1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
|
# $Id: VS.py,v 1.4 2005-07-14 01:36:41 gosselin_a Exp $
# $Log: not supported by cvs2svn $
# Revision 1.3 2004/08/02 17:06:20 gosselin
# pyhdf-0.7.2
#
# Revision 1.2 2004/08/02 15:36:04 gosselin
# pyhdf-0.7-1
#
# Author: Andre Gosselin
# Maurice-Lamontagne Institute
# gosselina@dfo-mpo.gc.ca
"""
VS (Vdata table) API (:mod:`pyhdf.VS`)
======================================
A module of the pyhdf package implementing the VS (Vdata table)
API of the NCSA HDF4 library.
Introduction
------------
VS is one of the modules composing pyhdf, a python package implementing
the NCSA HDF library and letting one manage HDF files from within a python
program. Two versions of the HDF library currently exist, version 4 and
version 5. pyhdf only implements version 4 of the library. Many
different APIs are to be found inside the HDF4 specification.
Currently, pyhdf implements just a few of those: the SD, VS and V APIs.
Other APIs should be added in the future (GR, AN, etc).
VS allows the definition of structured data tables inside an HDF file.
Those tables are designated as "vdatas" (the name has to do with data
associated with the "vertices" of geometrical models, the storage of which
the API was originally designed for). A vdata is composed of a fixed
number of columns (also called fields), where a column can store a fixed
number of data values, all of the same type. The number of values allowed
inside a field is called the "order" of the field. A table is composed of a
varying number of rows (also called records), a record representing the
sequence of values stored in each field of the vdata.
A vdata is associated with a descriptive name, and likewise each field of
the vdata. A vdata can also be tagged with a "class" to further describe the
vdata purpose. Records and fields are identified by a zero-based index.
An arbitrary number of attributes of different types can be attached to
a vdata as a whole, or to its individual fields. An attribute is a
(name, value) pair, where "value" can be of many types, and be either
single or multi-valued. The number of values stored in an attribute is
called the "order" of the attribute.
The following example illustrates a simple vdata that could be stored
inside an HDF file. See section "Programming models" for an example
program implementing this vdata.
INVENTORY (experimental status)
====== =========== === ======== ========
partid description qty wght(lb) price($)
====== =========== === ======== ========
Q1234 bolt 12 0.01 0.05
B5432 brush 10 0.4 4.25
S7613 scissor 2 0.2 3.75
====== =========== === ======== ========
The vdata is composed of 5 fields. 3 records are shown (of course, a vdata
can store much more than that). "INVENTORY" would be the vdata name, and
"partid", "description", etc, would be the field names. The data type varies
between fields. "partid" and "description" would be of "multicharacter" type
(aka "string"), "qty" would be a integer, and "wght" and "price" would be
floats. The text in parentheses could be stored as attributes. A "status"
attribute could be defined for the table as a whole, and given the
value "experimental". Likewise, a "unit" attribute could be associated
with fields "wght" and "price", and given the values "lb" and "$", resp.
The VS API allows one to create, locate and open a vdata inside an
HDF file, update and append records inside it, read records randomly
or sequentially, and access and update the vdata and field attributes.
Attributes can be read and written using the familiar python "dot
notation", and records can be read and written by indexing and slicing the
vdata as if it were a python sequence.
VS module key features
----------------------
VS key features are as follows.
- pyhdf implements almost every routine of the original VS API.
Only a few have been ignored, most of them being of a rare use:
- VSgetblocksize() / VSsetblocksize()
- VSsetnumblocks()
- VSlone
- It is quite straightforward to go from a C version to a python version
of a program accessing the VS API, and to learn VS usage by referring to
the C API documentation.
- A few high-level python methods have been developed to ease
programmers task. Of greatest interest are the following:
- Access to attributes through the familiar "dot notation".
- Indexing and slicing a vdata to read and write its records,
similarly to a python sequence.
- Easy retrieval of info on a vdata and its fields.
- Easy creation of vdatas.
Accessing the VS module
-----------------------
To access the VS module a python program can say one of:
>>> import pyhdf.VS # must prefix names with "pyhdf.VS."
>>> from pyhdf import VS # must prefix names with "VS."
>>> from pyhdf.VS import * # names need no prefix
This document assumes the last import style is used.
VS is not self-contained, and needs functionality provided by another
pyhdf module, namely the HDF module. This module must thus be imported
also:
>>> from .HDF import *
Package components
------------------
pyhdf is a proper Python package, eg a collection of modules stored under
a directory whose name is that of the package and which stores an
__init__.py file. Following the normal installation procedure, this
directory will be <python-lib>/site-packages/pyhdf', where <python-lib>
stands for the python installation directory.
