File: README.md

package info (click to toggle)
python-gtfparse 1.3.0%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 224 kB
  • sloc: python: 583; makefile: 12; sh: 8
file content (44 lines) | stat: -rw-r--r-- 1,283 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
[![Build Status](https://travis-ci.org/openvax/gtfparse.svg?branch=master)](https://travis-ci.org/openvax/gtfparse) [![Coverage Status](https://coveralls.io/repos/openvax/gtfparse/badge.svg?branch=master&service=github)](https://coveralls.io/github/openvax/gtfparse?branch=master)
<a href="https://pypi.python.org/pypi/gtfparse/">
    <img src="https://img.shields.io/pypi/v/gtfparse.svg?maxAge=1000" alt="PyPI" />
</a>

gtfparse
========
Parsing tools for GTF (gene transfer format) files.

# Example usage

## Parsing all rows of a GTF file into a Pandas DataFrame

```python
from gtfparse import read_gtf

# returns GTF with essential columns such as "feature", "seqname", "start", "end"
# alongside the names of any optional keys which appeared in the attribute column
df = read_gtf("gene_annotations.gtf")

# filter DataFrame to gene entries on chrY
df_genes = df[df["feature"] == "gene"]
df_genes_chrY = df_genes[df_genes["seqname"] == "Y"]
```


## Getting gene FPKM values from a StringTie GTF file

```python
from gtfparse import read_gtf

df = read_gtf(
    "Transcripts.gtf",
    column_converters={"FPKM": float})

gene_fpkms = {
    gene_name: fpkm
    for (gene_name, fpkm, feature)
    in zip(df["seqname"], df["FPKM"], df["feature"])
    if feature == "gene"
}
```