File: hoomd.py

package info (click to toggle)
python-gsd 3.4.2-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 1,020 kB
  • sloc: python: 3,141; ansic: 2,057; cpp: 120; makefile: 16
file content (1235 lines) | stat: -rw-r--r-- 46,029 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
# Copyright (c) 2016-2024 The Regents of the University of Michigan
# Part of GSD, released under the BSD 2-Clause License.

"""Read and write HOOMD schema GSD files.

:py:mod:`gsd.hoomd` reads and writes GSD files with the ``hoomd`` schema.

* `HOOMDTrajectory` - Read and write hoomd schema GSD files.
* `Frame` - Store the state of a single frame.

  * `ConfigurationData` - Store configuration data in a frame.
  * `ParticleData` - Store particle data in a frame.
  * `BondData` - Store topology data in a frame.

* `open` - Open a hoomd schema GSD file.
* `read_log` - Read log from a hoomd schema GSD file into a dict of time-series
  arrays.

See Also:
    See :ref:`hoomd-examples` for full examples.
"""

import copy
import json
import logging
import warnings
from collections import OrderedDict

import numpy

try:
    import gsd
except ImportError:
    gsd = None

fl_imported = True
try:
    import gsd.fl
except ImportError:
    fl_imported = False

logger = logging.getLogger('gsd.hoomd')


class ConfigurationData:
    """Store configuration data.

    Use the `Frame.configuration` attribute of a to access the configuration.

    Attributes:
        step (int): Time step of this frame (:chunk:`configuration/step`).

        dimensions (int): Number of dimensions
            (:chunk:`configuration/dimensions`). When not set explicitly,
            dimensions will default to different values based on the value of
            :math:`L_z` in `box`. When :math:`L_z = 0` dimensions will default
            to 2, otherwise 3. User set values always take precedence.


    """

    _default_value = OrderedDict()
    _default_value['step'] = numpy.uint64(0)
    _default_value['dimensions'] = numpy.uint8(3)
    _default_value['box'] = numpy.array([1, 1, 1, 0, 0, 0], dtype=numpy.float32)

    def __init__(self):
        self.step = None
        self.dimensions = None
        self._box = None

    @property
    def box(self):
        """((6, 1) `numpy.ndarray` of ``numpy.float32``): Box dimensions.

        [lx, ly, lz, xy, xz, yz]. See :chunk:`configuration/box`.
        """
        return self._box

    @box.setter
    def box(self, box):
        self._box = box
        try:
            Lz = box[2]
        except TypeError:
            return
        else:
            if self.dimensions is None:
                self.dimensions = 2 if Lz == 0 else 3

    def validate(self):
        """Validate all attributes.

        Convert every array attribute to a `numpy.ndarray` of the proper
        type and check that all attributes have the correct dimensions.

        Ignore any attributes that are ``None``.

        Warning:
            Array attributes that are not contiguous numpy arrays will be
            replaced with contiguous numpy arrays of the appropriate type.
        """
        logger.debug('Validating ConfigurationData')

        if self.box is not None:
            self.box = numpy.ascontiguousarray(self.box, dtype=numpy.float32)
            self.box = self.box.reshape([6])


class ParticleData:
    """Store particle data chunks.

    Use the `Frame.particles` attribute of a to access the particles.

    Instances resulting from file read operations will always store array
    quantities in `numpy.ndarray` objects of the defined types. User created
    frames may provide input data that can be converted to a `numpy.ndarray`.

    See Also:
        `hoomd.State` for a full description of how HOOMD interprets this
        data.

    Attributes:
        N (int): Number of particles in the frame (:chunk:`particles/N`).

        types (tuple[str]):
            Names of the particle types (:chunk:`particles/types`).

        position ((*N*, 3) `numpy.ndarray` of ``numpy.float32``):
            Particle position (:chunk:`particles/position`).

        orientation ((*N*, 4) `numpy.ndarray` of ``numpy.float32``):
            Particle orientation. (:chunk:`particles/orientation`).

        typeid ((*N*, ) `numpy.ndarray` of ``numpy.uint32``):
            Particle type id (:chunk:`particles/typeid`).

        mass ((*N*, ) `numpy.ndarray` of ``numpy.float32``):
            Particle mass (:chunk:`particles/mass`).

        charge ((*N*, ) `numpy.ndarray` of ``numpy.float32``):
            Particle charge (:chunk:`particles/charge`).

        diameter ((*N*, ) `numpy.ndarray` of ``numpy.float32``):
            Particle diameter (:chunk:`particles/diameter`).

        body ((*N*, ) `numpy.ndarray` of ``numpy.int32``):
            Particle body (:chunk:`particles/body`).

        moment_inertia ((*N*, 3) `numpy.ndarray` of ``numpy.float32``):
            Particle moment of inertia (:chunk:`particles/moment_inertia`).

        velocity ((*N*, 3) `numpy.ndarray` of ``numpy.float32``):
            Particle velocity (:chunk:`particles/velocity`).

        angmom ((*N*, 4) `numpy.ndarray` of ``numpy.float32``):
            Particle angular momentum (:chunk:`particles/angmom`).

        image ((*N*, 3) `numpy.ndarray` of ``numpy.int32``):
            Particle image (:chunk:`particles/image`).

