1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
|
# For details on how netCDF4 builds on HDF5:
# https://docs.unidata.ucar.edu/netcdf-c/current/file_format_specifications.html#netcdf_4_spec
import os.path
import warnings
import weakref
from collections import ChainMap, Counter, OrderedDict, defaultdict
from collections.abc import Mapping
import h5py
import numpy as np
from packaging import version
from . import __version__
from .attrs import Attributes
from .dimensions import Dimension, Dimensions
from .utils import Frozen
try:
import h5pyd
except ImportError:
no_h5pyd = True
else:
no_h5pyd = False
NOT_A_VARIABLE = b"This is a netCDF dimension but not a netCDF variable."
def _join_h5paths(parent_path, child_path):
return "/".join([parent_path.rstrip("/"), child_path.lstrip("/")])
def _name_from_dimension(dim):
# First value in a dimension is the actual dimension scale
# which we'll use to extract the name.
return dim[0].name.split("/")[-1]
class CompatibilityError(Exception):
"""Raised when using features that are not part of the NetCDF4 API."""
def _invalid_netcdf_feature(feature, allow):
if not allow:
msg = (
f"{feature} are not a supported NetCDF feature, and are not allowed by "
"h5netcdf unless invalid_netcdf=True."
)
raise CompatibilityError(msg)
def _transform_1d_boolean_indexers(key):
"""Find and transform 1D boolean indexers to int"""
# return key, if not iterable
try:
key = [
(
np.asanyarray(k).nonzero()[0]
if isinstance(k, (np.ndarray, list)) and type(k[0]) in (bool, np.bool_)
else k
)
for k in key
]
except TypeError:
return key
return tuple(key)
def _expanded_indexer(key, ndim):
"""Expand indexing key to tuple with length equal the number of dimensions."""
# ToDo: restructure this routine to gain more performance
# short circuit, if we have only slice
if key is tuple and all(isinstance(k, slice) for k in key):
return key
# always return tuple and force colons to slices
key = np.index_exp[key]
# dimensions
len_key = len(key)
# find Ellipsis
ellipsis = [i for i, k in enumerate(key) if k is Ellipsis]
if len(ellipsis) > 1:
raise IndexError(
f"an index can only have a single ellipsis ('...'), {len(ellipsis)} given"
)
else:
# expand Ellipsis wherever it is
len_key -= len(ellipsis)
res_dim_cnt = ndim - len_key
res_dims = res_dim_cnt * (slice(None),)
ellipsis = ellipsis[0] if ellipsis else None
# check for correct dimensionality
if ndim and res_dim_cnt < 0:
raise IndexError(
f"too many indices for array: array is {ndim}-dimensional, but {len_key} were indexed"
)
# convert remaining integer indices to slices
key = tuple([slice(k, k + 1) if isinstance(k, int) else k for k in key])
# slices to build resulting key
k1 = slice(ellipsis)
k2 = slice(len_key, None) if ellipsis is None else slice(ellipsis + 1, None)
return key[k1] + res_dims + key[k2]
class BaseObject:
def __init__(self, parent, name):
self._parent_ref = weakref.ref(parent)
self._root_ref = weakref.ref(parent._root)
self._h5path = _join_h5paths(parent.name, name)
@property
def _parent(self):
return self._parent_ref()
@property
def _root(self):
return self._root_ref()
@property
def _h5ds(self):
# Always refer to the root file and store not h5py object
# subclasses:
return self._root._h5file[self._h5path]
@property
def name(self):
"""Return object name."""
return self._h5ds.name
@property
def dtype(self):
"""Return NumPy dtype giving object’s dtype."""
return self._h5ds.dtype
_h5type_mapping = {
"H5T_INTEGER": 0,
"H5T_FLOAT": 1,
"H5T_STRING": 3,
"H5T_COMPOUND": 6,
"H5T_ENUM": 8,
"H5T_VLEN": 9,
}
def _get_h5usertype_identifier(h5type):
"""Return H5 Type Identifier from given H5 Datatype."""
try:
# h5py first
h5typeid = h5type.id.get_class()
except AttributeError:
# h5pyd second
h5typeid = _h5type_mapping[h5type.id.type_json["class"]]
return h5typeid
def _get_h5dstype_identifier(h5type):
"""Return H5 Type Identifier from given H5 Dataset."""
try:
# h5py first
h5typeid = h5type.id.get_type().get_class()
except AttributeError:
# h5pyd second
h5typeid = _h5type_mapping[h5type.id.type_json["class"]]
return h5typeid
class UserType(BaseObject):
_cls_name = "h5netcdf.UserType"
@property
def name(self):
"""Return user type name."""
# strip hdf5 path
return super().name.split("/")[-1]
def __repr__(self):
if self._parent._root._closed:
return f"<Closed {self._cls_name!r}>"
header = f"<class {self._cls_name!r}: name = {self.name!r}, numpy dtype = {self.dtype!r}"
return header
@property
def _h5type_identifier(self):
"""Returns type identifier.
See https://api.h5py.org/h5t.html#datatype-class-codes and
https://docs.hdfgroup.org (enum H5T_class_t)
"""
return _get_h5usertype_identifier(self._h5ds)
@property
def _h5datatype(self):
"""Returns comparable h5type.
- DatatypeID for h5py
- (dtype, dtype.metadata) for h5pyd
"""
if self._root._h5py.__name__ == "h5py":
return self._h5ds.id
else:
return self.dtype, self.dtype.metadata
class EnumType(UserType):
_cls_name = "h5netcdf.EnumType"
@property
def enum_dict(self):
"""Dictionary containing the Enum field/value pairs."""
return self.dtype.metadata["enum"]
def __repr__(self):
return super().__repr__() + f", fields / values = {self.enum_dict!r}"
class VLType(UserType):
_cls_name = "h5netcdf.VLType"
def _string_to_char_array_dtype(dtype):
"""Converts fixed string to char array dtype."""
if dtype.kind == "c":
return None
return np.dtype(
{
name: (
np.dtype(("S1", fmt.itemsize)) if fmt.kind == "S" else fmt,
offset,
)
for name, (fmt, offset) in dtype.fields.items()
}
)
def _char_array_to_string_dtype(dtype):
"""Converts char array to fixed string dtype."""
if dtype.kind == "c":
return None
return np.dtype(
{
name: (
np.dtype(f"S{fmt.shape[0]}") if fmt.base == "S1" else fmt,
offset,
)
for name, (fmt, offset) in dtype.fields.items()
}
)
class CompoundType(UserType):
_cls_name = "h5netcdf.CompoundType"
@property
def dtype_view(self):
return _char_array_to_string_dtype(self.dtype)
class BaseVariable(BaseObject):
def __init__(self, parent, name, dimensions=None):
super().__init__(parent, name)
self._dimensions = dimensions
self._initialized = True
@property
def name(self):
"""Return variable name."""
