrics():
    """Check all supported metrics work"""

    params = {'function_set': [add2, sub2, mul2, div2],
              'arities': {2: [add2, sub2, mul2, div2]},
              'init_depth': (2, 6),
              'init_method': 'half and half',
              'n_features': 10,
              'const_range': (-1.0, 1.0),
              'metric': 'mean absolute error',
              'p_point_replace': 0.05,
              'parsimony_coefficient': 0.1}
    random_state = check_random_state(415)

    # Test for a small program
    test_gp = [mul2, div2, 8, 1, sub2, 9, .5]
    gp = _Program(random_state=random_state, program=test_gp, **params)
    X = np.reshape(random_state.uniform(size=50), (5, 10))
    y = random_state.uniform(size=5)
    sample_weight = np.ones(5)
    expected = [1.48719809776, 1.82389179833, 1.76013763179, -0.2928200724,
                -0.5]
    result = []
    for m in ['mean absolute error', 'mse', 'rmse', 'pearson', 'spearman']:
        gp.metric = _fitness_map[m]
        gp.raw_fitness_ = gp.raw_fitness(X, y, sample_weight)
        result.append(gp.fitness())
    assert_array_almost_equal(result, expected)


def test_get_subtree():
    """Check that get subtree does the same thing for self and new programs"""

    params = {'function_set': [add2, sub2, mul2, div2],
              'arities': {2: [add2, sub2, mul2, div2]},
              'init_depth': (2, 6),
              'init_method': 'half and half',
              'n_features': 10,
              'const_range': (-1.0, 1.0),
              'metric': 'mean absolute error',
              'p_point_replace': 0.05,
              'parsimony_coefficient': 0.1}
    random_state = check_random_state(415)

    # Test for a small program
    test_gp = [mul2, div2, 8, 1, sub2, 9, .5]
    gp = _Program(random_state=random_state, program=test_gp, **params)

    self_test = gp.get_subtree(check_random_state(0))
    external_test = gp.get_subtree(check_random_state(0), test_gp)

    assert(self_test == external_test)


def test_genetic_operations():
    """Check all genetic operations are stable and don't change programs"""

    params = {'function_set': [add2, sub2, mul2, div2],
              'arities': {2: [add2, sub2, mul2, div2]},
              'init_depth': (2, 6),
              'init_method': 'half and half',
              'n_features': 10,
              'const_range': (-1.0, 1.0),
              'metric': 'mean absolute error',
              'p_point_replace': 0.05,
              'parsimony_coefficient': 0.1}
    random_state = check_random_state(415)

    # Test for a small program
    test_gp = [mul2, div2, 8, 1, sub2, 9, .5]
    donor = [add2, 0.1, sub2, 2, 7]

    gp = _Program(random_state=random_state, program=test_gp, **params)

    expected = ['mul', 'div', 8, 1, 'sub', 9, 0.5]
    assert([f.name if isinstance(f, _Function) else f
            for f in gp.reproduce()] == expected)
    assert(gp.program == test_gp)
    assert([f.name if isinstance(f, _Function) else f
            for f in gp.crossover(donor, random_state)[0]] == ['sub', 2, 7])
    assert(gp.program == test_gp)
    expected = ['mul', 'div', 8, 1, 'sub', 'sub', 3, 5, 'add', 6, 3]
    assert([f.name if isinstance(f, _Function) else f
            for f in gp.subtree_mutation(random_state)[0]] == expected)
    assert(gp.program == test_gp)
    assert([f.name if isinstance(f, _Function) else f
            for f in gp.hoist_mutation(random_state)[0]] == ['div', 8, 1])
    assert(gp.program == test_gp)
    expected = ['mul', 'div', 8, 1, 'sub', 9, 0.5]
    assert([f.name if isinstance(f, _Function) else f
            for f in gp.point_mutation(random_state)[0]] == expected)
    assert(gp.program == test_gp)


def test_input_validation():
    """Check that guarded input validation raises errors"""

    for Symbolic in (SymbolicRegressor, SymbolicTransformer):
        # Check too much proba
        est = Symbolic(p_point_mutation=.5)
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)

        # Check invalid init_method
        est = Symbolic(init_method='ni')
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)