        type_shapes (tuple[dict]): Shape specifications for
            visualizing particle types (:chunk:`particles/type_shapes`).
    """

    _default_value = OrderedDict()
    _default_value['N'] = numpy.uint32(0)
    _default_value['types'] = ['A']
    _default_value['typeid'] = numpy.uint32(0)
    _default_value['mass'] = numpy.float32(1.0)
    _default_value['charge'] = numpy.float32(0)
    _default_value['diameter'] = numpy.float32(1.0)
    _default_value['body'] = numpy.int32(-1)
    _default_value['moment_inertia'] = numpy.array([0, 0, 0], dtype=numpy.float32)
    _default_value['position'] = numpy.array([0, 0, 0], dtype=numpy.float32)
    _default_value['orientation'] = numpy.array([1, 0, 0, 0], dtype=numpy.float32)
    _default_value['velocity'] = numpy.array([0, 0, 0], dtype=numpy.float32)
    _default_value['angmom'] = numpy.array([0, 0, 0, 0], dtype=numpy.float32)
    _default_value['image'] = numpy.array([0, 0, 0], dtype=numpy.int32)
    _default_value['type_shapes'] = [{}]

    def __init__(self):
        self.N = 0
        self.position = None
        self.orientation = None
        self.types = None
        self.typeid = None
        self.mass = None
        self.charge = None
        self.diameter = None
        self.body = None
        self.moment_inertia = None
        self.velocity = None
        self.angmom = None
        self.image = None
        self.type_shapes = None

    def validate(self):
        """Validate all attributes.

        Convert every array attribute to a `numpy.ndarray` of the proper
        type and check that all attributes have the correct dimensions.

        Ignore any attributes that are ``None``.

        Warning:
            Array attributes that are not contiguous numpy arrays will be
            replaced with contiguous numpy arrays of the appropriate type.
        """
        logger.debug('Validating ParticleData')

        if self.position is not None:
            self.position = numpy.ascontiguousarray(self.position, dtype=numpy.float32)
            self.position = self.position.reshape([self.N, 3])
        if self.orientation is not None:
            self.orientation = numpy.ascontiguousarray(
                self.orientation, dtype=numpy.float32
            )
            self.orientation = self.orientation.reshape([self.N, 4])
        if self.typeid is not None:
            self.typeid = numpy.ascontiguousarray(self.typeid, dtype=numpy.uint32)
            self.typeid = self.typeid.reshape([self.N])
        if self.mass is not None:
            self.mass = numpy.ascontiguousarray(self.mass, dtype=numpy.float32)
            self.mass = self.mass.reshape([self.N])
        if self.charge is not None:
            self.charge = numpy.ascontiguousarray(self.charge, dtype=numpy.float32)
            self.charge = self.charge.reshape([self.N])
        if self.diameter is not None:
            self.diameter = numpy.ascontiguousarray(self.diameter, dtype=numpy.float32)
            self.diameter = self.diameter.reshape([self.N])
        if self.body is not None:
            self.body = numpy.ascontiguousarray(self.body, dtype=numpy.int32)
            self.body = self.body.reshape([self.N])
        if self.moment_inertia is not None:
            self.moment_inertia = numpy.ascontiguousarray(
                self.moment_inertia, dtype=numpy.float32
            )
            self.moment_inertia = self.moment_inertia.reshape([self.N, 3])
        if self.velocity is not None:
            self.velocity = numpy.ascontiguousarray(self.velocity, dtype=numpy.float32)
            self.velocity = self.velocity.reshape([self.N, 3])
        if self.angmom is not None:
            self.angmom = numpy.ascontiguousarray(self.angmom, dtype=numpy.float32)
            self.angmom = self.angmom.reshape([self.N, 4])
        if self.image is not None:
            self.image = numpy.ascontiguousarray(self.image, dtype=numpy.int32)
            self.image = self.image.reshape([self.N, 3])

        if self.types is not None and (not len(set(self.types)) == len(self.types)):
            msg = 'Type names must be unique.'
            raise ValueError(msg)


class BondData:
    """Store bond data chunks.

    Use the `Frame.bonds`, `Frame.angles`, `Frame.dihedrals`,
    `Frame.impropers`, and `Frame.pairs` attributes to access the bond
    topology.

    Instances resulting from file read operations will always store array
    quantities in `numpy.ndarray` objects of the defined types. User created
    frames may provide input data that can be converted to a `numpy.ndarray`.

    See Also:
        `hoomd.State` for a full description of how HOOMD interprets this
        data.

    Note:
        *M* varies depending on the type of bond. `BondData` represents all
        types of topology connections.