For each HDF API exists a corresponding set of modules.
The following modules are related to the VS API.
_hdfext
C extension module responsible for wrapping the HDF
C library for all python modules
hdfext
python module implementing some utility functions
complementing the _hdfext extension module
error
defines the HDF4Error exception
HDF
python module providing support to the VS module
VS
python module wrapping the VS API routines inside
an OOP framework
_hdfext and hdfext were generated using the SWIG preprocessor.
SWIG is however *not* needed to run the package. Those two modules
are meant to do their work in the background, and should never be called
directly. Only HDF and VS should be imported by the user program.
Prerequisites
-------------
The following software must be installed in order for VS to
work.
HDF (v4) library
pyhdf does *not* include the HDF4 library, which must
be installed separately.
HDF is available at:
"https://portal.hdfgroup.org/display/support/Download+HDF4".
Numeric is also needed by the SD module. See the SD module documentation.
Documentation
-------------
pyhdf has been written so as to stick as closely as possible to
the naming conventions and calling sequences documented inside the
"HDF User s Guide" manual. Even if pyhdf gives an OOP twist
to the C API, the manual can be easily used as a documentary source
for pyhdf, once the class to which a function belongs has been
identified, and of course once requirements imposed by the Python
language have been taken into account. Consequently, this documentation
will not attempt to provide an exhaustive coverage of the HDF VS
API. For this, the user is referred to the above manual.
The documentation of each pyhdf method will indicate the name
of the equivalent routine as it is found inside the C API.
This document (in both its text and html versions) has been completely
produced using "pydoc", the Python documentation generator (which
made its debut in the 2.1 Python release). pydoc can also be used
as an on-line help tool. For example, to know everything about
the VS.VD class, say:
>>> from pydoc import help
>>> from pyhdf.VS import *
>>> help(VD)
To be more specific and get help only for the read() method of the
VD class:
>>> help(VD.read)
pydoc can also be called from the command line, as in::
% pydoc pyhdf.VS.VD # doc for the whole VD class
% pydoc pyhdf.VS.VD.read # doc for the VD.read method
Summary of differences between the pyhdf and C VS API
-----------------------------------------------------
Most of the differences between the pyhdf and C VS API can
be summarized as follows.
- In the C API, every function returns an integer status code, and values
computed by the function are returned through one or more pointers
passed as arguments.
- In pyhdf, error statuses are returned through the Python exception
mechanism, and values are returned as the method result. When the
C API specifies that multiple values are returned, pyhdf returns a
sequence of values, which are ordered similarly to the pointers in the
C function argument list.
Error handling
--------------
All errors reported by the C VS API with a SUCCESS/FAIL error code
are reported by pyhdf using the Python exception mechanism.
When the C library reports a FAIL status, pyhdf raises an HDF4Error
exception (a subclass of Exception) with a descriptive message.
Unfortunately, the C library is rarely informative about the cause of
the error. pyhdf does its best to try to document the error, but most
of the time cannot do more than saying "execution error".
VS needs support from the HDF module
------------------------------------
The VS module is not self-contained (countrary to the SD module).
It requires help from the HDF module, namely:
- the HDF.HDF class to open and close the HDF file, and initialize the
VS interface
- the HDF.HC class to provide different sorts of constants (opening modes,
data types, etc).
A program wanting to access HDF vdatas will almost always need to execute
the following minimal set of calls:
>>> from pyhdf.HDF import *
>>> from pyhdf.VS import *
>>> hdfFile = HDF(name, HC.xxx)# open HDF file
>>> vs = hdfFile.vstart() # initialize VS interface on HDF file
>>> ... # manipulate vdatas through "vs"
>>> vs.end() # terminate VS interface
>>> hdfFile.close() # close HDF file
Classes summary
---------------
pyhdf wraps the VS API using different python classes::
VS HDF VS interface
VD vdata
VDField vdata field
VDattr attribute (either at the vdata or field level)
In more detail::
VS The VS class implements the VS (Vdata) interface applied to an
HDF file. This class encapsulates the hdf instance, and all
the top-level functions of the VS API.
To create a VS instance, call the vstart() method of an
HDF instance.
methods:
constructors:
attach() open an existing vdata given its name or
reference number, or create a new one,
returning a VD instance
create() create a new vdata and define its structure,
returning a VD instance
creating and initializing a simple vdata
storedata() create a single-field vdata and initialize
its values
closing the interface
end() close the VS interface on the HDF file
searching
find() get a vdata reference number given its name
next() get the reference number of the vdata following
a given one
inquiry
vdatainfo() return info about all the vdatas in the
HDF file
VD The VD class describes a vdata. It encapsulates
the VS instance to which the vdata belongs, and the vdata
identifier.