        # Check invalid const_ranges
        est = Symbolic(const_range=2)
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)
        est = Symbolic(const_range=[2, 2])
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)
        est = Symbolic(const_range=(2, 2, 2))
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)
        est = Symbolic(const_range='ni')
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)
        # And check acceptable, but strange, representations of const_range
        est = Symbolic(population_size=100, generations=1, const_range=(2, 2))
        est.fit(diabetes.data, diabetes.target)
        est = Symbolic(population_size=100, generations=1, const_range=None)
        est.fit(diabetes.data, diabetes.target)
        est = Symbolic(population_size=100, generations=1, const_range=(4, 2))
        est.fit(diabetes.data, diabetes.target)

        # Check invalid init_depth
        est = Symbolic(init_depth=2)
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)
        est = Symbolic(init_depth=2)
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)
        est = Symbolic(init_depth=[2, 2])
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)
        est = Symbolic(init_depth=(2, 2, 2))
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)
        est = Symbolic(init_depth='ni')
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)
        est = Symbolic(init_depth=(4, 2))
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)
        # And check acceptable, but strange, representations of init_depth
        est = Symbolic(population_size=100, generations=1, init_depth=(2, 2))
        est.fit(diabetes.data, diabetes.target)

    # Check hall_of_fame and n_components for transformer
    est = SymbolicTransformer(hall_of_fame=2000)
    with pytest.raises(ValueError):
        est.fit(diabetes.data, diabetes.target)
    est = SymbolicTransformer(n_components=2000)
    with pytest.raises(ValueError):
        est.fit(diabetes.data, diabetes.target)
    est = SymbolicTransformer(hall_of_fame=0)
    with pytest.raises(ValueError):
        est.fit(diabetes.data, diabetes.target)
    est = SymbolicTransformer(n_components=0)
    with pytest.raises(ValueError):
        est.fit(diabetes.data, diabetes.target)

    # Check regressor metrics
    for m in ['mean absolute error', 'mse', 'rmse', 'pearson', 'spearman']:
        est = SymbolicRegressor(population_size=100, generations=1, metric=m)
        est.fit(diabetes.data, diabetes.target)
    # And check a fake one
    est = SymbolicRegressor(metric='the larch')
    with pytest.raises(ValueError):
        est.fit(diabetes.data, diabetes.target)
    # Check transformer metrics
    for m in ['pearson', 'spearman']:
        est = SymbolicTransformer(population_size=100, generations=1, metric=m)
        est.fit(diabetes.data, diabetes.target)
    # And check the regressor metrics as well as a fake one
    for m in ['mean absolute error', 'mse', 'rmse', 'the larch']:
        est = SymbolicTransformer(metric=m)
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)


def test_input_validation_classifier():
    """Check that guarded input validation raises errors"""

    # Check too much proba
    est = SymbolicClassifier(p_point_mutation=.5)
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)

    # Check invalid init_method
    est = SymbolicClassifier(init_method='ni')
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)

    # Check invalid const_ranges
    est = SymbolicClassifier(const_range=2)
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)
    est = SymbolicClassifier(const_range=[2, 2])
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)
    est = SymbolicClassifier(const_range=(2, 2, 2))
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)
    est = SymbolicClassifier(const_range='ni')
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)
    # And check acceptable, but strange, representations of const_range
    est = SymbolicClassifier(population_size=100, generations=1,
                             const_range=(2, 2))
    est.fit(cancer.data, cancer.target)
    est = SymbolicClassifier(population_size=100, generations=1,
                             const_range=None)
    est.fit(cancer.data, cancer.target)
    est = SymbolicClassifier(population_size=100, generations=1,
                             const_range=(4, 2))
    est.fit(cancer.data, cancer.target)

    # Check invalid init_depth
    est = SymbolicClassifier(init_depth=2)
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)
    est = SymbolicClassifier(init_depth=2)
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)
    est = SymbolicClassifier(init_depth=[2, 2])
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)
    est = SymbolicClassifier(init_depth=(2, 2, 2))
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)
    est = SymbolicClassifier(init_depth='ni')
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)
    est = SymbolicClassifier(init_depth=(4, 2))
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)
    # And check acceptable, but strange, representations of init_depth
    est = SymbolicClassifier(population_size=100, generations=1,
                             init_depth=(2, 2))
    est.fit(cancer.data, cancer.target)