# fix name if _nc4_non_coord_
return super().name.replace("_nc4_non_coord_", "")
def _lookup_dimensions(self):
attrs = self._h5ds.attrs
# coordinate variable and dimension, eg. 1D ("time") or 2D string variable
if (
"_Netcdf4Coordinates" in attrs
and attrs.get("CLASS", None) == b"DIMENSION_SCALE"
):
order_dim = {
value._dimid: key for key, value in self._parent._all_dimensions.items()
}
return tuple(
order_dim[coord_id] for coord_id in attrs["_Netcdf4Coordinates"]
)
# normal variable carrying DIMENSION_LIST
# extract hdf5 file references and get objects name
if "DIMENSION_LIST" in attrs:
# check if malformed variable and raise
if _unlabeled_dimension_mix(self._h5ds) == "labeled":
# If a dimension has attached more than one scale for some reason, then
# take the last one. This is in line with netcdf-c and netcdf4-python.
return tuple(
self._root._h5file[ref[-1]].name.split("/")[-1]
for ref in list(self._h5ds.attrs.get("DIMENSION_LIST", []))
)
# need to use the h5ds name here to distinguish from collision dimensions
child_name = self._h5ds.name.split("/")[-1]
if child_name in self._parent._all_dimensions:
return (child_name,)
dims = []
phony_dims = defaultdict(int)
for axis, dim in enumerate(self._h5ds.dims):
if len(dim):
name = _name_from_dimension(dim)
else:
# if unlabeled dimensions are found
if self._root._phony_dims_mode is None:
raise ValueError(
f"variable {self.name!r} has no dimension scale "
f"associated with axis {axis}. \n"
f"Use phony_dims='sort' for sorted naming or "
f"phony_dims='access' for per access naming."
)
else:
# get current dimension
dimsize = self._h5ds.shape[axis]
# get dimension names
dim_names = [
d.name
# for phony dims we need to look only in the current group
for d in self._parent._all_dimensions.maps[0].values()
if d.size == dimsize
]
# extract wanted dimension name
name = dim_names[phony_dims[dimsize]].split("/")[-1]
phony_dims[dimsize] += 1
dims.append(name)
return tuple(dims)
def _attach_dim_scales(self):
"""Attach dimension scales"""
for n, dim in enumerate(self.dimensions):
# find and attach dimensions also in parent groups
self._h5ds.dims[n].attach_scale(self._parent._all_dimensions[dim]._h5ds)
def _attach_coords(self):
dims = self.dimensions
# find dimensions also in parent groups
coord_ids = np.array(
[self._parent._all_dimensions[d]._dimid for d in dims],
"int32",
)
if len(coord_ids) > 1:
self._h5ds.attrs["_Netcdf4Coordinates"] = coord_ids
def _ensure_dim_id(self):
"""Set _Netcdf4Dimid"""
# set _Netcdf4Dimid, use id of first dimension
# netCDF4 does this when the first variable's data is written
if self.dimensions and not self._h5ds.attrs.get("_Netcdf4Dimid", False):
dim = self._parent._all_h5groups[self.dimensions[0]]
if "_Netcdf4Dimid" in dim.attrs:
self._h5ds.attrs["_Netcdf4Dimid"] = dim.attrs["_Netcdf4Dimid"]
def _maybe_resize_dimensions(self, key, value):
"""Resize according to given (expanded) key with respect to variable dimensions"""
new_shape = ()
v = None
for i, dim in enumerate(self.dimensions):
# is unlimited dimensions (check in all dimensions)
if self._parent._all_dimensions[dim].isunlimited():
if key[i].stop is None:
# if stop is None, get dimensions from value,
# they must match with variable dimension
if v is None:
v = np.asarray(value)
if v.ndim == self.ndim:
new_max = max(v.shape[i], self._h5ds.shape[i])
elif v.ndim == 0:
# for scalars we take the current dimension size (check in all dimensions
new_max = self._parent._all_dimensions[dim].size
else:
raise IndexError("shape of data does not conform to slice")
else:
new_max = max(key[i].stop, self._h5ds.shape[i])
# resize unlimited dimension if needed but no other variables
# this is in line with `netcdf4-python` which only resizes
# the dimension and this variable
if self._parent._all_dimensions[dim].size < new_max:
self._parent.resize_dimension(dim, new_max)
new_shape += (new_max,)
else:
new_shape += (self._parent._all_dimensions[dim].size,)
# increase variable size if shape is changing
if self._h5ds.shape != new_shape:
self._h5ds.resize(new_shape)
def _add_fillvalue(self, fillvalue):
"""Add _FillValue attribute.
This method takes care of adding fillvalue with the wanted
variable dtype.
"""
# trying to create correct type of fillvalue
if self.dtype is str:
value = fillvalue
else:
# todo: this always checks for dtype.metadata
string_info = self._root._h5py.check_string_dtype(self.dtype)
enum_info = self._root._h5py.check_enum_dtype(self.dtype)
if (
string_info
and string_info.length is not None
and string_info.length > 1
) or enum_info:
value = fillvalue
else:
value = self.dtype.type(fillvalue)
self.attrs["_FillValue"] = value
@property
def dimensions(self):
"""Return variable dimension names."""
if self._dimensions is None:
self._dimensions = self._lookup_dimensions()
return self._dimensions
@property
def shape(self):
"""Return current sizes of all variable dimensions."""
# return actual dimensions sizes, this is in line with netcdf4-python
return tuple([self._parent._all_dimensions[d].size for d in self.dimensions])
@property
def ndim(self):
"""Return number of variable dimensions."""
return len(self.shape)
def __len__(self):
return self.shape[0]
@property
def _h5type_identifier(self):
"""Returns type identifier.
See https://api.h5py.org/h5t.html#datatype-class-codes and
https://docs.hdfgroup.org (enum H5T_class_t)
"""
return _get_h5dstype_identifier(self._h5ds)
@property
def _h5datatype(self):
"""Returns comparable h5type.
This property can be used to compare two variables/datatypes or
a variable and a datatype for equality of the underlying datatype.
- DatatypeID for h5py
- (dtype, dtype.metadata) for h5pyd
"""
if self._root._h5py.__name__ == "h5py":
return self._h5ds.id.get_type()
else:
return self.dtype, self.dtype.metadata
@property
def datatype(self):
"""Return datatype.
Returns numpy dtype (for primitive types) or VLType/CompoundType/EnumType
instance (for compound, vlen or enum data types).