To instantiate a VD class, call the attach() or create()
method of a VS class instance.
methods:
constructors
attr() create a VDAttr instance representing a
vdata attribute; "dot notation" can also be
used to access a vdata attribute
field() return a VDField instance representing a given
field of the vdata
closing vdata
detach() end access to the vdata
defining fields
fdefine() define the name, type and order of a new field
setfields() define the field names and field order for
the read() and write() methods; also used to
initialize the structure of a vdata previously
created with the VS.attach() method
reading and writing
note: a vdata can be indexed and sliced like a
python sequence
read() return the values of a number of records
starting at the current record position
seek() reset the current record position
seekend() seek past the last record
tell() return the current record position
write() write a number of records starting at the
current record position
inquiry
attrinfo() return info about all the vdata attributes
fexist() check if a vdata contains a given set of fields
fieldinfo() return info about all the vdata fields
findattr() locate an attribute, returning a VDAttr instance
if found
inquire() return info about the vdata
sizeof() return the size in bytes of one or more fields
VDField The VDField class represents a vdata field. It encapsulates
the VD instance to which the field belongs, and the field
index number.
To instantiate a VDField, call the field() method of a VD class
instance.
methods:
constructors:
attr() return a VDAttr instance representing an
attribute of the field; "dot notation"
can also be used to get/set an attribute.
inquiry
attrinfo() return info about all the field attributes
find() locate an attribute, returning a VDAttr
instance if found
VDAttr The VDAttr class encapsulates methods used to set and query
attributes defined at the level either of the vdata or the
vdata field.
To create an instance of this class, call the attr() or
findattr() methods of a VD instance (for vdata attributes),
or call the attr() or find() methods of a VDField instance
(for field attributes).
methods:
get / set
get() get the attribute value
set() set the attribute value
info
info() retrieve info about the attribute
Data types
----------
Data types come into play when first defining vdata fields and attributes,
and later when querying the definition of those fields and attributes.
Data types are specified using the symbolic constants defined inside the
HC class of the HDF module.
- CHAR and CHAR8 (equivalent): an 8-bit character.
- UCHAR, UCHAR8 and UINT8 (equivalent): unsigned 8-bit values (0 to 255)
- INT8: signed 8-bit values (-128 to 127)
- INT16: signed 16-bit values
- UINT16: unsigned 16 bit values
- INT32: signed 32 bit values
- UINT32: unsigned 32 bit values
- FLOAT32: 32 bit floating point values (C floats)
- FLOAT64: 64 bit floating point values (C doubles)
There is no explicit "string" type. To simulate a string, set the field or
attribute type to CHAR, and set the field or attribute "order" to
a value of 'n' > 1. This creates and "array of characters", close
to a string (except that strings will always be of length 'n', right-padded
with spaces if necessary).
Attribute access: low and high level
------------------------------------
The VS API allow setting attributes on vdatas and vdata fields. Attributes
can be of many types (int, float, char) of different bit lengths (8, 16, 32,
64 bits), and can be single or multi-valued. Values of a multi-valued
attribute must all be of the same type.
Attributes can be set and queried in two different ways. First, given a
VD instance (describing a vdata object) or a VDField instance (describing a
vdata field), the attr() method of that instance is called to create a
VDAttr instance representing the wanted attribute (possibly non existent).
The set() method of this VDAttr instance is then called to define the
attribute value, creating it if it does not already exist. The get() method
returns the current attribute value. Here is an example.