        ======== ===
        Type     *M*
        ======== ===
        Bond      2
        Angle     3
        Dihedral  4
        Improper  4
        Pair      2
        ======== ===

    Attributes:
        N (int): Number of bonds/angles/dihedrals/impropers/pairs in the
          frame
          (:chunk:`bonds/N`, :chunk:`angles/N`, :chunk:`dihedrals/N`,
          :chunk:`impropers/N`, :chunk:`pairs/N`).

        types (list[str]): Names of the particle types
          (:chunk:`bonds/types`, :chunk:`angles/types`,
          :chunk:`dihedrals/types`, :chunk:`impropers/types`,
          :chunk:`pairs/types`).

        typeid ((*N*,) `numpy.ndarray` of ``numpy.uint32``):
          Bond type id (:chunk:`bonds/typeid`,
          :chunk:`angles/typeid`, :chunk:`dihedrals/typeid`,
          :chunk:`impropers/typeid`, :chunk:`pairs/types`).

        group ((*N*, *M*) `numpy.ndarray` of ``numpy.uint32``):
          Tags of the particles in the bond (:chunk:`bonds/group`,
          :chunk:`angles/group`, :chunk:`dihedrals/group`,
          :chunk:`impropers/group`, :chunk:`pairs/group`).
    """

    def __init__(self, M):
        self.M = M
        self.N = 0
        self.types = None
        self.typeid = None
        self.group = None

        self._default_value = OrderedDict()
        self._default_value['N'] = numpy.uint32(0)
        self._default_value['types'] = []
        self._default_value['typeid'] = numpy.uint32(0)
        self._default_value['group'] = numpy.array([0] * M, dtype=numpy.int32)

    def validate(self):
        """Validate all attributes.

        Convert every array attribute to a `numpy.ndarray` of the proper
        type and check that all attributes have the correct dimensions.

        Ignore any attributes that are ``None``.

        Warning:
            Array attributes that are not contiguous numpy arrays will be
            replaced with contiguous numpy arrays of the appropriate type.
        """
        logger.debug('Validating BondData')

        if self.typeid is not None:
            self.typeid = numpy.ascontiguousarray(self.typeid, dtype=numpy.uint32)
            self.typeid = self.typeid.reshape([self.N])
        if self.group is not None:
            self.group = numpy.ascontiguousarray(self.group, dtype=numpy.int32)
            self.group = self.group.reshape([self.N, self.M])

        if self.types is not None and (not len(set(self.types)) == len(self.types)):
            msg = 'Type names must be unique.'
            raise ValueError(msg)


class ConstraintData:
    """Store constraint data.

    Use the `Frame.constraints` attribute to access the constraints.

    Instances resulting from file read operations will always store array
    quantities in `numpy.ndarray` objects of the defined types. User created
    frames may provide input data that can be converted to a `numpy.ndarray`.

    See Also:
        `hoomd.State` for a full description of how HOOMD interprets this
        data.

    Attributes:
        N (int): Number of constraints in the frame (:chunk:`constraints/N`).

        value ((*N*, ) `numpy.ndarray` of ``numpy.float32``):
            Constraint length (:chunk:`constraints/value`).

        group ((*N*, *2*) `numpy.ndarray` of ``numpy.uint32``):
            Tags of the particles in the constraint
            (:chunk:`constraints/group`).
    """

    def __init__(self):
        self.M = 2
        self.N = 0
        self.value = None
        self.group = None

        self._default_value = OrderedDict()
        self._default_value['N'] = numpy.uint32(0)
        self._default_value['value'] = numpy.float32(0)
        self._default_value['group'] = numpy.array([0] * self.M, dtype=numpy.int32)

    def validate(self):
        """Validate all attributes.

        Convert every array attribute to a `numpy.ndarray` of the proper
        type and check that all attributes have the correct dimensions.

        Ignore any attributes that are ``None``.

        Warning:
            Array attributes that are not contiguous numpy arrays will be
            replaced with contiguous numpy arrays of the appropriate type.
        """
        logger.debug('Validating ConstraintData')

        if self.value is not None:
            self.value = numpy.ascontiguousarray(self.value, dtype=numpy.float32)
            self.value = self.value.reshape([self.N])
        if self.group is not None:
            self.group = numpy.ascontiguousarray(self.group, dtype=numpy.int32)
            self.group = self.group.reshape([self.N, self.M])


class Frame:
    """System state at one point in time.

    Attributes:
        configuration (`ConfigurationData`): Configuration data.

        particles (`ParticleData`): Particles.

        bonds (`BondData`): Bonds.

        angles (`BondData`): Angles.

        dihedrals (`BondData`): Dihedrals.

        impropers (`BondData`): Impropers.

        pairs (`BondData`): Special pair.

        constraints (`ConstraintData`): Distance constraints.

        state (dict): State data.

        log (dict): Logged data (values must be `numpy.ndarray` or
            `array_like`)
    """

    def __init__(self):
        self.configuration = ConfigurationData()
        self.particles = ParticleData()
        self.bonds = BondData(2)
        self.angles = BondData(3)
        self.dihedrals = BondData(4)
        self.impropers = BondData(4)
        self.constraints = ConstraintData()
        self.pairs = BondData(2)
        self.state = {}
        self.log = {}

        self._valid_state = [
            'hpmc/integrate/d',
            'hpmc/integrate/a',
            'hpmc/sphere/radius',
            'hpmc/sphere/orientable',
            'hpmc/ellipsoid/a',
            'hpmc/ellipsoid/b',
            'hpmc/ellipsoid/c',
            'hpmc/convex_polyhedron/N',
            'hpmc/convex_polyhedron/vertices',
            'hpmc/convex_spheropolyhedron/N',
            'hpmc/convex_spheropolyhedron/vertices',
            'hpmc/convex_spheropolyhedron/sweep_radius',
            'hpmc/convex_polygon/N',
            'hpmc/convex_polygon/vertices',
            'hpmc/convex_spheropolygon/N',
            'hpmc/convex_spheropolygon/vertices',
            'hpmc/convex_spheropolygon/sweep_radius',
            'hpmc/simple_polygon/N',
            'hpmc/simple_polygon/vertices',
        ]

    def validate(self):
        """Validate all contained frame data."""
        logger.debug('Validating Frame')

        self.configuration.validate()
        self.particles.validate()
        self.bonds.validate()
        self.angles.validate()
        self.dihedrals.validate()
        self.impropers.validate()
        self.constraints.validate()
        self.pairs.validate()