"""
# this is really painful as we have to iterate over all types
# and check equality
usertype = self._parent._get_usertype_dict(self._h5type_identifier)
if usertype is not None:
for tid in usertype.values():
if self._h5datatype == tid._h5datatype:
return tid
return self.dtype
def _get_padding(self, key):
"""Return padding if needed, defaults to False."""
padding = False
if self.dtype != str and self.dtype.kind in ["f", "i", "u"]:
key0 = _expanded_indexer(key, self.ndim)
key0 = _transform_1d_boolean_indexers(key0)
# extract max shape of key vs hdf5-shape
h5ds_shape = self._h5ds.shape
shape = self.shape
# check for ndarray and list
# see https://github.com/pydata/xarray/issues/7154
# first get maximum index
max_index = [
max(k) + 1 if isinstance(k, (np.ndarray, list)) else k.stop
for k in key0
]
# second convert to max shape
max_shape = tuple(
[
shape[i] if k is None else max(h5ds_shape[i], k)
for i, k in enumerate(max_index)
]
)
# check if hdf5 dataset dimensions are smaller than
# their respective netcdf dimensions
sdiff = [d0 - d1 for d0, d1 in zip(max_shape, h5ds_shape)]
# create padding only if hdf5 dataset is smaller than netcdf dimension
if sum(sdiff):
padding = [(0, s) for s in sdiff]
return padding
def __array__(self, *args, **kwargs):
return self._h5ds.__array__(*args, **kwargs)
def __getitem__(self, key):
from .legacyapi import Dataset
if isinstance(self._parent._root, Dataset):
# this is only for legacyapi
# fix boolean indexing for affected versions
# https://github.com/h5py/h5py/pull/2079
# https://github.com/h5netcdf/h5netcdf/pull/125/
h5py_version = version.parse(h5py.__version__)
if version.parse("3.0.0") <= h5py_version < version.parse("3.7.0"):
key = _transform_1d_boolean_indexers(key)
if getattr(self._root, "decode_vlen_strings", False):
string_info = self._root._h5py.check_string_dtype(self._h5ds.dtype)
if string_info and string_info.length is None:
return self._h5ds.asstr()[key]
# get padding
padding = self._get_padding(key)
# apply padding with fillvalue (both api)
if padding:
fv = self.dtype.type(self._h5ds.fillvalue)
h5ds = np.pad(
self._h5ds,
pad_width=padding,
mode="constant",
constant_values=fv,
)
else:
h5ds = self._h5ds
if (
isinstance(self.datatype, CompoundType)
and (view := self.datatype.dtype_view) is not None
):
return h5ds[key].view(view)
else:
return h5ds[key]
def __setitem__(self, key, value):
from .legacyapi import Dataset
# check if provided values match enumtype values
if enum_dict := self._root._h5py.check_enum_dtype(self.dtype):
mask = np.isin(value, list(enum_dict.values()))
wrong = set(np.asanyarray(value)[~mask])
if not mask.all():
raise ValueError(
f"Trying to assign illegal value(s) {wrong!r} to Enum variable {self.name!r}."
f" Valid values are {dict(enum_dict)!r}."
)
if isinstance(self._parent._root, Dataset):
# resize on write only for legacyapi
key = _expanded_indexer(key, self.ndim)
key = _transform_1d_boolean_indexers(key)
# resize on write only for legacy API
self._maybe_resize_dimensions(key, value)
if (
isinstance(self.datatype, CompoundType)
and (view := _string_to_char_array_dtype(self.datatype.dtype)) is not None
):
self._h5ds[key] = value.view(view)
else:
self._h5ds[key] = value
@property
def attrs(self):
"""Return variable attributes."""
return Attributes(
self._h5ds.attrs, self._root._check_valid_netcdf_dtype, self._root._h5py
)
_cls_name = "h5netcdf.Variable"
def __repr__(self):
if self._parent._root._closed:
return f"<Closed {self._cls_name}>"
header = f"<{self._cls_name} {self.name!r}: dimensions {self.dimensions}, shape {self.shape}, dtype {self.dtype}>"
return "\n".join(
[header]
+ ["Attributes:"]
+ [f" {k}: {v!r}" for k, v in self.attrs.items()]
)
class Variable(BaseVariable):
@property
def chunks(self):
if self.shape == ():
# In HSDS, the layout can be chunked even for scalar datasets, but with only a single chunk.
# Return None for scalar datasets since they shall be handled as non-chunked.
assert self._h5ds.chunks in (None, (), (1,))
return None
return self._h5ds.chunks
@property
def compression(self):
return self._h5ds.compression
@property
def compression_opts(self):
return self._h5ds.compression_opts
@property
def fletcher32(self):
return self._h5ds.fletcher32
@property
def shuffle(self):
return self._h5ds.shuffle
class _LazyObjectLookup(Mapping):
def __init__(self, parent, object_cls):
self._parent_ref = weakref.ref(parent)
self._object_cls = object_cls
self._objects = OrderedDict()
@property
def _parent(self):
return self._parent_ref()
def __setitem__(self, name, obj):
self._objects[name] = obj
def add(self, name):
self._objects[name] = None
def __iter__(self):
for name in self._objects:
# fix variable name for variable which clashes with dim name
yield name.replace("_nc4_non_coord_", "")
def __len__(self):
return len(self._objects)
def __getitem__(self, key):
# check for _nc4_non_coord_ variable
if key not in self._objects and "_nc4_non_coord_" + key in self._objects:
key = "_nc4_non_coord_" + key
if self._objects[key] is not None:
return self._objects[key]
else:
self._objects[key] = self._object_cls(self._parent, key)
return self._objects[key]
def _netcdf_dimension_but_not_variable(h5py_dataset):
return NOT_A_VARIABLE in h5py_dataset.attrs.get("NAME", b"")
def _unlabeled_dimension_mix(h5py_dataset):
# check if dataset has dims and get it
dimlist = getattr(h5py_dataset, "dims", [])
if not dimlist:
status = "nodim"
else:
dimset = {len(j) for j in dimlist}
# either all dimensions have exactly one scale
# or all dimensions have no scale
if dimset ^ {0} == set():
status = "unlabeled"
elif dimset & {0}:
name = h5py_dataset.name.split("/")[-1]
raise ValueError(
f"malformed variable {name} has mixing of labeled and "
"unlabeled dimensions."
)
else:
status = "labeled"
return status
def _check_dtype(group, dtype):
"""Check and handle dtypes when adding variable to given group.
Raises errors and issues warnings according to given dtype.
