1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
.. _Scalars:
Scalars
=======
Scalar types represent concrete values at the leaves of a query. There are
several built in types that Graphene provides out of the box which represent common
values in Python. You can also create your own Scalar types to better express
values that you might have in your data model.
All Scalar types accept the following arguments. All are optional:
``name``: *string*
Override the name of the Field.
``description``: *string*
A description of the type to show in the GraphiQL browser.
``required``: *boolean*
If ``True``, the server will enforce a value for this field. See `NonNull <../list-and-nonnull.html#nonnull>`_. Default is ``False``.
``deprecation_reason``: *string*
Provide a deprecation reason for the Field.
``default_value``: *any*
Provide a default value for the Field.
Built in scalars
----------------
Graphene defines the following base Scalar Types that match the default `GraphQL types <https://graphql.org/learn/schema/#scalar-types>`_:
``graphene.String``
^^^^^^^^^^^^^^^^^^^
Represents textual data, represented as UTF-8
character sequences. The String type is most often used by GraphQL to
represent free-form human-readable text.
``graphene.Int``
^^^^^^^^^^^^^^^^
Represents non-fractional signed whole numeric
values. Int is a signed 32‐bit integer per the
`GraphQL spec <https://facebook.github.io/graphql/June2018/#sec-Int>`_
``graphene.Float``
^^^^^^^^^^^^^^^^^^
Represents signed double-precision fractional
values as specified by
`IEEE 754 <http://en.wikipedia.org/wiki/IEEE_floating_point>`_.
``graphene.Boolean``
^^^^^^^^^^^^^^^^^^^^
Represents `true` or `false`.
``graphene.ID``
^^^^^^^^^^^^^^^
Represents a unique identifier, often used to
refetch an object or as key for a cache. The ID type appears in a JSON
response as a String; however, it is not intended to be human-readable.
When expected as an input type, any string (such as `"4"`) or integer
(such as `4`) input value will be accepted as an ID.
----
Graphene also provides custom scalars for common values:
``graphene.Date``
^^^^^^^^^^^^^^^^^
Represents a Date value as specified by `iso8601 <https://en.wikipedia.org/wiki/ISO_8601>`_.
.. code:: python
import datetime
from graphene import Schema, ObjectType, Date
class Query(ObjectType):
one_week_from = Date(required=True, date_input=Date(required=True))
def resolve_one_week_from(root, info, date_input):
assert date_input == datetime.date(2006, 1, 2)
return date_input + datetime.timedelta(weeks=1)
schema = Schema(query=Query)
results = schema.execute("""
query {
oneWeekFrom(dateInput: "2006-01-02")
}
""")
assert results.data == {"oneWeekFrom": "2006-01-09"}
``graphene.DateTime``
^^^^^^^^^^^^^^^^^^^^^
Represents a DateTime value as specified by `iso8601 <https://en.wikipedia.org/wiki/ISO_8601>`_.
.. code:: python
import datetime
from graphene import Schema, ObjectType, DateTime
class Query(ObjectType):
one_hour_from = DateTime(required=True, datetime_input=DateTime(required=True))
def resolve_one_hour_from(root, info, datetime_input):
assert datetime_input == datetime.datetime(2006, 1, 2, 15, 4, 5)
return datetime_input + datetime.timedelta(hours=1)
schema = Schema(query=Query)
results = schema.execute("""
query {
oneHourFrom(datetimeInput: "2006-01-02T15:04:05")
}
""")
assert results.data == {"oneHourFrom": "2006-01-02T16:04:05"}
``graphene.Time``
^^^^^^^^^^^^^^^^^
Represents a Time value as specified by `iso8601 <https://en.wikipedia.org/wiki/ISO_8601>`_.
.. code:: python
import datetime
from graphene import Schema, ObjectType, Time
class Query(ObjectType):
one_hour_from = Time(required=True, time_input=Time(required=True))
def resolve_one_hour_from(root, info, time_input):
assert time_input == datetime.time(15, 4, 5)
tmp_time_input = datetime.datetime.combine(datetime.date(1, 1, 1), time_input)
return (tmp_time_input + datetime.timedelta(hours=1)).time()
schema = Schema(query=Query)
results = schema.execute("""
query {
oneHourFrom(timeInput: "15:04:05")
}
""")
assert results.data == {"oneHourFrom": "16:04:05"}
``graphene.Decimal``
^^^^^^^^^^^^^^^^^^^^
Represents a Python Decimal value.
.. code:: python
import decimal
from graphene import Schema, ObjectType, Decimal
class Query(ObjectType):
add_one_to = Decimal(required=True, decimal_input=Decimal(required=True))
def resolve_add_one_to(root, info, decimal_input):
assert decimal_input == decimal.Decimal("10.50")
return decimal_input + decimal.Decimal("1")
schema = Schema(query=Query)
results = schema.execute("""
query {
addOneTo(decimalInput: "10.50")
}
""")
assert results.data == {"addOneTo": "11.50"}
``graphene.JSONString``
^^^^^^^^^^^^^^^^^^^^^^^
Represents a JSON string.
.. code:: python
from graphene import Schema, ObjectType, JSONString, String
class Query(ObjectType):
update_json_key = JSONString(
required=True,
json_input=JSONString(required=True),
key=String(required=True),
value=String(required=True)
)
def resolve_update_json_key(root, info, json_input, key, value):
assert json_input == {"name": "Jane"}
json_input[key] = value
return json_input
schema = Schema(query=Query)
results = schema.execute("""
query {
updateJsonKey(jsonInput: "{\\"name\\": \\"Jane\\"}", key: "name", value: "Beth")
}
""")
assert results.data == {"updateJsonKey": "{\"name\": \"Beth\"}"}
``graphene.Base64``
^^^^^^^^^^^^^^^^^^^
Represents a Base64 encoded string.
.. code:: python
from graphene import Schema, ObjectType, Base64
class Query(ObjectType):
increment_encoded_id = Base64(
required=True,
base64_input=Base64(required=True),
)
def resolve_increment_encoded_id(root, info, base64_input):
assert base64_input == "4"
return int(base64_input) + 1
schema = Schema(query=Query)
results = schema.execute("""
query {
incrementEncodedId(base64Input: "NA==")
}
""")
assert results.data == {"incrementEncodedId": "NQ=="}
Custom scalars
--------------
You can create custom scalars for your schema.
The following is an example for creating a DateTime scalar:
.. code:: python
import datetime
from graphene.types import Scalar
from graphql.language import ast
class DateTime(Scalar):
'''DateTime Scalar Description'''
@staticmethod
def serialize(dt):
return dt.isoformat()
@staticmethod
def parse_literal(node, _variables=None):
if isinstance(node, ast.StringValueNode):
return datetime.datetime.strptime(
node.value, "%Y-%m-%dT%H:%M:%S.%f")
@staticmethod
def parse_value(value):
return datetime.datetime.strptime(value, "%Y-%m-%dT%H:%M:%S.%f")
Mounting Scalars
----------------
Scalars mounted in a ``ObjectType``, ``Interface`` or ``Mutation`` act as
``Field``\ s.
.. code:: python
class Person(graphene.ObjectType):
name = graphene.String()
# Is equivalent to:
class Person(graphene.ObjectType):
name = graphene.Field(graphene.String)
**Note:** when using the ``Field`` constructor directly, pass the type and
not an instance.
Types mounted in a ``Field`` act as ``Argument``\ s.
.. code:: python
graphene.Field(graphene.String, to=graphene.String())
# Is equivalent to:
graphene.Field(graphene.String, to=graphene.Argument(graphene.String))
|