    # Check classifier metrics
    for m in ['log loss']:
        est = SymbolicClassifier(population_size=100, generations=1, metric=m)
        est.fit(cancer.data, cancer.target)
    # And check a fake one
    est = SymbolicClassifier(metric='the larch')
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)

    # Check classifier transformers
    for t in ['sigmoid']:
        est = SymbolicClassifier(population_size=100, generations=1,
                                 transformer=t)
        est.fit(cancer.data, cancer.target)
    # And check an incompatible one with wrong arity
    est = SymbolicClassifier(transformer=sub2)
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)
    # And check a fake one
    est = SymbolicClassifier(transformer='the larch')
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)


def test_none_const_range():
    """Check that const_range=None produces no constants"""

    # Check with None as const_range
    est = SymbolicRegressor(population_size=100, generations=2,
                            const_range=None)
    est.fit(diabetes.data, diabetes.target)
    float_count = 0
    for generation in est._programs:
        for program in generation:
            if program is None:
                continue
            for element in program.program:
                if isinstance(element, float):
                    float_count += 1
    assert(float_count == 0)

    # Check with default const_range
    est = SymbolicRegressor(population_size=100, generations=2)
    est.fit(diabetes.data, diabetes.target)
    float_count = 0
    for generation in est._programs:
        for program in generation:
            if program is None:
                continue
            for element in program.program:
                if isinstance(element, float):
                    float_count += 1
    assert(float_count > 1)


def test_sample_weight_and_class_weight():
    """Check sample_weight param works"""

    # Check constant sample_weight has no effect
    sample_weight = np.ones(diabetes.target.shape[0])
    est1 = SymbolicRegressor(population_size=100, generations=2,
                             random_state=0)
    est1.fit(diabetes.data, diabetes.target)
    est2 = SymbolicRegressor(population_size=100, generations=2,
                             random_state=0)
    est2.fit(diabetes.data, diabetes.target, sample_weight=sample_weight)
    # And again with a scaled sample_weight
    est3 = SymbolicRegressor(population_size=100, generations=2,
                             random_state=0)
    est3.fit(diabetes.data, diabetes.target, sample_weight=sample_weight * 1.1)

    assert_almost_equal(est1._program.fitness_, est2._program.fitness_)
    assert_almost_equal(est1._program.fitness_, est3._program.fitness_)

    # And again for the classifier
    sample_weight = np.ones(cancer.target.shape[0])
    est1 = SymbolicClassifier(population_size=100, generations=2,
                              random_state=0)
    est1.fit(cancer.data, cancer.target)
    est2 = SymbolicClassifier(population_size=100, generations=2,
                              random_state=0)
    est2.fit(cancer.data, cancer.target, sample_weight=sample_weight)
    # And again with a scaled sample_weight
    est3 = SymbolicClassifier(population_size=100, generations=2,
                              random_state=0)
    est3.fit(cancer.data, cancer.target, sample_weight=sample_weight * 1.1)
    # And then using class weight to do the same thing
    est4 = SymbolicClassifier(class_weight={0: 1, 1: 1}, population_size=100,
                              generations=2, random_state=0)
    est4.fit(cancer.data, cancer.target)
    est5 = SymbolicClassifier(class_weight={0: 1.1, 1: 1.1},
                              population_size=100, generations=2,
                              random_state=0)
    est5.fit(cancer.data, cancer.target)

    assert_almost_equal(est1._program.fitness_, est2._program.fitness_)
    assert_almost_equal(est1._program.fitness_, est3._program.fitness_)
    assert_almost_equal(est1._program.fitness_, est4._program.fitness_)
    assert_almost_equal(est1._program.fitness_, est5._program.fitness_)

    # And again for the transformer
    sample_weight = np.ones(diabetes.target.shape[0])
    est1 = SymbolicTransformer(population_size=100, generations=2,
                               random_state=0)
    est1 = est1.fit_transform(diabetes.data, diabetes.target)
    est2 = SymbolicTransformer(population_size=100, generations=2,
                               random_state=0)
    est2 = est2.fit_transform(diabetes.data, diabetes.target,
                              sample_weight=sample_weight)

    assert_array_almost_equal(est1, est2)


def test_trigonometric():
    """Check that using trig functions work and that results differ"""