"""
if dtype == np.bool_:
# never warn since h5netcdf has always errored here
_invalid_netcdf_feature(
"boolean dtypes",
group._root.invalid_netcdf,
)
else:
group._root._check_valid_netcdf_dtype(dtype)
# we only allow h5netcdf user types, not named h5py.Datatype
if isinstance(dtype, group._root._h5py.Datatype):
raise TypeError(
f"Argument dtype {dtype!r} is not allowed. "
f"Please provide h5netcdf user type or numpy compatible type."
)
# is user type is given extract underlying h5py object
# we just use the h5py user type here
if isinstance(dtype, (EnumType, VLType, CompoundType)):
h5type = dtype._h5ds
if dtype._root._h5file.filename != group._root._h5file.filename:
raise TypeError(
f"Given dtype {dtype} is not committed into current file"
f" {group._root._h5file.filename}. Instead it's committed into"
f" file {dtype._root._h5file.filename}"
)
# check if committed type can be accessed in current group hierarchy
user_type = group._get_usertype(h5type)
if user_type is None:
msg = (
f"Given dtype {dtype.name!r} is not accessible in current group"
f" {group._h5group.name!r} or any parent group. Instead it's defined at"
f" {h5type.name!r}. Please create it in the current or any parent group."
)
raise TypeError(msg)
# this checks for committed types which are overridden by re-definitions
elif (actual := user_type._h5ds.name) != h5type.name:
msg = (
f"Given dtype {dtype.name!r} is defined at {h5type.name!r}."
f" Another dtype with same name is defined at {actual!r} and"
f" would override it."
)
raise TypeError(msg)
elif np.dtype(dtype).kind == "c":
itemsize = np.dtype(dtype).itemsize
try:
width = {8: "FLOAT", 16: "DOUBLE"}[itemsize]
except KeyError as e:
raise TypeError(
"Currently only 'complex64' and 'complex128' dtypes are allowed."
) from e
dname = f"_PFNC_{width}_COMPLEX_TYPE"
# todo check compound type for existing complex types
# which may be used here
# if dname is not available in current group-path
# create and commit type in current group
if dname not in group._all_cmptypes:
dtype = group.create_cmptype(dtype, dname).dtype
return dtype
def _check_fillvalue(group, fillvalue, dtype):
"""Handles fillvalues when adding variable to given group.
Raises errors and issues warnings according to
given fillvalue and dtype.
"""
# handling default fillvalues for legacyapi
# see https://github.com/h5netcdf/h5netcdf/issues/182
from .legacyapi import Dataset, _get_default_fillvalue
stacklevel = 5 if isinstance(group._root, Dataset) else 4
h5fillvalue = fillvalue
# if no fillvalue is provided take netcdf4 default values for legacyapi
if fillvalue is None:
if isinstance(group._root, Dataset):
h5fillvalue = _get_default_fillvalue(dtype)
# handling for EnumType
if dtype is not None and isinstance(dtype, EnumType):
if fillvalue is None:
# 1. we need to warn the user that writing enums with default values
# which are defined in the enum dict will mask those values
if (h5fillvalue or 0) in dtype.enum_dict.values():
reverse = {v: k for k, v in dtype.enum_dict.items()}
msg = (
f"Creating variable with default fill_value {h5fillvalue or 0!r}"
f" which IS defined in enum type {dtype!r}."
f" This will mask entry {{{reverse[h5fillvalue or 0]!r}: {h5fillvalue or 0!r}}}."
)
warnings.warn(msg, stacklevel=stacklevel)
else:
# 2. we need to raise if the default fillvalue is not within the enum dict
if (
h5fillvalue is not None
and h5fillvalue not in dtype.enum_dict.values()
):
msg = (
f"Creating variable with default fill_value {h5fillvalue!r}"
f" which IS NOT defined in enum type {dtype!r}."
f" Please provide a fitting fill_value or enum type."
)
raise ValueError(msg)
if h5fillvalue is None and 0 not in dtype.enum_dict.values():
# 3. we should inform the user that a fillvalue of '0'
# will be interpreted as _UNDEFINED in netcdf-c
# if it is not defined in the enum dict
msg = (
f"Creating variable with default fill_value {0!r}"
f" which IS NOT defined in enum type {dtype!r}."
f" Value {0!r} will be interpreted as '_UNDEFINED' by netcdf-c."
)
warnings.warn(msg, stacklevel=stacklevel)
else:
if h5fillvalue not in dtype.enum_dict.values():
# 4. we should inform the user that a fillvalue of '0'
# will be interpreted as _UNDEFINED in netcdf-c
# if it is not defined in the enum dict
if h5fillvalue == 0:
msg = (
f"Creating variable with specified fill_value {h5fillvalue!r}"
f" which IS NOT defined in enum type {dtype!r}."
f" Value {0!r} will be interpreted as '_UNDEFINED' by netcdf-c."
)
warnings.warn(msg, stacklevel=stacklevel)
# 5. we need to raise if the fillvalue is not within the enum_dict
else:
msg = (
f"Creating variable with specified fill_value {h5fillvalue!r}"
f" which IS NOT defined in enum type {dtype!r}."
f" Please provide a matching fill_value or enum type."
)
raise ValueError(msg)
if fillvalue is not None:
# cast to wanted type
fillvalue = np.array(h5fillvalue).astype(dtype)
h5fillvalue = fillvalue
return fillvalue, h5fillvalue
class Group(Mapping):
_variable_cls = Variable
_dimension_cls = Dimension
_enumtype_cls = EnumType
_vltype_cls = VLType
_cmptype_cls = CompoundType
@property
def _group_cls(self):
return Group
def __init__(self, parent, name):
"""Create netCDF4 group.
Groups are containers by which the netCDF4 (HDF5) files are organized.
Each group is like a Dataset itself.
