1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
"""Calculate the properties of a rough metal surface using the Gradient Model.
References:
G. Gold and K. Helmreich, “A Physical Surface Roughness Model and Its
Applications,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 10, pp.
3720–3732, Oct. 2017, doi: 10.1109/TMTT.2017.2695192.
K. Lomakin, G. Gold, and K. Helmreich, “Analytical Waveguide Model
Precisely Predicting Loss and Delay Including Surface Roughness,” IEEE
Trans. Microw. Theory Tech., vol. 66, no. 6, pp. 2649–2662, Jun. 2018,
doi: 10.1109/TMTT.2018.2827383.
This package uses the closed-form solution from:
D. N. Grujic, “Closed-Form Solution of Rough Conductor Surface Impedance,”
IEEE Trans. Microw. Theory Tech., vol. 66, no. 11, pp. 4677–4683, 2018,
doi: 10.1109/TMTT.2018.2864586.
"""
import numpy as np
from mpmath import hyp2f1, hyp3f2
from numpy import ndarray, pi, sqrt, exp
from scipy.constants import mu_0, epsilon_0
def mag_field(x, f, rq, sigma0=5.8e7):
"""Calculate the magnetic field tangential to the metal surface.
Args:
x: position relative to surface, in units [m]
f: frequency, in units [Hz]
rq: rms surface roughness, in units [m]
sigma0: dc conductivity, optional, default is 5.8e7, in units [S]
Returns:
magnetic field
"""
x_is_array = isinstance(x, ndarray) and len(x) > 1
f_is_array = isinstance(f, ndarray) and len(f) > 1
if x_is_array and f_is_array:
print("x and f can't both be arrays")
raise ValueError
# Constants
xi = 0.5
chi = sqrt(2) * rq
# Angular frequency
w = 2 * pi * f
# Eqns 15 and 21 from Grujic 2018
alpha = (1 + 1j) / 2 * rq * sqrt(mu_0 * w * sigma0)
beta = 0.5 * (sqrt(1 + 4 * alpha ** 2) - 1)
# Eqn 32 from Grujic 2018
zeta = 1 / (1 + exp(2 * (x / chi + xi)))
# Coefficients
a1 = alpha + beta
a2 = alpha - beta - 1
b1 = 1 + 2 * alpha
# Eqn 31 from Grujic 2018
if isinstance(x, ndarray) and len(x) > 1:
mag = np.empty_like(x, dtype=complex)
for i, _z in np.ndenumerate(zeta):
mag[i] = _z ** alpha
mag[i] *= hyp2f1(a1, a2, b1, _z)
elif isinstance(f, ndarray) and len(f) > 1:
mag = np.empty_like(f, dtype=complex)
for i in range(len(f)):
mag[i] = zeta ** alpha[i] * hyp2f1(a1[i], a2[i], b1[i], zeta)
else:
mag = zeta ** alpha * hyp2f1(a1, a2, b1, zeta)
return mag
def surface_impedance(f, rq, x0=None, sigma0=5.8e7):
"""Calculate the surface impedance of a rough metal.
Args:
f: frequency, in units [Hz]
rq: rms surface roughness, in units [m]
x0: starting point for integral, optional, default is -5*rq,
in units [m]
sigma0: dc conductivity, optional, default is 5.8e7, in units [S]
Returns:
surface impedance
"""
f_is_array = isinstance(f, ndarray) and len(f) > 1
# Constants
xi = 0.5
chi = sqrt(2) * rq
if x0 is None:
x0 = -5 * rq
# Angular frequency
w = 2 * pi * f
# Eqns 15 and 21
alpha = (1 + 1j) / 2 * rq * sqrt(mu_0 * w * sigma0)
beta = 0.5 * (sqrt(1 + 4 * alpha ** 2) - 1)
# Eqn 32
zeta = 1 / (1 + exp(2 * (x0 / chi + xi)))
# Magnetic field, mag
mag = mag_field(x0, f, rq, sigma0=sigma0)
# Anti-derivative, bb
# Eqn 40 and 41 in Grujic 2018
a1 = 1 + alpha - beta
a2 = 2 + alpha + beta
a3 = alpha
b1 = 1 + 2 * alpha
b2 = 1 + alpha
if f_is_array:
f0 = np.empty_like(f, dtype=complex)
f1 = np.empty_like(f, dtype=complex)
for i in range(len(f)):
f1[i] = hyp3f2(a1[i], a2[i], a3[i] + 1, b1[i], b2[i] + 1, zeta)
f0[i] = hyp3f2(a1[i], a2[i], a3[i], b1[i], b2[i], zeta)
bb = chi / 2 * (zeta ** alpha) * (zeta / (1 + alpha) * f1 - f0 / alpha)
else:
f1 = hyp3f2(a1, a2, a3 + 1, b1, b2 + 1, zeta)
f0 = hyp3f2(a1, a2, a3, b1, b2, zeta)
bb = chi / 2 * (zeta ** alpha) * (zeta / (1 + alpha) * f1 - f0 / alpha)
return -1j * mu_0 * w * bb / mag
def rough_properties(f, rq, x0=None, sigma0=5.8e7):
"""Calculate the surface properties of a rough metal.
Args:
f: frequency, in units [Hz]
rq: rms surface roughness, in units [m]
x0: starting point for integral, optional, default is -5*rq,
in units [m]
sigma0: dc conductivity, optional, default is 5.8e7, in units [S]
Returns:
surface impedance, effective conductivity, effective permeability
"""
# Angular frequency
w = 2 * pi * f
# Surface roughness
zs_rough = surface_impedance(f, rq, x0=x0, sigma0=sigma0)
# Effective conductivity
cond_eff = mu_0 * w / (2 * zs_rough.real ** 2)
# Effective permeability
ur_eff = 2 * sigma0 * zs_rough.imag ** 2 / w / mu_0
return zs_rough, cond_eff, ur_eff
# Waveguide loss -------------------------------------------------------------
def waveguide_propagation(f, a, b, cond_eff, ur_eff, cond=5.8e7, er=1, ur=1, tand=0):
# angular frequency
w = 2 * pi * f
# skin depths
skin_c = 1 / sqrt(pi * mu_0 * ur * cond_eff * f)
skin_m = 1 / sqrt(pi * mu_0 * ur_eff * cond * f)
# equivalent circuit values
r1 = 2 / (cond_eff * skin_c * b)
r2 = 2 * a * (a + 2 * b) / (b * pi**2 * cond_eff * skin_c)
l1 = 2 / (cond * skin_m * b * a)
l2 = 2 * a * (a + 2 * b) / (b * pi**2 * cond * skin_m * a)
c1 = er * epsilon_0
g1 = w * c1 * tand
# propagation constant
t1 = r1 + 1j * w * l1
t2 = 1 / (r2 + 1j * w * l2) + g1 + 1j * w * c1
gamma = sqrt(t1 * t2)
# characteristic impedance
zte = sqrt(t1 / t2)
return gamma, zte
|