    est1 = SymbolicRegressor(population_size=100, generations=2,
                             random_state=0)
    est1.fit(diabetes.data[:400, :], diabetes.target[:400])
    est1 = mean_absolute_error(est1.predict(diabetes.data[400:, :]),
                               diabetes.target[400:])

    est2 = SymbolicRegressor(population_size=100, generations=2,
                             function_set=['add', 'sub', 'mul', 'div',
                                           'sin', 'cos', 'tan'],
                             random_state=0)
    est2.fit(diabetes.data[:400, :], diabetes.target[:400])
    est2 = mean_absolute_error(est2.predict(diabetes.data[400:, :]),
                               diabetes.target[400:])

    assert(abs(est1 - est2) > 0.01)


def test_subsample():
    """Check that subsample work and that results differ"""

    est1 = SymbolicRegressor(population_size=100, generations=2,
                             max_samples=1.0, random_state=0)
    est1.fit(diabetes.data[:400, :], diabetes.target[:400])
    est1 = mean_absolute_error(est1.predict(diabetes.data[400:, :]),
                               diabetes.target[400:])

    est2 = SymbolicRegressor(population_size=100, generations=2,
                             max_samples=0.1, random_state=0)
    est2.fit(diabetes.data[:400, :], diabetes.target[:400])
    est2 = mean_absolute_error(est2.predict(diabetes.data[400:, :]),
                               diabetes.target[400:])

    assert(abs(est1 - est2) > 0.01)


def test_parsimony_coefficient():
    """Check that parsimony coefficients work and that results differ"""

    est1 = SymbolicRegressor(population_size=100, generations=2,
                             parsimony_coefficient=0.001, random_state=0)
    est1.fit(diabetes.data[:400, :], diabetes.target[:400])
    est1 = mean_absolute_error(est1.predict(diabetes.data[400:, :]),
                               diabetes.target[400:])

    est2 = SymbolicRegressor(population_size=100, generations=2,
                             parsimony_coefficient='auto', random_state=0)
    est2.fit(diabetes.data[:400, :], diabetes.target[:400])
    est2 = mean_absolute_error(est2.predict(diabetes.data[400:, :]),
                               diabetes.target[400:])

    assert(abs(est1 - est2) > 0.01)


def test_early_stopping():
    """Check that early stopping works"""

    est1 = SymbolicRegressor(population_size=100, generations=2,
                             stopping_criteria=200, random_state=0)
    est1.fit(diabetes.data[:400, :], diabetes.target[:400])
    assert(len(est1._programs) == 1)

    est1 = SymbolicTransformer(population_size=100, generations=2,
                               stopping_criteria=100, random_state=0)
    est1.fit(cancer.data[:400, :], cancer.target[:400])
    assert(len(est1._programs) == 2)


def test_verbose_output():
    """Check verbose=1 does not cause error"""

    old_stdout = sys.stdout
    sys.stdout = StringIO()
    est = SymbolicRegressor(population_size=100, generations=10,
                            random_state=0, verbose=1)
    est.fit(diabetes.data, diabetes.target)
    verbose_output = sys.stdout
    sys.stdout = old_stdout

    # check output
    verbose_output.seek(0)
    header1 = verbose_output.readline().rstrip()
    true_header = '    |{:^25}|{:^42}|'.format('Population Average',
                                               'Best Individual')
    assert(true_header == header1)

    header2 = verbose_output.readline().rstrip()
    true_header = '-' * 4 + ' ' + '-' * 25 + ' ' + '-' * 42 + ' ' + '-' * 10
    assert(true_header == header2)

    header3 = verbose_output.readline().rstrip()

    line_format = '{:>4} {:>8} {:>16} {:>8} {:>16} {:>16} {:>10}'
    true_header = line_format.format('Gen', 'Length', 'Fitness', 'Length',
                                     'Fitness', 'OOB Fitness', 'Time Left')
    assert(true_header == header3)

    n_lines = sum(1 for l in verbose_output.readlines())
    assert(10 == n_lines)


def test_verbose_with_oob():
    """Check oob scoring for subsample does not cause error"""

    old_stdout = sys.stdout
    sys.stdout = StringIO()
    est = SymbolicRegressor(population_size=100, generations=10,
                            max_samples=0.9, random_state=0, verbose=1)
    est.fit(diabetes.data, diabetes.target)
    verbose_output = sys.stdout
    sys.stdout = old_stdout