"""
self._parent_ref = weakref.ref(parent)
self._root_ref = weakref.ref(parent._root)
self._h5path = _join_h5paths(parent._h5path, name)
self._dimensions = Dimensions(self)
self._enumtypes = _LazyObjectLookup(self, self._enumtype_cls)
self._vltypes = _LazyObjectLookup(self, self._vltype_cls)
self._cmptypes = _LazyObjectLookup(self, self._cmptype_cls)
# this map keeps track of all dimensions
if parent is self:
self._all_dimensions = ChainMap(self._dimensions)
self._all_enumtypes = ChainMap(self._enumtypes)
self._all_vltypes = ChainMap(self._vltypes)
self._all_cmptypes = ChainMap(self._cmptypes)
else:
self._all_dimensions = parent._all_dimensions.new_child(self._dimensions)
self._all_h5groups = parent._all_h5groups.new_child(self._h5group)
self._all_enumtypes = parent._all_enumtypes.new_child(self._enumtypes)
self._all_vltypes = parent._all_vltypes.new_child(self._vltypes)
self._all_cmptypes = parent._all_cmptypes.new_child(self._cmptypes)
self._variables = _LazyObjectLookup(self, self._variable_cls)
self._groups = _LazyObjectLookup(self, self._group_cls)
# initialize phony dimension counter
if self._root._phony_dims_mode is not None:
phony_dims = Counter()
for k, v in self._h5group.items():
if isinstance(v, self._root._h5py.Group):
# add to the groups collection if this is a h5py(d) Group
# instance
self._groups.add(k)
elif isinstance(v, self._root._h5py.Datatype):
# add usertypes (enum, vlen, compound)
self._add_usertype(v)
else:
if v.attrs.get("CLASS") == b"DIMENSION_SCALE":
# add dimension and retrieve size
self._dimensions.add(k)
else:
if self._root._phony_dims_mode is not None:
# check if malformed variable and raise
if _unlabeled_dimension_mix(v) == "unlabeled":
# if unscaled variable, get phony dimensions
phony_dims |= Counter(v.shape)
if not _netcdf_dimension_but_not_variable(v):
if isinstance(v, self._root._h5py.Dataset):
self._variables.add(k)
# iterate over found phony dimensions and create them
if self._root._phony_dims_mode is not None:
# retrieve labeled dims count from already acquired dimensions
labeled_dims = Counter(
[d._maxsize for d in self._dimensions.values() if not d._phony]
)
for size, cnt in phony_dims.items():
# only create missing dimensions
for pcnt in range(labeled_dims[size], cnt):
name = self._root._phony_dim_count
# for sort mode, we need to add precalculated max_dim_id + 1
if self._root._phony_dims_mode == "sort":
name += self._root._max_dim_id + 1
name = f"phony_dim_{name}"
self._dimensions.add_phony(name, size)
self._initialized = True
@property
def _root(self):
return self._root_ref()
@property
def _parent(self):
return self._parent_ref()
@property
def _h5group(self):
# Always refer to the root file and store not h5py object
# subclasses:
return self._root._h5file[self._h5path]
@property
def _track_order(self):
if self._root._h5py.__name__ == "h5pyd":
return False
# TODO: make a suggestion to upstream to create a property
# for files to get if they track the order
# As of version 3.6.0 this property did not exist
from h5py.h5p import CRT_ORDER_INDEXED, CRT_ORDER_TRACKED
gcpl = self._h5group.id.get_create_plist()
attr_creation_order = gcpl.get_attr_creation_order()
order_tracked = bool(attr_creation_order & CRT_ORDER_TRACKED)
order_indexed = bool(attr_creation_order & CRT_ORDER_INDEXED)
return order_tracked and order_indexed
@property
def name(self):
from .legacyapi import Dataset
name = self._h5group.name
# get group name only instead of full path for legacyapi
if isinstance(self._parent._root, Dataset) and len(name) > 1:
name = name.split("/")[-1]
return name
@property
def dimensions(self):
return self._dimensions
@dimensions.setter
def dimensions(self, value):
for k, v in self._all_dimensions.maps[0].items():
if k in value:
if v != value[k]:
raise ValueError(f"cannot modify existing dimension {k!r}")
else:
raise ValueError(
f"new dimensions do not include existing dimension {k!r}"
)
self._dimensions.update(value)
def _create_child_group(self, name):
if name in self:
raise ValueError(f"unable to create group {name!r} (name already exists)")
kwargs = {}
kwargs.update(track_order=self._track_order)
self._h5group.create_group(name, **kwargs)
self._groups[name] = self._group_cls(self, name)
return self._groups[name]
def _require_child_group(self, name):
try:
return self._groups[name]
except KeyError:
return self._create_child_group(name)
def create_group(self, name):
"""Create NetCDF4 group.
Parameters
----------
name : str
Name of new group.
"""
if name.startswith("/"):
return self._root.create_group(name[1:])
keys = name.split("/")
group = self
for k in keys[:-1]:
group = group._require_child_group(k)
return group._create_child_group(keys[-1])
def _create_child_variable(
self,
name,
dimensions,
dtype,
data,
fillvalue,
chunks,
chunking_heuristic,
**kwargs,
):
if name in self:
raise ValueError(
f"unable to create variable {name!r} (name already exists)"
)
if data is not None:
data = np.asarray(data)
if dtype is None:
dtype = data.dtype
# check and handle dtypes
dtype = _check_dtype(self, dtype)
if "scaleoffset" in kwargs:
_invalid_netcdf_feature(
"scale-offset filters",
self._root.invalid_netcdf,
)
# maybe create new dimensions depending on data
if data is not None:
for d, s in zip(dimensions, data.shape):
# create new dimensions only ever if
# - they are not known via parent-groups
# - they are given in dimensions
# - it's not a coordinate variable, they will get special handling later
if d not in self._all_dimensions and d in dimensions and d is not name:
# calls _create_dimension
self.dimensions[d] = s
# coordinate variable
need_dim_adding = False
if dimensions:
for dim in dimensions:
if name not in self._all_dimensions and name == dim:
need_dim_adding = True
# variable <-> dimension name clash
if name in self._dimensions and (
name not in dimensions or (len(dimensions) > 1 and dimensions[0] != name)
):
h5name = "_nc4_non_coord_" + name
else:
h5name = name
# get shape from all dimensions
shape = tuple(self._all_dimensions[d].size for d in dimensions)
maxshape = tuple(self._all_dimensions[d]._maxsize for d in dimensions if d)
# If it is passed directly it will change the default compression
# settings.
if shape != maxshape:
kwargs["maxshape"] = maxshape
has_unsized_dims = 0 in shape
if has_unsized_dims and chunks in {None, True}:
if chunking_heuristic in [None, "h5netcdf"]:
chunks = _get_default_chunksizes(shape, dtype)
elif chunking_heuristic == "h5py":
# do nothing -> h5py will handle chunks internally
pass
else:
raise ValueError(
f"got unrecognized value {chunking_heuristic} for chunking_heuristic argument "
'(has to be "h5py" or "h5netcdf")'
)
