1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
Metadata-Version: 2.1
Name: gtfparse
Version: 1.3.0
Summary: GTF Parsing
Home-page: https://github.com/openvax/gtfparse
Author: Alex Rubinsteyn
License: http://www.apache.org/licenses/LICENSE-2.0.html
Classifier: Development Status :: 4 - Beta
Classifier: Environment :: Console
Classifier: Operating System :: OS Independent
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Programming Language :: Python
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics
Description-Content-Type: text/markdown
License-File: LICENSE
[](https://travis-ci.org/openvax/gtfparse) [](https://coveralls.io/github/openvax/gtfparse?branch=master)
<a href="https://pypi.python.org/pypi/gtfparse/">
<img src="https://img.shields.io/pypi/v/gtfparse.svg?maxAge=1000" alt="PyPI" />
</a>
gtfparse
========
Parsing tools for GTF (gene transfer format) files.
# Example usage
## Parsing all rows of a GTF file into a Pandas DataFrame
```python
from gtfparse import read_gtf
# returns GTF with essential columns such as "feature", "seqname", "start", "end"
# alongside the names of any optional keys which appeared in the attribute column
df = read_gtf("gene_annotations.gtf")
# filter DataFrame to gene entries on chrY
df_genes = df[df["feature"] == "gene"]
df_genes_chrY = df_genes[df_genes["seqname"] == "Y"]
```
## Getting gene FPKM values from a StringTie GTF file
```python
from gtfparse import read_gtf
df = read_gtf(
"Transcripts.gtf",
column_converters={"FPKM": float})
gene_fpkms = {
gene_name: fpkm
for (gene_name, fpkm, feature)
in zip(df["seqname"], df["FPKM"], df["feature"])
if feature == "gene"
}
```
|