    # check output
    verbose_output.seek(0)
    # Ignore header rows
    _ = verbose_output.readline().rstrip()
    _ = verbose_output.readline().rstrip()
    _ = verbose_output.readline().rstrip()

    n_lines = sum(1 for l in verbose_output.readlines())
    assert(10 == n_lines)


def test_more_verbose_output():
    """Check verbose=2 does not cause error"""

    old_stdout = sys.stdout
    old_stderr = sys.stderr
    sys.stdout = StringIO()
    sys.stderr = StringIO()
    est = SymbolicRegressor(population_size=100, generations=10,
                            random_state=0, verbose=2)
    est.fit(diabetes.data, diabetes.target)
    verbose_output = sys.stdout
    joblib_output = sys.stderr
    sys.stdout = old_stdout
    sys.stderr = old_stderr

    # check output
    verbose_output.seek(0)
    # Ignore header rows
    _ = verbose_output.readline().rstrip()
    _ = verbose_output.readline().rstrip()
    _ = verbose_output.readline().rstrip()

    n_lines = sum(1 for l in verbose_output.readlines())
    assert(10 == n_lines)

    joblib_output.seek(0)
    n_lines = sum(1 for l in joblib_output.readlines())
    # New version of joblib appears to output sys.stderr
    assert(0 == n_lines % 10)


def test_parallel_train():
    """Check predictions are the same for different n_jobs"""

    # Check the regressor
    ests = [
        SymbolicRegressor(population_size=100, generations=4, n_jobs=n_jobs,
                          random_state=0).fit(diabetes.data[:100, :],
                                              diabetes.target[:100])
        for n_jobs in [1, 2, 3, 8, 16]
    ]

    preds = [e.predict(diabetes.data[400:, :]) for e in ests]
    for pred1, pred2 in zip(preds, preds[1:]):
        assert_array_almost_equal(pred1, pred2)
    lengths = np.array([[gp.length_ for gp in e._programs[-1]] for e in ests])
    for len1, len2 in zip(lengths, lengths[1:]):
        assert_array_almost_equal(len1, len2)

    # Check the transformer
    ests = [
        SymbolicTransformer(population_size=100, hall_of_fame=50,
                            generations=4, n_jobs=n_jobs,
                            random_state=0).fit(diabetes.data[:100, :],
                                                diabetes.target[:100])
        for n_jobs in [1, 2, 3, 8, 16]
    ]

    preds = [e.transform(diabetes.data[400:, :]) for e in ests]
    for pred1, pred2 in zip(preds, preds[1:]):
        assert_array_almost_equal(pred1, pred2)
    lengths = np.array([[gp.length_ for gp in e._programs[-1]] for e in ests])
    for len1, len2 in zip(lengths, lengths[1:]):
        assert_array_almost_equal(len1, len2)

    # Check the classifier
    ests = [
        SymbolicClassifier(population_size=100, generations=4, n_jobs=n_jobs,
                           random_state=0).fit(cancer.data[:100, :],
                                               cancer.target[:100])
        for n_jobs in [1, 2, 3, 8, 16]
    ]

    preds = [e.predict(cancer.data[400:, :]) for e in ests]
    for pred1, pred2 in zip(preds, preds[1:]):
        assert_array_almost_equal(pred1, pred2)
    lengths = np.array([[gp.length_ for gp in e._programs[-1]] for e in ests])
    for len1, len2 in zip(lengths, lengths[1:]):
        assert_array_almost_equal(len1, len2)


def test_pickle():
    """Check pickability"""

    # Check the regressor
    est = SymbolicRegressor(population_size=100, generations=2,
                            random_state=0)
    est.fit(diabetes.data[:100, :], diabetes.target[:100])
    score = est.score(diabetes.data[400:, :], diabetes.target[400:])
    pickle_object = pickle.dumps(est)

    est2 = pickle.loads(pickle_object)
    assert(type(est2) == est.__class__)
    score2 = est2.score(diabetes.data[400:, :], diabetes.target[400:])
    assert(score == score2)

    # Check the transformer
    est = SymbolicTransformer(population_size=100, generations=2,
                              random_state=0)
    est.fit(diabetes.data[:100, :], diabetes.target[:100])
    X_new = est.transform(diabetes.data[400:, :])
    pickle_object = pickle.dumps(est)

    est2 = pickle.loads(pickle_object)
    assert(type(est2) == est.__class__)
    X_new2 = est2.transform(diabetes.data[400:, :])
    assert_array_almost_equal(X_new, X_new2)