        # validate HPMC state
        if self.particles.types is not None:
            NT = len(self.particles.types)
        else:
            NT = 1

        if 'hpmc/integrate/d' in self.state:
            self.state['hpmc/integrate/d'] = numpy.ascontiguousarray(
                self.state['hpmc/integrate/d'], dtype=numpy.float64
            )
            self.state['hpmc/integrate/d'] = self.state['hpmc/integrate/d'].reshape([1])

        if 'hpmc/integrate/a' in self.state:
            self.state['hpmc/integrate/a'] = numpy.ascontiguousarray(
                self.state['hpmc/integrate/a'], dtype=numpy.float64
            )
            self.state['hpmc/integrate/a'] = self.state['hpmc/integrate/a'].reshape([1])

        if 'hpmc/sphere/radius' in self.state:
            self.state['hpmc/sphere/radius'] = numpy.ascontiguousarray(
                self.state['hpmc/sphere/radius'], dtype=numpy.float32
            )
            self.state['hpmc/sphere/radius'] = self.state['hpmc/sphere/radius'].reshape(
                [NT]
            )

        if 'hpmc/sphere/orientable' in self.state:
            self.state['hpmc/sphere/orientable'] = numpy.ascontiguousarray(
                self.state['hpmc/sphere/orientable'], dtype=numpy.uint8
            )
            self.state['hpmc/sphere/orientable'] = self.state[
                'hpmc/sphere/orientable'
            ].reshape([NT])

        if 'hpmc/ellipsoid/a' in self.state:
            self.state['hpmc/ellipsoid/a'] = numpy.ascontiguousarray(
                self.state['hpmc/ellipsoid/a'], dtype=numpy.float32
            )
            self.state['hpmc/ellipsoid/a'] = self.state['hpmc/ellipsoid/a'].reshape(
                [NT]
            )
            self.state['hpmc/ellipsoid/b'] = numpy.ascontiguousarray(
                self.state['hpmc/ellipsoid/b'], dtype=numpy.float32
            )
            self.state['hpmc/ellipsoid/b'] = self.state['hpmc/ellipsoid/b'].reshape(
                [NT]
            )
            self.state['hpmc/ellipsoid/c'] = numpy.ascontiguousarray(
                self.state['hpmc/ellipsoid/c'], dtype=numpy.float32
            )
            self.state['hpmc/ellipsoid/c'] = self.state['hpmc/ellipsoid/c'].reshape(
                [NT]
            )

        if 'hpmc/convex_polyhedron/N' in self.state:
            self.state['hpmc/convex_polyhedron/N'] = numpy.ascontiguousarray(
                self.state['hpmc/convex_polyhedron/N'], dtype=numpy.uint32
            )
            self.state['hpmc/convex_polyhedron/N'] = self.state[
                'hpmc/convex_polyhedron/N'
            ].reshape([NT])
            sumN = numpy.sum(self.state['hpmc/convex_polyhedron/N'])

            self.state['hpmc/convex_polyhedron/vertices'] = numpy.ascontiguousarray(
                self.state['hpmc/convex_polyhedron/vertices'], dtype=numpy.float32
            )
            self.state['hpmc/convex_polyhedron/vertices'] = self.state[
                'hpmc/convex_polyhedron/vertices'
            ].reshape([sumN, 3])

        if 'hpmc/convex_spheropolyhedron/N' in self.state:
            self.state['hpmc/convex_spheropolyhedron/N'] = numpy.ascontiguousarray(
                self.state['hpmc/convex_spheropolyhedron/N'], dtype=numpy.uint32
            )
            self.state['hpmc/convex_spheropolyhedron/N'] = self.state[
                'hpmc/convex_spheropolyhedron/N'
            ].reshape([NT])
            sumN = numpy.sum(self.state['hpmc/convex_spheropolyhedron/N'])

            self.state['hpmc/convex_spheropolyhedron/sweep_radius'] = (
                numpy.ascontiguousarray(
                    self.state['hpmc/convex_spheropolyhedron/sweep_radius'],
                    dtype=numpy.float32,
                )
            )
            self.state['hpmc/convex_spheropolyhedron/sweep_radius'] = self.state[
                'hpmc/convex_spheropolyhedron/sweep_radius'
            ].reshape([NT])

            self.state['hpmc/convex_spheropolyhedron/vertices'] = (
                numpy.ascontiguousarray(
                    self.state['hpmc/convex_spheropolyhedron/vertices'],
                    dtype=numpy.float32,
                )
            )
            self.state['hpmc/convex_spheropolyhedron/vertices'] = self.state[
                'hpmc/convex_spheropolyhedron/vertices'
            ].reshape([sumN, 3])