>>> from pyhdf.HDF import *
>>> from pyhdf.VS import *
>>> f = HDF('test.hdf', HC.WRITE) # Open file 'test.hdf' in write mode
>>> vs = f.vstart() # init vdata interface
>>> vd = vs.attach('vtest', 1) # attach vdata 'vtest' in write mode
>>> attr = vd.attr('version') # prepare to define the 'version' attribute
# on the vdata
>>> attr.set(HC.CHAR8,'1.0') # set attribute 'version' to string '1.0'
>>> print(attr.get()) # get and print attribute value
>>> fld = vd.field('fld1') # obtain a field instance for field 'fld1'
>>> attr = fld.attr('range') # prepare to define attribute 'range' on
# this field
>>> attr.set(HC.INT32,(-10, 15)) # set attribute 'range' to a pair of ints
>>> print(attr.get()) # get and print attribute value
>>> vd.detach() # "close" the vdata
>>> vs.end() # terminate the vdata interface
>>> f.close() # close the HDF file
The second way consists of setting/querying an attribute as if it were a
normal python class attribute, using the usual dot notation. Above example
then becomes:
>>> from pyhdf.HDF import *
>>> from pyhdf.VS import *
>>> f = HDF('test.hdf', HC.WRITE) # Open file 'test.hdf' in write mode
>>> vs = f.vstart() # init vdata interface
>>> vd = vs.attach('vtest', 1) # attach vdata 'vtest' in write mode
>>> vd.version = '1.0' # create vdata attribute 'version',
# setting it to string '1.0'
>>> print(vd.version) # print attribute value
>>> fld = vd.field('fld1') # obtain a field instance for field 'fld1'
>>> fld.range = (-10, 15) # create field attribute 'range', setting
# it to the pair of ints (-10, 15)
>>> print(fld.range) # print attribute value
>>> vd.detach() # "close" the vdata
>>> vs.end() # terminate the vdata interface
>>> f.close() # close the HDF file
Note how the dot notation greatly simplifies and clarifies the code.
Some latitude is however lost by manipulating attributes in that way,
because the pyhdf package, not the programmer, is then responsible of
setting the attribute type. The attribute type is chosen to be one of:
=========== ====================================
HC.CHAR8 if the attribute value is a string
HC.INT32 if all attribute values are integers
HC.FLOAT64 otherwise
=========== ====================================
The first way of handling attribute values must be used if one wants to
define an attribute of any other type (for ex. 8 or 16 bit integers,
signed or unsigned). Also, only a VDAttr instance gives access to attribute
info, through its info() method.
However, accessing HDF attributes as if they were python attributes raises
an important issue. There must exist a way to assign generic attributes
to the python objects without requiring those attributes to be converted
to HDF attributes. pyhdf uses the following rule: an attribute whose name
starts with an underscore ('_') is either a "predefined" attribute
(see below) or a standard python attribute. Otherwise, the attribute
is handled as an HDF attribute. Also, HDF attributes are not stored inside
the object dictionary: the python dir() function will not list them.
Attribute values can be updated, but it is illegal to try to change the
value type, or the attribute order (number of values). This is important
for attributes holding string values. An attribute initialized with an
'n' character string is simply a character attribute of order 'n' (eg a
character array of length 'n'). If 'vd' is a vdata and we initialize its
'a1' attribute as 'vd.a1 = "abcdef"', then a subsequent update attempt
like 'vd.a1 = "12"' will fail, because we then try to change the order
of the attribute (from 6 to 2). It is mandatory to keep the length of string
attributes constant. Examples below show simple ways how this can be done.
Predefined attributes
---------------------
The VD and VDField classes support predefined attributes to get (and
occasionnaly set) attribute values easily, without having to call a
class method. The names of predefined attributes all start with an
underscore ('_').
In the following tables, the RW column holds an X if the attribute
is read/write. See the HDF User s guide for details about more
"exotic" topics like "class", "faked vdata" and "tag".
VD predefined attributes
=========== == ========================== =============================
name RW description C library routine
=========== == ========================== =============================
_class X class name VSgetclass/VSsetclass
_fields list of field names VSgetfields
_interlace X interlace mode VSgetinterlace/VSsetinterlace
_isattr true if vdata is "faked" VSisattr
by HDF to hold attributes
_name X name of the vdata VSgetname/VSsetname
_nattrs number of attributes VSfnattrs
_nfields number of fields VFnfields
_nrecs number of records VSelts
_recsize record size (bytes) VSQueryvsize
_refnum reference number VSQueryref
_tag vdata tag VSQuerytag
_tnattrs total number of vdata and VSnattrs
field attributes
=========== == ========================== =============================
VDField predefined attributes
=========== == ========================== =============================
name RW description C library routine
=========== == ========================== =============================
_esize external size (bytes) VFfieldesize
_index index number VSfindex
_isize internal size (bytes) VFfieldisize
_name name VFfieldname
_nattrs number of attributes VSfnattrs
_order order (number of values) VFfieldorder
_type field type (HC.xxx) VFfieldtype
=========== == ========================== =============================
Record access: low and high level
---------------------------------
vdata records can be read and written in two different ways. The first one
consists of calling the basic I/O methods of the vdata:
- seek() to set the current record position, if necessary;
- read() to retrieve a given number of records from that position;
- write() to write a given number of records starting at
that position
A second, higher level way, lets one see a vdata similarly to a python
sequence, and access its contents using the familiar indexing and slicing
notation in square brackets. Reading and writing a vdata as if it were a
python sequence may often look simpler, and improve code legibility.