    # Check the classifier
    est = SymbolicClassifier(population_size=100, generations=2,
                             random_state=0)
    est.fit(cancer.data[:100, :], cancer.target[:100])
    score = est.score(cancer.data[500:, :], cancer.target[500:])
    pickle_object = pickle.dumps(est)

    est2 = pickle.loads(pickle_object)
    assert(type(est2) == est.__class__)
    score2 = est2.score(cancer.data[500:, :], cancer.target[500:])
    assert(score == score2)


def test_output_shape():
    """Check output shape is as expected"""

    random_state = check_random_state(415)
    X = np.reshape(random_state.uniform(size=50), (5, 10))
    y = random_state.uniform(size=5)

    # Check the transformer
    est = SymbolicTransformer(population_size=100, generations=2,
                              n_components=5, random_state=0)
    est.fit(X, y)
    assert(est.transform(X).shape == (5, 5))


def test_gridsearch():
    """Check that SymbolicRegressor can be grid-searched"""

    # Grid search parsimony_coefficient
    parameters = {'parsimony_coefficient': [0.001, 0.1, 'auto']}
    clf = SymbolicRegressor(population_size=50, generations=5,
                            tournament_size=5, random_state=0)
    grid = GridSearchCV(clf, parameters, cv=3,
                        scoring='neg_mean_absolute_error')
    grid.fit(diabetes.data, diabetes.target)
    expected = {'parsimony_coefficient': 0.001}
    assert(grid.best_params_ == expected)


def test_pipeline():
    """Check that SymbolicRegressor/Transformer can work in a pipeline"""

    # Check the regressor
    est = make_pipeline(StandardScaler(),
                        SymbolicRegressor(population_size=50,
                                          generations=10,
                                          tournament_size=5,
                                          random_state=0))
    est.fit(diabetes.data, diabetes.target)
    assert_almost_equal(est.score(diabetes.data, diabetes.target),
                        -3.702070228336284, decimal=5)

    # Check the classifier
    est = make_pipeline(StandardScaler(),
                        SymbolicClassifier(population_size=50,
                                           generations=5,
                                           tournament_size=5,
                                           random_state=0))
    est.fit(cancer.data, cancer.target)
    assert_almost_equal(est.score(cancer.data, cancer.target), 0.934973637961)

    # Check the transformer
    est = make_pipeline(SymbolicTransformer(population_size=50,
                                            hall_of_fame=20,
                                            generations=5,
                                            tournament_size=5,
                                            random_state=0),
                        DecisionTreeRegressor())
    est.fit(diabetes.data, diabetes.target)
    assert_almost_equal(est.score(diabetes.data, diabetes.target), 1.0)


def test_transformer_iterable():
    """Check that the transformer is iterable"""

    random_state = check_random_state(415)
    X = np.reshape(random_state.uniform(size=50), (5, 10))
    y = random_state.uniform(size=5)
    function_set = ['add', 'sub', 'mul', 'div', 'sqrt', 'log', 'abs', 'neg',
                    'inv', 'max', 'min']
    est = SymbolicTransformer(population_size=500, generations=2,
                              function_set=function_set, random_state=0)

    # Check unfitted
    unfitted_len = len(est)
    unfitted_iter = [gp.length_ for gp in est]
    expected_iter = []

    assert(unfitted_len == 0)
    assert(unfitted_iter == expected_iter)

    # Check fitted
    est.fit(X, y)
    fitted_len = len(est)
    fitted_iter = [gp.length_ for gp in est]
    expected_iter = [8, 12, 2, 29, 9, 33, 9, 8, 4, 22]

    assert(fitted_len == 10)
    assert np.allclose(fitted_iter, expected_iter, atol=1)

    # Check IndexError
    with pytest.raises(IndexError):
        est[10]


def test_print_overloading_estimator():
    """Check that printing a fitted estimator results in 'pretty' output"""

    random_state = check_random_state(415)
    X = np.reshape(random_state.uniform(size=50), (5, 10))
    y = random_state.uniform(size=5)