        if 'hpmc/convex_polygon/N' in self.state:
            self.state['hpmc/convex_polygon/N'] = numpy.ascontiguousarray(
                self.state['hpmc/convex_polygon/N'], dtype=numpy.uint32
            )
            self.state['hpmc/convex_polygon/N'] = self.state[
                'hpmc/convex_polygon/N'
            ].reshape([NT])
            sumN = numpy.sum(self.state['hpmc/convex_polygon/N'])

            self.state['hpmc/convex_polygon/vertices'] = numpy.ascontiguousarray(
                self.state['hpmc/convex_polygon/vertices'], dtype=numpy.float32
            )
            self.state['hpmc/convex_polygon/vertices'] = self.state[
                'hpmc/convex_polygon/vertices'
            ].reshape([sumN, 2])

        if 'hpmc/convex_spheropolygon/N' in self.state:
            self.state['hpmc/convex_spheropolygon/N'] = numpy.ascontiguousarray(
                self.state['hpmc/convex_spheropolygon/N'], dtype=numpy.uint32
            )
            self.state['hpmc/convex_spheropolygon/N'] = self.state[
                'hpmc/convex_spheropolygon/N'
            ].reshape([NT])
            sumN = numpy.sum(self.state['hpmc/convex_spheropolygon/N'])

            self.state['hpmc/convex_spheropolygon/sweep_radius'] = (
                numpy.ascontiguousarray(
                    self.state['hpmc/convex_spheropolygon/sweep_radius'],
                    dtype=numpy.float32,
                )
            )
            self.state['hpmc/convex_spheropolygon/sweep_radius'] = self.state[
                'hpmc/convex_spheropolygon/sweep_radius'
            ].reshape([NT])

            self.state['hpmc/convex_spheropolygon/vertices'] = numpy.ascontiguousarray(
                self.state['hpmc/convex_spheropolygon/vertices'], dtype=numpy.float32
            )
            self.state['hpmc/convex_spheropolygon/vertices'] = self.state[
                'hpmc/convex_spheropolygon/vertices'
            ].reshape([sumN, 2])

        if 'hpmc/simple_polygon/N' in self.state:
            self.state['hpmc/simple_polygon/N'] = numpy.ascontiguousarray(
                self.state['hpmc/simple_polygon/N'], dtype=numpy.uint32
            )
            self.state['hpmc/simple_polygon/N'] = self.state[
                'hpmc/simple_polygon/N'
            ].reshape([NT])
            sumN = numpy.sum(self.state['hpmc/simple_polygon/N'])

            self.state['hpmc/simple_polygon/vertices'] = numpy.ascontiguousarray(
                self.state['hpmc/simple_polygon/vertices'], dtype=numpy.float32
            )
            self.state['hpmc/simple_polygon/vertices'] = self.state[
                'hpmc/simple_polygon/vertices'
            ].reshape([sumN, 2])

        for k in self.state:
            if k not in self._valid_state:
                raise RuntimeError('Not a valid state: ' + k)


class _HOOMDTrajectoryIterable:
    """Iterable over a HOOMDTrajectory object."""

    def __init__(self, trajectory, indices):
        self._trajectory = trajectory
        self._indices = indices
        self._indices_iterator = iter(indices)

    def __next__(self):
        return self._trajectory[next(self._indices_iterator)]

    next = __next__  # Python 2.7 compatibility

    def __iter__(self):
        return type(self)(self._trajectory, self._indices)

    def __len__(self):
        return len(self._indices)


class _HOOMDTrajectoryView:
    """A view of a HOOMDTrajectory object.

    Enables the slicing and iteration over a subset of a trajectory
    instance.
    """

    def __init__(self, trajectory, indices):
        self._trajectory = trajectory
        self._indices = indices

    def __iter__(self):
        return _HOOMDTrajectoryIterable(self._trajectory, self._indices)

    def __len__(self):
        return len(self._indices)

    def __getitem__(self, key):
        if isinstance(key, slice):
            return type(self)(self._trajectory, self._indices[key])

        return self._trajectory[self._indices[key]]


class HOOMDTrajectory:
    """Read and write hoomd gsd files.

    Args:
        file (`gsd.fl.GSDFile`): File to access.

    Open hoomd GSD files with `open`.
    """

    def __init__(self, file):
        if file.mode == 'ab':
            msg = 'Append mode not yet supported'
            raise ValueError(msg)

        self._file = file
        self._initial_frame = None

        # Used to cache positive results when chunks exist in frame 0.
        self._chunk_exists_frame_0 = {}

        logger.info('opening HOOMDTrajectory: ' + str(self.file))

        if self.file.schema != 'hoomd':
            raise RuntimeError('GSD file is not a hoomd schema file: ' + str(self.file))
        valid = False
        version = self.file.schema_version
        if version < (2, 0) and version >= (1, 0):
            valid = True
        if not valid:
            raise RuntimeError(
                'Incompatible hoomd schema version '
                + str(version)
                + ' in: '
                + str(self.file)
            )

        logger.info('found ' + str(len(self)) + ' frames')

    @property
    def file(self):
        """:class:`gsd.fl.GSDFile`: The file handle."""
        return self._file

    def __len__(self):
        """The number of frames in the trajectory."""
        return self.file.nframes

    def append(self, frame):
        """Append a frame to a hoomd gsd file.

        Args:
            frame (:py:class:`Frame`): Frame to append.