# Clear dummy HDF5 datasets with this name that were created for a
# dimension scale without a corresponding variable.
# Keep the references, to re-attach later
refs = None
if h5name in self._dimensions and h5name in self._h5group:
refs = self._dimensions[name]._scale_refs
self._dimensions[name]._detach_scale()
del self._h5group[name]
kwargs.update(dict(track_order=self._parent._track_order))
# fill value handling
fillvalue, h5fillvalue = _check_fillvalue(self, fillvalue, dtype)
# create hdf5 variable
self._h5group.create_dataset(
h5name,
shape,
dtype=dtype,
data=data,
chunks=chunks,
fillvalue=h5fillvalue,
**kwargs,
)
# create variable class instance
variable = self._variable_cls(self, h5name, dimensions)
self._variables[h5name] = variable
# need to put coordinate variable into dimensions
if need_dim_adding:
self._dimensions.add(name)
# Re-create dim-scale and re-attach references to coordinate variable.
if name in self._all_dimensions and h5name in self._h5group:
self._all_dimensions[name]._create_scale()
if refs is not None:
self._all_dimensions[name]._attach_scale(refs)
# In case of data variables attach dim_scales and coords.
if name in self.variables and h5name not in self._dimensions:
variable._attach_dim_scales()
variable._attach_coords()
# This is a bit of a hack, netCDF4 attaches _Netcdf4Dimid to every variable
# when a variable is first written to, after variable creation.
# Here we just attach it to every variable on creation.
# Todo: get this consistent with netcdf-c/netcdf4-python
variable._ensure_dim_id()
# add fillvalue attribute to variable
if fillvalue is not None:
variable._add_fillvalue(fillvalue)
return variable
def create_variable(
self,
name,
dimensions=(),
dtype=None,
data=None,
fillvalue=None,
chunks=None,
chunking_heuristic=None,
**kwargs,
):
"""Creates a new variable.
Parameters
----------
name : str
Name of the new variable. If given as a path, intermediate groups will be created,
if not existent.
dimensions : tuple
Tuple containing dimension name strings. Defaults to empty tuple, effectively
creating a scalar variable.
dtype : numpy.dtype, str, UserType (Enum, VL, Compound), optional
Datatype of the new variable. Defaults to None.
fillvalue : scalar, optional
Specify fillvalue for uninitialized parts of the variable. Defaults to ``None``.
chunks : tuple, optional
Tuple of integers specifying the chunksizes of each variable dimension.
chunking_heuristic : str, optional
Specify auto-chunking approach. Can be either of ``h5py`` or ``h5netcdf``. Defaults to
``h5netcdf``. Discussion on ``h5netcdf`` chunking can be found in (:issue:`52`)
and (:pull:`127`).
compression : str, optional
Compression filter to apply, defaults to ``gzip``. ``zlib`` is an alias for ``gzip``.
compression_opts : int
Parameter for compression filter. For ``compression="gzip"``/``compression="zlib"`` Integer from 1 to 9 specifying
the compression level. Defaults to 4.
fletcher32 : bool
If ``True``, HDF5 Fletcher32 checksum algorithm is applied. Defaults to ``False``.
shuffle : bool, optional
If ``True``, HDF5 shuffle filter will be applied. Defaults to ``True``.
Note
----
Please refer to ``h5py`` `documentation`_ for further parameters via keyword arguments.
Any parameterizations which do not adhere to netCDF4 standard will only work on files
created with ``invalid_netcdf=True``,
.. _documentation: https://docs.h5py.org/en/stable/high/dataset.html#creating-datasets
Returns
-------
var : h5netcdf.Variable
Variable class instance
"""
# if root-variable
if name.startswith("/"):
# handling default fillvalues for legacyapi
# see https://github.com/h5netcdf/h5netcdf/issues/182
from .legacyapi import Dataset, _get_default_fillvalue
if fillvalue is None and isinstance(self._parent._root, Dataset):
fillvalue = _get_default_fillvalue(dtype)
return self._root.create_variable(
name[1:],
dimensions,
dtype,
data,
fillvalue,
chunks,
chunking_heuristic,
**kwargs,
)
# else split groups and iterate child groups
keys = name.split("/")
if not keys[-1]:
raise ValueError("name parameter cannot be an empty string")
group = self
for k in keys[:-1]:
group = group._require_child_group(k)
# Allow zlib to be an alias for gzip
# but use getters and setters so as not to change the behavior
# of the default h5py functions
if kwargs.get("compression", None) == "zlib":
kwargs["compression"] = "gzip"
return group._create_child_variable(
keys[-1],
dimensions,
dtype,
data,
fillvalue,
chunks,
chunking_heuristic,
**kwargs,
)
def _get_child(self, key):
try:
return self.variables[key]
except KeyError:
return self.groups[key]
def __getitem__(self, key):
if key.startswith("/"):
return self._root[key[1:]]
keys = key.split("/")
item = self
for k in keys:
item = item._get_child(k)
return item
def __iter__(self):
yield from self.groups
yield from self.variables
def __len__(self):
return len(self.variables) + len(self.groups)
@property
def parent(self):
return self._parent
def flush(self):
self._root.flush()
sync = flush
@property
def groups(self):
return Frozen(self._groups)
@property
def variables(self):
return Frozen(self._variables)
def _add_usertype(self, h5type):
"""Add usertype to related usertype dict.
The type is added by name to the dict attached to current group.
"""
name = h5type.name.split("/")[-1]
h5typeid = _get_h5usertype_identifier(h5type)
# add usertype to corresponding dict
self._get_usertype_dict(h5typeid).maps[0].add(name)
def _get_usertype(self, h5type):
"""Get usertype from related usertype dict."""
h5typeid = _get_h5usertype_identifier(h5type)
return self._get_usertype_dict(h5typeid).get(h5type.name.split("/")[-1])
def _get_usertype_dict(self, h5typeid):
"""Return usertype-dict related to given h5 type identifier.
See https://api.h5py.org/h5t.html#datatype-class-codes and
https://docs.hdfgroup.org (enum H5T_class_t)
"""
return {
6: self._all_cmptypes,
8: self._all_enumtypes,
9: self._all_vltypes,
}.get(h5typeid)
@property
def enumtypes(self):
"""Return group defined enum types."""
return Frozen(self._enumtypes)
@property
def vltypes(self):
"""Return group defined vlen types."""
return Frozen(self._vltypes)
@property
def cmptypes(self):
"""Return group defined compound types."""
return Frozen(self._cmptypes)
@property
def dims(self):
return Frozen(self._dimensions)
@property
def attrs(self):
return Attributes(
self._h5group.attrs, self._root._check_valid_netcdf_dtype, self._root._h5py
)
_cls_name = "h5netcdf.Group"
def _repr_body(self):
return (
["Dimensions:"]
+ [
" {}: {}".format(
k,
(
f"Unlimited (current: {self._dimensions[k].size})"
if v is None
else v
),
)
for k, v in self.dimensions.items()
]
+ ["Groups:"]
+ [f" {g}" for g in self.groups]
+ ["Variables:"]
+ [
f" {k}: {v.dimensions!r} {v.dtype}"
for k, v in self.variables.items()
]
+ ["Attributes:"]
+ [f" {k}: {v!r}" for k, v in self.attrs.items()]
)
def __repr__(self):
if self._root._closed:
return f"<Closed {self._cls_name}>"
header = f"<{self._cls_name} {self.name!r} ({len(self)} members)>"
return "\n".join([header] + self._repr_body())
def resize_dimension(self, dim, size):
"""Resize a dimension to a certain size.