Here are some examples of how a vdata 'vd' holding 3 fields could be read.
>>> print(vd[0]) # print record 0
>>> print(vd[-1]) # print last record
>>> print(vd[2:]) # print records 2 and those that follow
>>> print(vd[:]) # print all records
>>> print(vd[:,0]) # print field 0 of all records
>>> print(vd[:3,:2]) # print first 2 fields of first 3 records
As the above examples show, the usual python rules are obeyed regarding
the interpretation of indexing and slicing values. Note that the vdata
fields can be indexed and sliced, not only the records. The setfields()
method can also be used to select a subset to the vdata fields
(setfields() also let you reorder the fields). When the vdata is
indexed (as opposed to being sliced), a single record is returned as a list
of values. When the vdata is sliced, a list of records is
always returned (thus a 2-level list), even if the slice contains only
one record.
A vdata can also be written similarly to a python sequence. When indexing
the vdata (as opposed to slicing it), a single record must be assigned,
and the record must be given as a sequence of values. It is legal to use
as an index the current number of records in the vdata: the record is then
appended to the vdata. When slicing the vdata, the records assigned to the
slice must always be given as a list of records, even
if only one record is assigned. Also, the number of records assigned must
always match the width of the slice, except if the slice includes or goes
past the last record of the vdata. In that case, the number of records
assigned can exceed the width of the slice, and the extra records are
appended to the vdata. So, to append records to vdata 'vd', simply
assign records to the slice 'vd[vd._nrecs:]'. Note that, even if the
'field' dimension can be specified in the left-hand side expression,
there is no real interest in doing so, since all fields must
be specified when assigning a record to the vdata: it is an error to
try to assign just a few of the fields.
For example, given a vdata 'vd' holding 5 records, and lists 'reca',
'recb', etc, holding record values::
vd[0] = reca # updates record 0
vd[0,:] = reca # specifying fields is OK, but useless
vd[0,1:] = reca[1:] # error: all fields must be assigned
vd[1] = [recb, recc] # error: only one record allowed
vd[5] = recc # append one record
vd[1:3] = [reca,recb] # updates second and third record
vd[1:4] = [reca, recb] # error: 3 records needed
vd[5:] = [reca,recb] # appends 2 records to the vdata
vd[4:] = [reca, recb] # updates last record, append one
Programming models
------------------
Creating and initializing a new vdata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following code can serve as a model for the creation and
initialization of a new vdata. It implements the INVENTORY example
described in the "Introduction" section::
from pyhdf.HDF import *
from pyhdf.VS import *
# Open HDF file and initialize the VS interface
f = HDF('inventory.hdf', # Open file 'inventory.hdf' in write mode
HC.WRITE|HC.CREATE) # creating it if it does not exist
vs = f.vstart() # init vdata interface
# Create vdata and define its structure
vd = vs.create( # create a new vdata
'INVENTORY', # name of the vdata
# fields of the vdata follow
(('partid',HC.CHAR8, 5), # 5 char string
('description',HC.CHAR8, 10), # 10 char string field
('qty',HC.INT16, 1), # 1 16 bit int field
('wght',HC.FLOAT32, 1), # 1 32 bit float
('price',HC.FLOAT32,1) # 1 32 bit float
)) # 5 fields allocated in the vdata
# Set attributes on the vdata and its fields
vd.field('wght').unit = 'lb'
vd.field('price').unit = '$'
# In order to be able to update a string attribute, it must
# always be set to the same length. This sets 'status' to a 20
# char long, left-justified string, padded with spaces on the right.
vd.status = "%-20s" % 'phase 1 done'
# Store records
vd.write(( # write 3 records
('Q1234', 'bolt',12, 0.01, 0.05), # record 1
('B5432', 'brush', 10, 0.4, 4.25), # record 2
('S7613', 'scissor', 2, 0.2, 3.75) # record 3
))
vd.detach() # "close" the vdata
vs.end() # terminate the vdata interface
f.close() # close the HDF file
Note that is mandatory to always write whole records to the vdata.
Note also the comments about the initialization of the 'status'
vdata attribute. We want to be able update this attribute (see
following examples). However, the VS API prohibits changing an attribute
type when updating its value. Since the length (order) of an attribute
is part of its type, we make sure of setting the attribute to a length
long enough to accommodate the longest possible string we might want to
assign to the attribute.