        Write the given frame to the file at the current frame and increase
        the frame counter. Do not write any fields that are ``None``. For all
        non-``None`` fields, scan them and see if they match the initial frame
        or the default value. If the given data differs, write it out to the
        frame. If it is the same, do not write it out as it can be instantiated
        either from the value at the initial frame or the default value.
        """
        logger.debug('Appending frame to hoomd trajectory: ' + str(self.file))

        frame.validate()

        # want the initial frame specified as a reference to detect if chunks
        # need to be written
        if self._initial_frame is None and len(self) > 0:
            self._read_frame(0)

        for path in [
            'configuration',
            'particles',
            'bonds',
            'angles',
            'dihedrals',
            'impropers',
            'constraints',
            'pairs',
        ]:
            container = getattr(frame, path)
            for name in container._default_value:
                if self._should_write(path, name, frame):
                    logger.debug('writing data chunk: ' + path + '/' + name)
                    data = getattr(container, name)

                    if name == 'N':
                        data = numpy.array([data], dtype=numpy.uint32)
                    if name == 'step':
                        data = numpy.array([data], dtype=numpy.uint64)
                    if name == 'dimensions':
                        data = numpy.array([data], dtype=numpy.uint8)
                    if name in ('types', 'type_shapes'):
                        if name == 'type_shapes':
                            data = [json.dumps(shape_dict) for shape_dict in data]
                        wid = max(len(w) for w in data) + 1
                        b = numpy.array(data, dtype=numpy.dtype((bytes, wid)))
                        data = b.view(dtype=numpy.int8).reshape(len(b), wid)

                    self.file.write_chunk(path + '/' + name, data)

        # write state data
        for state, data in frame.state.items():
            self.file.write_chunk('state/' + state, data)

        # write log data
        for log, data in frame.log.items():
            self.file.write_chunk('log/' + log, data)

        self.file.end_frame()

    def truncate(self):
        """Remove all frames from the file."""
        self.file.truncate()
        self._initial_frame = None

    def close(self):
        """Close the file."""
        self.file.close()
        del self._initial_frame

    def _should_write(self, path, name, frame):
        """Test if we should write a given data chunk.

        Args:
            path (str): Path part of the data chunk.
            name (str): Name part of the data chunk.
            frame (:py:class:`Frame`): Frame data is from.

        Returns:
            False if the data matches that in the initial frame. False
            if the data matches all default values. True otherwise.
        """
        container = getattr(frame, path)
        data = getattr(container, name)

        if data is None:
            return False

        if self._initial_frame is not None:
            initial_container = getattr(self._initial_frame, path)
            initial_data = getattr(initial_container, name)
            if numpy.array_equal(initial_data, data):
                logger.debug(
                    'skipping data chunk, matches frame 0: ' + path + '/' + name
                )
                return False

        matches_default_value = False
        if name == 'types':
            matches_default_value = data == container._default_value[name]
        else:
            matches_default_value = numpy.array_equiv(
                data, container._default_value[name]
            )

        if matches_default_value and not self._chunk_exists_frame_0.get(
            path + '/' + name, False
        ):
            logger.debug('skipping data chunk, default value: ' + path + '/' + name)
            return False

        return True

    def extend(self, iterable):
        """Append each item of the iterable to the file.

        Args:
            iterable: An iterable object the provides :py:class:`Frame`
                instances. This could be another HOOMDTrajectory, a generator
                that modifies frames, or a list of frames.
        """
        for item in iterable:
            self.append(item)

    def _read_frame(self, idx):
        """Read the frame at the given index from the file.

        Args:
            idx (int): Frame index to read.

        Returns:
            `Frame` with the frame data

        Replace any data chunks not present in the given frame with either data
        from frame 0, or initialize from default values if not in frame 0. Cache
        frame 0 data to avoid file read overhead. Return any default data as
        non-writeable numpy arrays.
        """
        if idx >= len(self):
            raise IndexError

        logger.debug('reading frame ' + str(idx) + ' from: ' + str(self.file))

        if self._initial_frame is None and idx != 0:
            self._read_frame(0)

        frame = Frame()
        # read configuration first
        if self.file.chunk_exists(frame=idx, name='configuration/step'):
            step_arr = self.file.read_chunk(frame=idx, name='configuration/step')
            frame.configuration.step = step_arr[0]

            if idx == 0:
                self._chunk_exists_frame_0['configuration/step'] = True
        elif self._initial_frame is not None:
            frame.configuration.step = self._initial_frame.configuration.step
        else:
            frame.configuration.step = frame.configuration._default_value['step']

        if self.file.chunk_exists(frame=idx, name='configuration/dimensions'):
            dimensions_arr = self.file.read_chunk(
                frame=idx, name='configuration/dimensions'
            )
            frame.configuration.dimensions = dimensions_arr[0]

            if idx == 0:
                self._chunk_exists_frame_0['configuration/dimensions'] = True
        elif self._initial_frame is not None:
            frame.configuration.dimensions = (
                self._initial_frame.configuration.dimensions
            )
        else:
            frame.configuration.dimensions = frame.configuration._default_value[
                'dimensions'
            ]

        if self.file.chunk_exists(frame=idx, name='configuration/box'):
            frame.configuration.box = self.file.read_chunk(
                frame=idx, name='configuration/box'
            )

            if idx == 0:
                self._chunk_exists_frame_0['configuration/box'] = True
        elif self._initial_frame is not None:
            frame.configuration.box = copy.copy(self._initial_frame.configuration.box)
        else:
            frame.configuration.box = copy.copy(
                frame.configuration._default_value['box']
            )