It will pad with the underlying HDF5 data sets' fill values (usually
zero) where necessary.
"""
self._dimensions[dim]._resize(size)
def create_enumtype(self, datatype, datatype_name, enum_dict):
"""Create EnumType.
datatype: np.dtype
A numpy integer dtype object describing the base type for the Enum.
datatype_name: string
A Python string containing a description of the Enum data type.
enum_dict: dict
A Python dictionary containing the Enum field/value pairs.
"""
et = self._root._h5py.enum_dtype(enum_dict, basetype=datatype)
self._h5group[datatype_name] = et
# create enumtype class instance
enumtype = self._enumtype_cls(self, datatype_name)
self._enumtypes[datatype_name] = enumtype
return enumtype
def create_vltype(self, datatype, datatype_name):
"""Create VLType.
datatype: np.dtype
A numpy dtype object describing the base type.
datatype_name: string
A Python string containing a description of the VL data type.
"""
# wrap in numpy dtype first
datatype = np.dtype(datatype)
et = self._root._h5py.vlen_dtype(datatype)
self._h5group[datatype_name] = et
# create vltype class instance
vltype = self._vltype_cls(self, datatype_name)
self._vltypes[datatype_name] = vltype
return vltype
def create_cmptype(self, datatype, datatype_name):
"""Create CompoundType.
datatype: np.dtype
A numpy dtype object describing the structured type.
datatype_name: string
A Python string containing a description of the compound data type.
"""
# wrap in numpy dtype first
datatype = np.dtype(datatype)
if (new_dtype := _string_to_char_array_dtype(datatype)) is not None:
# "SN" -> ("S1", (N,))
datatype = new_dtype
self._h5group[datatype_name] = datatype
# create compound class instance
cmptype = self._cmptype_cls(self, datatype_name)
self._cmptypes[datatype_name] = cmptype
return cmptype
class File(Group):
def __init__(self, path, mode="r", invalid_netcdf=False, phony_dims=None, **kwargs):
"""NetCDF4 file constructor.
Parameters
----------
path: path-like
Location of the netCDF4 file to be accessed, or an h5py File object,
or a Python file-like object (which should read/write bytes).
mode: "r", "r+", "a", "w"
A valid file access mode. Defaults to "r".
invalid_netcdf: bool
Allow writing netCDF4 with data types and attributes that would
otherwise not generate netCDF4 files that can be read by other
applications. See :ref:`invalid netcdf` for more details.
phony_dims: 'sort', 'access'
See :ref:`phony dims` for more details.
track_order: bool
Corresponds to the h5py.File `track_order` parameter. Unless
specified, the library will choose a default that enhances
compatibility with netCDF4-c. If h5py version 3.7.0 or greater is
installed, this parameter will be set to True by default.
track_order is required to be true to for netCDF4-c libraries to
append to a file. If an older version of h5py is detected, this
parameter will be set to False by default to work around a bug in
h5py limiting the number of attributes for a given variable.
**kwargs:
Additional keyword arguments to be passed to the ``h5py.File``
constructor.
Notes
-----
In h5netcdf version 0.12.0 and earlier, order tracking was disabled in
HDF5 file. As this is a requirement for the current netCDF4 standard,
it has been enabled without deprecation as of version 0.13.0 (:issue:`128`).
Datasets created with h5netcdf version 0.12.0 that are opened with
newer versions of h5netcdf will continue to disable order tracker.
If an h5py File object is passed in, closing the h5netcdf wrapper will
not close the h5py File. In other cases, closing the h5netcdf File object
does close the underlying file.
"""
# 2022/01/09
# netCDF4 wants the track_order parameter to be true
# through this might be getting relaxed in a more recent version of the
# standard
# https://github.com/Unidata/netcdf-c/issues/2054
# https://github.com/h5netcdf/h5netcdf/issues/128
# h5py versions less than 3.7.0 had a bug that limited the number of
# attributes when track_order was set to true by default.
# However, setting track_order to True helps with compatibility
# with netcdf4-c and generally, keeping track of how things were added
# to the dataset.
# https://github.com/h5netcdf/h5netcdf/issues/136#issuecomment-1017457067
track_order_default = version.parse(h5py.__version__) >= version.parse("3.7.0")
track_order = kwargs.pop("track_order", track_order_default)
self.decode_vlen_strings = kwargs.pop("decode_vlen_strings", None)
self._close_h5file = True
try:
if isinstance(path, str):
if kwargs.get("driver") == "h5pyd" or (
path.startswith(("http://", "https://", "hdf5://"))
and "driver" not in kwargs
):
if no_h5pyd:
raise ImportError(
"No module named 'h5pyd'. h5pyd is required for "
f"opening urls: {path}"
)
self._preexisting_file = mode in {"r", "r+", "a"}
# remap "a" -> "r+" to check file existence
# fallback to "w" if not
_mode = mode
if mode == "a":
mode = "r+"
self._h5py = h5pyd
try:
self.__h5file = self._h5py.File(
path, mode, track_order=track_order, **kwargs
)
self._preexisting_file = mode != "w"
except OSError:
# if file does not exist, create it
if _mode == "a":
mode = "w"
self.__h5file = self._h5py.File(
path, mode, track_order=track_order, **kwargs
)
self._preexisting_file = False
msg = (
"Append mode for h5pyd now probes with 'r+' first and "
"only falls back to 'w' if the file is missing.\n"
"To silence this warning use 'r+' (open-existing) or 'w' "
"(create-new) directly."
)
warnings.warn(msg, UserWarning, stacklevel=2)
else:
raise
else:
self._preexisting_file = os.path.exists(path) and mode != "w"
self._h5py = h5py
self.__h5file = self._h5py.File(
path, mode, track_order=track_order, **kwargs
)
elif isinstance(path, h5py.File):
self._preexisting_file = mode in {"r", "r+", "a"}
self._h5py = h5py
self.__h5file = path
# h5py File passed in: let the caller decide when to close it
self._close_h5file = False
else: # file-like object
self._preexisting_file = mode in {"r", "r+", "a"}
self._h5py = h5py
self.__h5file = self._h5py.File(
path, mode, track_order=track_order, **kwargs
)
except Exception:
self._closed = True
raise
else:
self._closed = False
self._filename = self._h5file.filename
self._mode = mode
self._writable = mode != "r"
self._root_ref = weakref.ref(self)
self._h5path = "/"
self.invalid_netcdf = invalid_netcdf
# phony dimension handling
self._phony_dims_mode = phony_dims
if phony_dims is not None:
self._phony_dim_count = 0
if phony_dims not in ["sort", "access"]:
raise ValueError(
f"unknown value {phony_dims!r} for phony_dims\n"
"Use phony_dims='sort' for sorted naming, "
"phony_dims='access' for per access naming."