Appending records to a vdata
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Appending records requires first seeking to the end of the vdata, to avoid
overwriting existing records. The following code can serve as a model. The
INVENTORY vdata created before is used::
from pyhdf.HDF import *
from pyhdf.VS import *
f = HDF('inventory.hdf', # Open 'inventory.hdf' in write mode
HC.WRITE|HC.CREATE) # creating it if it does not exist
vs = f.vstart() # init vdata interface
vd = vs.attach('INVENTORY', 1) # attach 'INVENTORY' in write mode
# Update the `status' vdata attribute. The attribute length must not
# change. We call the attribute info() method, which returns a list
# where number of values (eg string length) is stored at index 2.
# We then assign a left justified string of exactly that length.
len = vd.attr('status').info()[2]
vd.status = '%-*s' % (len, 'phase 2 done')
vd[vd._nrecs:] = ( # append 2 records
('A4321', 'axe', 5, 1.5, 25), # first record
('C3214', 'cup', 100, 0.1, 3.25) # second record
)
vd.detach() # "close" the vdata
vs.end() # terminate the vdata interface
f.close() # close the HDF file
Note how, when updating the value of the 'status' vdata attribute,
we take care of assigning a value of the same length as that of the
original value. Otherwise, the assignment would raise an exception.
Records are written by assigning the vdata through a slicing
expression, like a python sequence. By specifying the number of records
as the start of the slice, the records are appended to the vdata.
Updating records in a vdata
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Updating requires seeking to the record to update before writing the new
records. New data will overwrite this record and all records that follow,
until a new seek is performed or the vdata is closed. Note that record
numbering starts at 0.
The following code can serve as a model. The INVENTORY vdata created
before is used::
from pyhdf.HDF import *
from pyhdf.VS import *
f = HDF('inventory.hdf', # Open 'inventory.hdf' in write mode
HC.WRITE|HC.CREATE) # creating it if it does not exist
vs = f.vstart() # init vdata interface
vd = vs.attach('INVENTORY', 1) # attach 'INVENTORY' in write mode
# Update the `status' vdata attribute. The attribute length must not
# change. We call the attribute info() method, which returns a list
# where number of values (eg string length) is stored at index 2.
# We then assign a left justified string of exactly that length.
len = vd.attr('status').info()[2]
vd.status = '%-*s' % (len, 'phase 3 done')
# Update record at index 1 (second record)
vd[1] = ('Z4367', 'surprise', 10, 3.1, 44.5)
# Update record at index 4, and all those that follow
vd[4:] = (
('QR231', 'toy', 12, 2.5, 45),
('R3389', 'robot', 3, 45, 2000)
)
vd.detach() # "close" the vdata
vs.end() # terminate the vdata interface
f.close() # close the HDF file
Reading a vdata
^^^^^^^^^^^^^^^
The following example shows how read the vdata attributes and sequentially
maneuver through its records. Note how we use the exception mechanism
to break out of the reading loop when we reach the end of the vdata::
from pyhdf.HDF import *
from pyhdf.VS import *
f = HDF('inventory.hdf') # open 'inventory.hdf' in read mode
vs = f.vstart() # init vdata interface
vd = vs.attach('INVENTORY') # attach 'INVENTORY' in read mode
# Display some vdata attributes
print "status:", vd.status
print "vdata: ", vd._name # predefined attribute: vdata name
print "nrecs: ", vd._nrecs # predefined attribute: num records
# Display value of attribute 'unit' for all fields on which
# this attribute is set
print "units: ",
for fieldName in vd._fields: # loop over all field names
try:
# instantiate field and obtain value of attribute 'unit'
v = vd.field(fieldName).unit
print "%s: %s" % (fieldName, v),
except: # no 'unit' attribute: ignore
pass
print ""
print ""
# Display table header.
header = "%-7s %-12s %3s %4s %8s" % tuple(vd._fields)
print "-" * len(header)
print header
print "-" * len(header)
# Loop over the vdata records, displaying each record as a table row.
# Current record position is 0 after attaching the vdata.
while 1:
try:
rec = vd.read() # read next record
# equivalent to:
# rec = vd[vd.tell()]
print "%-7s %-12s %3d %4.1f %8.2f" % tuple(rec[0])
except HDF4Error: # end of vdata reached
break
vd.detach() # "close" the vdata
vs.end() # terminate the vdata interface
f.close() # close the HDF file
In the previous example, the reading/displaying loop can be greatly
simplified by rewriting it as follows::
from pyhdf.HDF import *
from pyhdf.VS import *
f = HDF('inventory.hdf') # open 'inventory.hdf' in read mode
vs = f.vstart() # init vdata interface
vd = vs.attach('INVENTORY') # attach 'INVENTORY' in read mode
....
# Read all records at once, and loop over the sequence.
for rec in vd[:]:
print "%-7s %-12s %3d %4.1f %8.2f" % tuple(rec)
vd.detach() # "close" the vdata
...