        # then read all groups that have N, types, etc...
        for path in [
            'particles',
            'bonds',
            'angles',
            'dihedrals',
            'impropers',
            'constraints',
            'pairs',
        ]:
            container = getattr(frame, path)
            if self._initial_frame is not None:
                initial_frame_container = getattr(self._initial_frame, path)

            container.N = 0
            if self.file.chunk_exists(frame=idx, name=path + '/N'):
                N_arr = self.file.read_chunk(frame=idx, name=path + '/N')
                container.N = N_arr[0]

                if idx == 0:
                    self._chunk_exists_frame_0[path + '/N'] = True
            elif self._initial_frame is not None:
                container.N = initial_frame_container.N

            # type names
            if 'types' in container._default_value:
                if self.file.chunk_exists(frame=idx, name=path + '/types'):
                    tmp = self.file.read_chunk(frame=idx, name=path + '/types')
                    tmp = tmp.view(dtype=numpy.dtype((bytes, tmp.shape[1])))
                    tmp = tmp.reshape([tmp.shape[0]])
                    container.types = list(a.decode('UTF-8') for a in tmp)

                    if idx == 0:
                        self._chunk_exists_frame_0[path + '/types'] = True
                elif self._initial_frame is not None:
                    container.types = copy.copy(initial_frame_container.types)
                else:
                    container.types = copy.copy(container._default_value['types'])

            # type shapes
            if 'type_shapes' in container._default_value and path == 'particles':
                if self.file.chunk_exists(frame=idx, name=path + '/type_shapes'):
                    tmp = self.file.read_chunk(frame=idx, name=path + '/type_shapes')
                    tmp = tmp.view(dtype=numpy.dtype((bytes, tmp.shape[1])))
                    tmp = tmp.reshape([tmp.shape[0]])
                    container.type_shapes = list(
                        json.loads(json_string.decode('UTF-8')) for json_string in tmp
                    )

                    if idx == 0:
                        self._chunk_exists_frame_0[path + '/type_shapes'] = True
                elif self._initial_frame is not None:
                    container.type_shapes = copy.copy(
                        initial_frame_container.type_shapes
                    )
                else:
                    container.type_shapes = copy.copy(
                        container._default_value['type_shapes']
                    )

            for name in container._default_value:
                if name in ('N', 'types', 'type_shapes'):
                    continue

                # per particle/bond quantities
                if self.file.chunk_exists(frame=idx, name=path + '/' + name):
                    container.__dict__[name] = self.file.read_chunk(
                        frame=idx, name=path + '/' + name
                    )

                    if idx == 0:
                        self._chunk_exists_frame_0[path + '/' + name] = True
                else:
                    if (
                        self._initial_frame is not None
                        and initial_frame_container.N == container.N
                    ):
                        # read default from initial frame
                        container.__dict__[name] = initial_frame_container.__dict__[
                            name
                        ]
                    else:
                        # initialize from default value
                        tmp = numpy.array([container._default_value[name]])
                        s = list(tmp.shape)
                        s[0] = container.N
                        container.__dict__[name] = numpy.empty(shape=s, dtype=tmp.dtype)
                        container.__dict__[name][:] = tmp

                    container.__dict__[name].flags.writeable = False

        # read state data
        for state in frame._valid_state:
            if self.file.chunk_exists(frame=idx, name='state/' + state):
                frame.state[state] = self.file.read_chunk(
                    frame=idx, name='state/' + state
                )

        # read log data
        logged_data_names = self.file.find_matching_chunk_names('log/')
        for log in logged_data_names:
            if self.file.chunk_exists(frame=idx, name=log):
                frame.log[log[4:]] = self.file.read_chunk(frame=idx, name=log)

                if idx == 0:
                    self._chunk_exists_frame_0[log] = True
            elif self._initial_frame is not None:
                frame.log[log[4:]] = self._initial_frame.log[log[4:]]
                frame.log[log[4:]].flags.writeable = False

        # store initial frame
        if self._initial_frame is None and idx == 0:
            self._initial_frame = copy.deepcopy(frame)

        return frame

    def __getitem__(self, key):
        """Index trajectory frames.

        The index can be a positive integer, negative integer, or slice and is
        interpreted the same as `list` indexing.

        Warning:
            As you loop over frames, each frame is read from the file when it is
            reached in the iteration. Multiple passes may lead to multiple disk
            reads if the file does not fit in cache.
        """
        if isinstance(key, slice):
            return _HOOMDTrajectoryView(self, range(*key.indices(len(self))))

        if isinstance(key, int):
            if key < 0:
                key += len(self)
            if key >= len(self) or key < 0:
                raise IndexError()
            return self._read_frame(key)

        raise TypeError

    def __iter__(self):
        """Iterate over frames in the trajectory."""
        return _HOOMDTrajectoryIterable(self, range(len(self)))

    def __enter__(self):
        """Enter the context manager."""
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        """Close the file when the context manager exits."""
        self.file.close()

    def flush(self):
        """Flush all buffered frames to the file."""
        self._file.flush()


def open(name, mode='r'):  # noqa: A001 - allow shadowing builtin open
    """Open a hoomd schema GSD file.