    # Check the regressor
    est = SymbolicRegressor(population_size=100, generations=2, random_state=0)

    # Unfitted
    orig_stdout = sys.stdout
    try:
        out = StringIO()
        sys.stdout = out
        print(est)
        output_unfitted = out.getvalue().strip()
    finally:
        sys.stdout = orig_stdout

    # Fitted
    est.fit(X, y)
    orig_stdout = sys.stdout
    try:
        out = StringIO()
        sys.stdout = out
        print(est)
        output_fitted = out.getvalue().strip()
    finally:
        sys.stdout = orig_stdout

    orig_stdout = sys.stdout
    try:
        out = StringIO()
        sys.stdout = out
        print(est._program)
        output_program = out.getvalue().strip()
    finally:
        sys.stdout = orig_stdout

    assert(output_unfitted != output_fitted)
    assert(output_unfitted == est.__repr__())
    assert(output_fitted == output_program)

    # Check the transformer
    est = SymbolicTransformer(population_size=100, generations=2,
                              random_state=0)

    # Unfitted
    orig_stdout = sys.stdout
    try:
        out = StringIO()
        sys.stdout = out
        print(est)
        output_unfitted = out.getvalue().strip()
    finally:
        sys.stdout = orig_stdout

    # Fitted
    est.fit(X, y)
    orig_stdout = sys.stdout
    try:
        out = StringIO()
        sys.stdout = out
        print(est)
        output_fitted = out.getvalue().strip()
    finally:
        sys.stdout = orig_stdout

    orig_stdout = sys.stdout
    try:
        out = StringIO()
        sys.stdout = out
        output = str([gp.__str__() for gp in est])
        print(output.replace("',", ",\n").replace("'", ""))
        output_program = out.getvalue().strip()
    finally:
        sys.stdout = orig_stdout

    assert(output_unfitted != output_fitted)
    assert(output_unfitted == est.__repr__())
    assert(output_fitted == output_program)

    # Check the classifier
    y = (y > .5).astype(int)
    est = SymbolicClassifier(population_size=100, generations=2, random_state=0)

    # Unfitted
    orig_stdout = sys.stdout
    try:
        out = StringIO()
        sys.stdout = out
        print(est)
        output_unfitted = out.getvalue().strip()
    finally:
        sys.stdout = orig_stdout

    # Fitted
    est.fit(X, y)
    orig_stdout = sys.stdout
    try:
        out = StringIO()
        sys.stdout = out
        print(est)
        output_fitted = out.getvalue().strip()
    finally:
        sys.stdout = orig_stdout

    orig_stdout = sys.stdout
    try:
        out = StringIO()
        sys.stdout = out
        print(est._program)
        output_program = out.getvalue().strip()
    finally:
        sys.stdout = orig_stdout

    assert(output_unfitted != output_fitted)
    assert(output_unfitted == est.__repr__())
    assert(output_fitted == output_program)


def test_validate_functions():
    """Check that valid functions are accepted & invalid ones raise error"""

    for Symbolic in (SymbolicRegressor, SymbolicTransformer):
        # These should be fine
        est = Symbolic(population_size=100, generations=2, random_state=0,
                       function_set=(add2, sub2, mul2, div2))
        est.fit(diabetes.data, diabetes.target)
        est = Symbolic(population_size=100, generations=2, random_state=0,
                       function_set=('add', 'sub', 'mul', div2))
        est.fit(diabetes.data, diabetes.target)

        # These should fail
        est = Symbolic(generations=2, random_state=0,
                       function_set=('ni', 'sub', 'mul', div2))
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)
        est = Symbolic(generations=2, random_state=0,
                       function_set=(7, 'sub', 'mul', div2))
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)
        est = Symbolic(generations=2, random_state=0, function_set=())
        with pytest.raises(ValueError):
            est.fit(diabetes.data, diabetes.target)

    # Now for the classifier... These should be fine
    est = SymbolicClassifier(population_size=100, generations=2,
                             random_state=0,
                             function_set=(add2, sub2, mul2, div2))
    est.fit(cancer.data, cancer.target)
    est = SymbolicClassifier(population_size=100, generations=2,
                             random_state=0,
                             function_set=('add', 'sub', 'mul', div2))
    est.fit(cancer.data, cancer.target)