The indexing expression 'vd[:]' returns the complete set of records,
which can then be looped over using a 'for' statement. This style of loop
is quite clean, and should look very familiar to python adepts.
"""
import os, sys, types
from . import hdfext as _C
from . import six
from .six.moves import xrange
from .HC import HC
from .error import HDF4Error, _checkErr
# List of names we want to be imported by an "from pyhdf.VS import *"
# statement
__all__ = ['VS', 'VD', 'VDField', 'VDAttr']
class VS(object):
"""The VS class implements the VS (Vdata) interface applied to an
HDF file.
To instantiate a VS class, call the vstart() method of an
HDF instance. """
def __init__(self, hinst):
# Not to be called directly by the user.
# A VS object is instantiated using the vstart()
# method of an HDF instance.
# Args:
# hinst HDF instance
# Returns:
# A VS instance
#
# C library equivalent : Vstart (rather: Vinitialize)
# Private attributes:
# _hdf_inst: HDF instance
# Note: Vstart is just a macro; use 'Vinitialize' instead
status = _C.Vinitialize(hinst._id)
_checkErr('VS', status, "cannot initialize VS interface")
self._hdf_inst = hinst
def __del__(self):
"""Delete the instance, first calling the end() method
if not already done. """
try:
if self._hdf_inst:
self.end()
except:
pass
def end(self):
"""Close the VS interface.
Args::
No argument
Returns::
None
C library equivalent : Vend
"""
# Note: Vend is just a macro; use 'Vfinish' instead
_checkErr('end', _C.Vfinish(self._hdf_inst._id),
"cannot terminate VS interface")
self._hdf_inst = None
vend = end # For backward compatibility
def attach(self, num_name, write=0):
"""Locate an existing vdata or create a new vdata in the HDF file,
returning a VD instance.
Args::
num_name Name or reference number of the vdata. An existing vdata
can be specified either through its reference number or
its name. Use -1 to create a new vdata.
Note that uniqueness is not imposed on vdatas names,
whereas refnums are guaranteed to be unique. Thus
knowledge of its reference number may be the only way
to get at a wanted vdata.
write Set to 0 to open the vdata in read-only mode,
set to 1 to open it in write mode
Returns::
VD instance representing the vdata
C library equivalent : VSattach
After creating a new vdata (num_name == -1), fields must be
defined using method fdefine() of the VD instance, and those
fields must be allocated to the vdata with method setfields().
Same results can be achieved, but more simply, by calling the
create() method of the VS instance.
"""
mode = write and 'w' or 'r'
if isinstance(num_name, str):
num = self.find(num_name)
else:
num = num_name
vd = _C.VSattach(self._hdf_inst._id, num, mode)
if vd < 0:
_checkErr('attach', vd, 'cannot attach vdata')
return VD(self, vd)
def create(self, name, fields):
"""Create a new vdata, setting its name and allocating
its fields.
Args::
name Name to assign to the vdata
fields Sequence of field definitions. Each field definition
is a sequence with the following elements in order:
- field name
- field type (one of HC.xxx constants)
- field order (number of values)
Fields are allocated to the vdata in the given order
Returns::
VD instance representing the created vdata
Calling the create() method is equivalent to the following calls:
- vd = attach(-1,1), to create a new vdata and open it in
write mode
- vd._name = name, to set the vdata name
- vd.fdefine(...), to define the name, type and order of
each field
- vd.setfields(...), to allocate fields to the vdata
C library equivalent : no equivalent
"""
try:
# Create new vdata (-1), open in write mode (1)
vd = self.attach(-1, 1)
# Set vdata name
vd._name = name
# Define fields
allNames = []
for name, type, order in fields:
vd.fdefine(name, type, order)
allNames.append(name)
# Allocate fields to the vdata
vd.setfields(*allNames)
return vd
except HDF4Error as msg:
raise HDF4Error("error creating vdata (%s)" % msg)
def find(self, vName):
"""Get the reference number of a vdata given its name.
The vdata can then be opened (attached) by passing this
reference number to the attach() method.
Args::
vName Name of the vdata for which the reference number
is needed. vdatas names are not guaranteed to be
unique. When more than one vdata bear the same name,
find() will return the refnum of the first one founmd.
Returns::
vdata reference number. 0 is returned if the vdata does not exist.
C library equivalent : VSfind
"""
refNum = _C.VSfind(self._hdf_inst._id, vName)
_checkErr("find", refNum, "cannot find vdata %s" % vName)
return refNum
def next(self, vRef):
"""Get the reference number of the vdata following a given
vdata.