    The return value of `open` can be used as a context manager.

    Args:
        name (str): File name to open.
        mode (str): File open mode.

    Returns:
        `HOOMDTrajectory` instance that accesses the file **name** with the
        given **mode**.

    Valid values for ``mode``:

    +------------------+---------------------------------------------+
    | mode             | description                                 |
    +==================+=============================================+
    | ``'r'``          | Open an existing file for reading.          |
    +------------------+---------------------------------------------+
    | ``'r+'``         | Open an existing file for reading and       |
    |                  | writing.                                    |
    +------------------+---------------------------------------------+
    | ``'w'``          | Open a file for reading and writing.        |
    |                  | Creates the file if needed, or overwrites   |
    |                  | an existing file.                           |
    +------------------+---------------------------------------------+
    | ``'x'``          | Create a gsd file exclusively and opens it  |
    |                  | for reading and writing.                    |
    |                  | Raise :py:exc:`FileExistsError`             |
    |                  | if it already exists.                       |
    +------------------+---------------------------------------------+
    | ``'a'``          | Open a file for reading and writing.        |
    |                  | Creates the file if it doesn't exist.       |
    +------------------+---------------------------------------------+

    """
    if not fl_imported:
        msg = 'file layer module is not available'
        raise RuntimeError(msg)
    if gsd is None:
        msg = 'gsd module is not available'
        raise RuntimeError(msg)

    gsdfileobj = gsd.fl.open(
        name=str(name),
        mode=mode,
        application='gsd.hoomd ' + gsd.version.version,
        schema='hoomd',
        schema_version=[1, 4],
    )

    return HOOMDTrajectory(gsdfileobj)


def read_log(name, scalar_only=False):
    """Read log from a hoomd schema GSD file into a dict of time-series arrays.

    Args:
        name (str): File name to open.
        scalar_only (bool): Set to `True` to include only scalar log values.

    The log data includes :chunk:`configuration/step` and all matching
    :chunk:`log/user_defined`, :chunk:`log/bonds/user_defined`, and
    :chunk:`log/particles/user_defined` quantities in the file.

    Returns:
        `dict`

    Note:
        `read_log` issues a `RuntimeWarning` when there are no matching
        ``log/`` quantities in the file.

    Caution:
        `read_log` requires that a logged quantity has the same shape in all
        frames. Use `open` and `Frame.log` to read files where the shape
        changes from frame to frame.

    To create a *pandas* ``DataFrame`` with the logged data:

    .. ipython:: python

        import pandas

        df = pandas.DataFrame(gsd.hoomd.read_log('log-example.gsd',
                                                  scalar_only=True))
        df
    """
    if not fl_imported:
        msg = 'file layer module is not available'
        raise RuntimeError(msg)
    if gsd is None:
        msg = 'gsd module is not available'
        raise RuntimeError(msg)

    min_supported_numpy = 2
    if int(numpy.version.version.split('.')[0]) < min_supported_numpy:
        msg = 'read_log requires numpy >= 2.0'
        raise RuntimeError(msg)

    with gsd.fl.open(
        name=str(name),
        mode='r',
        application='gsd.hoomd ' + gsd.version.version,
        schema='hoomd',
        schema_version=[1, 4],
    ) as gsdfileobj:
        logged_data_names = gsdfileobj.find_matching_chunk_names('log/')
        # Always log timestep associated with each log entry
        logged_data_names.insert(0, 'configuration/step')
        if len(logged_data_names) == 1:
            warnings.warn(
                'No logged data in file: ' + str(name), RuntimeWarning, stacklevel=2
            )

        logged_data_dict = dict()
        for log in logged_data_names:
            log_exists_frame_0 = gsdfileobj.chunk_exists(frame=0, name=log)
            is_configuration_step = log == 'configuration/step'

            if log_exists_frame_0 or is_configuration_step:
                if is_configuration_step and not log_exists_frame_0:
                    # handle default configuration step on frame 0
                    tmp = numpy.array([0], dtype=numpy.uint64)
                else:
                    tmp = gsdfileobj.read_chunk(frame=0, name=log)
                    # if chunk contains string, put it in the numpy array
                    if isinstance(tmp, str):
                        tmp = numpy.array([tmp], dtype=numpy.dtypes.StringDType)

                if scalar_only and not tmp.shape[0] == 1:
                    continue
                if tmp.shape[0] == 1:
                    logged_data_dict[log] = numpy.full(
                        fill_value=tmp[0],
                        shape=(gsdfileobj.nframes,),
                        dtype=tmp.dtype,
                    )
                else:
                    logged_data_dict[log] = numpy.tile(
                        tmp, (gsdfileobj.nframes, *tuple(1 for _ in tmp.shape))
                    )

            for idx in range(1, gsdfileobj.nframes):
                for key in logged_data_dict.keys():
                    if not gsdfileobj.chunk_exists(frame=idx, name=key):
                        continue
                    data = gsdfileobj.read_chunk(frame=idx, name=key)
                    if (
                        not isinstance(
                            logged_data_dict[key].dtype, numpy.dtypes.StringDType
                        )
                        and len(logged_data_dict[key][idx].shape) == 0
                    ):
                        logged_data_dict[key][idx] = data[0]
                    else:
                        logged_data_dict[key][idx] = data

    return logged_data_dict