)
# string decoding
if "legacy" in self._cls_name:
if self.decode_vlen_strings is not None:
msg = (
"'decode_vlen_strings' keyword argument is not allowed in h5netcdf "
"legacy API."
)
raise TypeError(msg)
self.decode_vlen_strings = True
else:
if self.decode_vlen_strings is None:
self.decode_vlen_strings = False
self._max_dim_id = -1
# This maps keeps track of all HDF5 datasets corresponding to this group.
self._all_h5groups = ChainMap(self._h5group)
super().__init__(self, self._h5path)
# get maximum dimension id and count of labeled dimensions
if self._writable:
self._max_dim_id = self._get_maximum_dimension_id()
# initialize all groups to detect/create phony dimensions
# mimics netcdf-c style naming
if phony_dims == "sort":
self._determine_phony_dimensions()
def _get_maximum_dimension_id(self):
dimids = []
def _dimids(name, obj):
if obj.attrs.get("CLASS", None) == b"DIMENSION_SCALE":
dimids.append(obj.attrs.get("_Netcdf4Dimid", -1))
self._h5file.visititems(_dimids)
return max(dimids) if dimids else -1
def _determine_phony_dimensions(self):
def create_phony_dimensions(grp):
for name in grp.groups:
create_phony_dimensions(grp[name])
create_phony_dimensions(self)
def _check_valid_netcdf_dtype(self, dtype):
dtype = np.dtype(dtype)
if dtype == bool: # noqa
description = "boolean"
elif self._h5py.check_dtype(ref=dtype) is not None:
description = "reference"
else:
description = None
if description is not None:
_invalid_netcdf_feature(
f"{description} dtypes",
self.invalid_netcdf,
)
@property
def mode(self):
return self._h5file.mode
@property
def filename(self):
return self._h5file.filename
@property
def parent(self):
return None
@property
def _root(self):
return self
def flush(self):
if self._writable:
# only write `_NCProperties` in newly created files
if not self._preexisting_file and not self.invalid_netcdf:
_NC_PROPERTIES = (
f"version=2,h5netcdf={__version__},"
f"hdf5={self._h5py.version.hdf5_version},"
f"{self._h5py.__name__}={self._h5py.__version__}"
)
self.attrs._h5attrs["_NCProperties"] = np.array(
_NC_PROPERTIES,
dtype=self._h5py.string_dtype(
encoding="ascii", length=len(_NC_PROPERTIES)
),
)
if self.invalid_netcdf:
# see https://github.com/h5netcdf/h5netcdf/issues/165
# warn user if .nc file extension is used for invalid netcdf features
if os.path.splitext(self.filename)[1] == ".nc":
msg = (
f"You are writing invalid netcdf features to file "
f"`{self.filename}`. The file will thus be not conforming "
f"to NetCDF-4 standard and might not be readable by other "
f"netcdf tools. Consider using a different extension."
)
warnings.warn(msg, UserWarning, stacklevel=2)
# remove _NCProperties if invalid_netcdf if exists
if "_NCProperties" in self.attrs._h5attrs:
del self.attrs._h5attrs["_NCProperties"]
sync = flush
@property
def _h5file(self):
if self._closed:
raise ValueError(f"I/O operation on {self}: {self._filename!r}")
return self.__h5file
def close(self):
if not self._closed:
self.flush()
if self._close_h5file:
self._h5file.close()
self.__h5file = None
self._closed = True
__del__ = close
def __enter__(self):
return self
def __exit__(self, type, value, traceback):
self.close()
_cls_name = "h5netcdf.File"
def __repr__(self):
if self._closed:
return f"<Closed {self._cls_name}>"
header = (
f"<{self._cls_name} {os.path.basename(self.filename)!r} (mode {self.mode})>"
)
return "\n".join([header] + self._repr_body())
def _get_default_chunksizes(dimsizes, dtype):
# This is a modified version of h5py's default chunking heuristic
# https://github.com/h5py/h5py/blob/aa31f03bef99e5807d1d6381e36233325d944279/h5py/_hl/filters.py#L334-L389
# (published under BSD-3-Clause, included at licenses/H5PY_LICENSE.txt)
# See also https://github.com/h5py/h5py/issues/2029 for context.
CHUNK_BASE = 16 * 1024 # Multiplier by which chunks are adjusted
CHUNK_MIN = 8 * 1024 # Soft lower limit (8k)
CHUNK_MAX = 1024 * 1024 # Hard upper limit (1M)
type_size = np.dtype(dtype).itemsize
is_unlimited = np.array([x == 0 for x in dimsizes])
# For unlimited dimensions start with a guess of 1024
chunks = np.array([x if x != 0 else 1024 for x in dimsizes], dtype="=f8")
ndims = len(dimsizes)
if ndims == 0:
raise ValueError("Chunks not allowed for scalar datasets.")
if not np.all(np.isfinite(chunks)):
raise ValueError("Illegal value in chunk tuple")
# Determine the optimal chunk size in bytes using a PyTables expression.
# This is kept as a float.
dset_size = np.prod(chunks[~is_unlimited]) * type_size
target_size = CHUNK_BASE * (2 ** np.log10(dset_size / (1024 * 1024)))
if target_size > CHUNK_MAX:
target_size = CHUNK_MAX
elif target_size < CHUNK_MIN:
target_size = CHUNK_MIN
i = 0
while True:
# Repeatedly loop over the axes, dividing them by 2.
# Start by reducing unlimited axes first.
# Stop when:
# 1a. We're smaller than the target chunk size, OR
# 1b. We're within 50% of the target chunk size, AND
# 2. The chunk is smaller than the maximum chunk size
idx = i % ndims
chunk_bytes = np.prod(chunks) * type_size
done = (
chunk_bytes < target_size
or abs(chunk_bytes - target_size) / target_size < 0.5
) and chunk_bytes < CHUNK_MAX
if done:
break
if np.prod(chunks) == 1:
break # Element size larger than CHUNK_MAX
nelem_unlim = np.prod(chunks[is_unlimited])
if nelem_unlim == 1 or is_unlimited[idx]:
chunks[idx] = np.ceil(chunks[idx] / 2.0)
i += 1
return tuple(int(x) for x in chunks)
|