    # These should fail
    est = SymbolicClassifier(generations=2, random_state=0,
                             function_set=('ni', 'sub', 'mul', div2))
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)
    est = SymbolicClassifier(generations=2, random_state=0,
                             function_set=(7, 'sub', 'mul', div2))
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)
    est = SymbolicClassifier(generations=2, random_state=0, function_set=())
    with pytest.raises(ValueError):
        est.fit(cancer.data, cancer.target)


def test_indices():
    """Check that indices are stable when generated on the fly."""

    params = {'function_set': [add2, sub2, mul2, div2],
              'arities': {2: [add2, sub2, mul2, div2]},
              'init_depth': (2, 6),
              'init_method': 'half and half',
              'n_features': 10,
              'const_range': (-1.0, 1.0),
              'metric': 'mean absolute error',
              'p_point_replace': 0.05,
              'parsimony_coefficient': 0.1}
    random_state = check_random_state(415)
    test_gp = [mul2, div2, 8, 1, sub2, 9, .5]
    gp = _Program(random_state=random_state, program=test_gp, **params)

    with pytest.raises(ValueError):
        gp.get_all_indices()
    with pytest.raises(ValueError):
        gp._indices()

    def get_indices_property():
        return gp.indices_

    with pytest.raises(ValueError):
        get_indices_property()

    indices, _ = gp.get_all_indices(10, 7, random_state)

    assert_array_equal(indices, gp.get_all_indices()[0])
    assert_array_equal(indices, gp._indices())
    assert_array_equal(indices, gp.indices_)


def test_run_details():
    """Check the run_details_ attribute works as expected."""

    est = SymbolicRegressor(population_size=100, generations=5, random_state=0)
    est.fit(diabetes.data, diabetes.target)
    # Check generations are indexed as expected without warm_start
    assert(est.run_details_['generation'] == list(range(5)))
    est.set_params(generations=10, warm_start=True)
    est.fit(diabetes.data, diabetes.target)
    # Check generations are indexed as expected with warm_start
    assert(est.run_details_['generation'] == list(range(10)))
    # Check all details have expected number of elements
    for detail in est.run_details_:
        assert(len(est.run_details_[detail]) == 10)


def test_warm_start():
    """Check the warm_start functionality works as expected."""

    est = SymbolicRegressor(population_size=50, generations=10, random_state=0)
    est.fit(diabetes.data, diabetes.target)
    cold_fitness = est._program.fitness_
    cold_program = est._program.__str__()

    # Check fitting fewer generations raises error
    est.set_params(generations=5, warm_start=True)
    with pytest.raises(ValueError):
        est.fit(diabetes.data, diabetes.target)

    # Check fitting the same number of generations warns
    est.set_params(generations=10, warm_start=True)
    with pytest.warns(UserWarning):
        est.fit(diabetes.data, diabetes.target)

    # Check warm starts get the same result
    est = SymbolicRegressor(population_size=50, generations=5, random_state=0)
    est.fit(diabetes.data, diabetes.target)
    est.set_params(generations=10, warm_start=True)
    est.fit(diabetes.data, diabetes.target)
    warm_fitness = est._program.fitness_
    warm_program = est._program.__str__()
    assert_almost_equal(cold_fitness, warm_fitness)
    assert(cold_program == warm_program)


def test_low_memory():
    """Check the low_memory functionality works as expected."""

    est = SymbolicRegressor(population_size=50,
                            generations=10,
                            random_state=56,
                            low_memory=True)
    # Check there are no parents
    est.fit(diabetes.data, diabetes.target)
    assert(est._programs[-2] is None)


def test_low_memory_warm_start():
    """Check the warm_start functionality works as expected with low_memory."""

    est = SymbolicRegressor(population_size=50,
                            generations=20,
                            random_state=415,
                            low_memory=True)
    est.fit(diabetes.data, diabetes.target)
    cold_fitness = est._program.fitness_
    cold_program = est._program.__str__()

    # Check warm start with low memory gets the same result
    est = SymbolicRegressor(population_size=50,
                            generations=10,
                            random_state=415,
                            low_memory=True)
    est.fit(diabetes.data, diabetes.target)
    est.set_params(generations=20, warm_start=True)
    est.fit(diabetes.data, diabetes.target)
    warm_fitness = est._program.fitness_
    warm_program = est._program.__str__()
    assert_almost_equal(cold_fitness, warm_fitness)
    assert(cold_program == warm_program)