1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
# gridDataFormats --- python modules to read and write gridded data
# Copyright (c) 2009-2021 Oliver Beckstein <orbeckst@gmail.com>
# Released under the GNU Lesser General Public License, version 3 or later.
#
""":mod:`mrc` --- the MRC/CCP4 volumetric data format
===================================================
.. versionadded:: 0.7.0
Reading of MRC/CCP4 volumetric files (`MRC2014 file format`_) using
the mrcfile_ library [Burnley2017]_.
.. _mrcfile: https://mrcfile.readthedocs.io/
.. _`MRC2014 file format`: http://www.ccpem.ac.uk/mrc_format/mrc2014.php
References
----------
.. [Burnley2017] Burnley T, Palmer C and Winn M (2017) Recent
developments in the CCP-EM software suite. *Acta
Cryst.* D73:469-477. doi: `10.1107/S2059798317007859`_
.. _`10.1107/S2059798317007859`: https://doi.org/10.1107/S2059798317007859
Classes
-------
"""
import numpy as np
import mrcfile
class MRC(object):
"""Represent a MRC/CCP4 file.
Load `MRC/CCP4 2014 <MRC2014 file format>`_ 3D volumetric data with
the mrcfile_ library.
Parameters
----------
filename : str (optional)
input file (or stream), can be compressed
Raises
------
ValueError
If the unit cell is not orthorhombic or if the data
are not volumetric.
Attributes
----------
header : numpy.recarray
Header data from the MRC file as a numpy record array.
array : numpy.ndarray
Data as a 3-dimensional array where axis 0 corresponds to X,
axis 1 to Y, and axis 2 to Z. This order is always enforced,
regardless of the order in the mrc file.
delta : numpy.ndarray
Diagonal matrix with the voxel size in X, Y, and Z direction
(taken from the :attr:`mrcfile.mrcfile.voxel_size` attribute)
origin : numpy.ndarray
numpy array with coordinates of the coordinate system origin
(computed from :attr:`header.origin`, the offsets
:attr:`header.origin.nxstart`, :attr:`header.origin.nystart`,
:attr:`header.origin.nzstart` and the spacing :attr:`delta`)
rank : int
The integer 3, denoting that only 3D maps are read.
Notes
-----
* Only volumetric (3D) densities are read.
* Only orthorhombic unitcells supported (other raise :exc:`ValueError`)
* Only reading is currently supported.
.. versionadded:: 0.7.0
"""
def __init__(self, filename=None):
self.filename = filename
if filename is not None:
self.read(filename)
def read(self, filename):
"""Populate the instance from the MRC/CCP4 file *filename*."""
if filename is not None:
self.filename = filename
with mrcfile.open(filename) as mrc:
if not mrc.is_volume(): #pragma: no cover
raise ValueError(
"MRC file {} is not a volumetric density.".format(filename))
self.header = h = mrc.header.copy()
# check for being orthorhombic
if not np.allclose([h.cellb.alpha, h.cellb.beta, h.cellb.gamma],
[90, 90, 90]):
raise ValueError("Only orthorhombic unitcells are currently "
"supported, not "
"alpha={0}, beta={1}, gamma={2}".format(
h.cellb.alpha, h.cellb.beta, h.cellb.gamma))
# mrc.data[z, y, x] indexed: convert to x,y,z as used in GridDataFormats
# together with the axes orientation information in mapc/mapr/maps.
# mapc, mapr, maps = 1, 2, 3 for Fortran-ordering and 3, 2, 1 for C-ordering.
# Other combinations are possible. We reorder the data for the general case
# by sorting mapc, mapr, maps in ascending order, i.e., to obtain x,y,z.
# mrcfile provides the data in zyx shape (without regard to map*) so we first
# transpose it to xyz and then reorient with axes_c_order.
#
# All other "xyz" quantitities are also reordered.
axes_order = np.hstack([h.mapc, h.mapr, h.maps])
axes_c_order = np.argsort(axes_order)
transpose_order = np.argsort(axes_order[::-1])
self.array = np.transpose(mrc.data, axes=transpose_order)
self.delta = np.diag(np.array([mrc.voxel_size.x, mrc.voxel_size.y, mrc.voxel_size.z]))
# the grid is shifted to the MRC origin by offset
# (assume orthorhombic)
offsets = np.hstack([h.nxstart, h.nystart, h.nzstart])[axes_c_order] * np.diag(self.delta)
# GridData origin is centre of cell at x=col=0, y=row=0 z=seg=0
self.origin = np.hstack([h.origin.x, h.origin.y, h.origin.z]) + offsets
self.rank = 3
@property
def shape(self):
"""Shape of the :attr:`array`"""
return self.array.shape
@property
def edges(self):
"""Edges of the grid cells, origin at centre of 0,0,0 grid cell.
Only works for regular, orthonormal grids.
"""
# TODO: Add triclinic cell support.
return [self.delta[d, d] * np.arange(self.shape[d] + 1) +
self.origin[d] - 0.5 * self.delta[d, d]
for d in range(self.rank)]
def histogramdd(self):
"""Return array data as (edges,grid), i.e. a numpy nD histogram."""
return (self.array, self.edges)
|