Args::
vRef Reference number of the vdata preceding the one
we require. Set to -1 to get the first vdata in
the HDF file. Knowing its reference number,
the vdata can then be opened (attached) by passing this
reference number to the attach() method.
Returns::
Reference number of the vdata following the one given
by argument vref
An exception is raised if no vdata follows the one given by vRef.
C library equivalent : VSgetid
"""
num = _C.VSgetid(self._hdf_inst._id, vRef)
_checkErr('next', num, 'cannot get next vdata')
return num
def vdatainfo(self, listAttr=0):
"""Return info about all the file vdatas.
Args::
listAttr Set to 0 to ignore vdatas used to store attribute
values, 1 to list them (see the VD._isattr readonly
attribute)
Returns::
List of vdata descriptions. Each vdata is described as
a 9-element tuple, composed of the following:
- vdata name
- vdata class
- vdata reference number
- vdata number of records
- vdata number of fields
- vdata number of attributes
- vdata record size in bytes
- vdata tag number
- vdata interlace mode
C library equivalent : no equivalent
"""
lst = []
ref = -1 # start at beginning
while True:
try:
nxtRef = self.next(ref)
except HDF4Error: # no vdata left
break
# Attach the vdata and check for an "attribute" vdata.
ref = nxtRef
vdObj = self.attach(ref)
if listAttr or not vdObj._isattr:
# Append a list of vdata properties.
lst.append((vdObj._name,
vdObj._class,
vdObj._refnum,
vdObj._nrecs,
vdObj._nfields,
vdObj._nattrs,
vdObj._recsize,
vdObj._tag,
vdObj._interlace))
vdObj.detach()
return lst
def storedata(self, fieldName, values, data_type, vName, vClass):
"""Create and initialize a single field vdata, returning
the vdata reference number.
Args::
fieldName Name of the single field in the vadata to create
values Sequence of values to store in the field;. Each value can
itself be a sequence, in which case the field will be
multivalued (all second-level sequences must be of
the same length)
data_type Values type (one of HC.xxx constants). All values
must be of the same type
vName Name of the vdata to create
vClass Vdata class (string)
Returns::
vdata reference number
C library equivalent : VHstoredata / VHstoredatam
"""
# See if the field is multi-valued.
nrecs = len(values)
if type(values[0]) in [list, tuple]:
order = len(values[0])
# Replace input list with a flattened list.
newValues = []
for el in values:
for e in el:
newValues.append(e)
values = newValues
else:
order = 1
n_values = nrecs * order
if data_type == HC.CHAR8:
buf = _C.array_byte(n_values)
# Allow values to be passed as a string.
# Noop if a list is passed.
values = list(values)
for n in range(n_values):
values[n] = ord(values[n])
elif data_type in [HC.UCHAR8, HC.UINT8]:
buf = _C.array_byte(n_values)
elif data_type == HC.INT8:
# SWIG refuses negative values here. We found that if we
# pass them as byte values, it will work.
buf = _C.array_int8(n_values)
values = list(values)
for n in range(n_values):
v = values[n]
if v >= 0:
v &= 0x7f
else:
v = abs(v) & 0x7f
if v:
v = 256 - v
else:
v = 128 # -128 in 2s complement
values[n] = v
elif data_type == HC.INT16:
buf = _C.array_int16(n_values)
elif data_type == HC.UINT16:
buf = _C.array_uint16(n_values)
elif data_type == HC.INT32:
buf = _C.array_int32(n_values)
elif data_type == HC.UINT32:
buf = _C.array_uint32(n_values)
elif data_type == HC.FLOAT32:
buf = _C.array_float32(n_values)
elif data_type == HC.FLOAT64:
buf = _C.array_float64(n_values)
else:
raise HDF4Error("storedata: illegal or unimplemented data_type")
for n in range(n_values):
buf[n] = values[n]
if order == 1:
vd = _C.VHstoredata(self._hdf_inst._id, fieldName, buf,
nrecs, data_type, vName, vClass)
else:
vd = _C.VHstoredatam(self._hdf_inst._id, fieldName, buf,
nrecs, data_type, vName, vClass, order)
_checkErr('storedata', vd, 'cannot create vdata')
return vd
class VD(object):
"""The VD class encapsulates the functionality of a vdata.
To instantiate a VD class, call the attach() or the create()
method of a VS class instance."""
def __init__(self, vsinst, id):
# This constructor is not intended to be called directly
# by the user program. The attach() method of an
# VS class instance should be called instead.
# Arg:
# vsinst VS instance from which the call is made
# id vdata reference number
# Private attributes:
# _vs_inst VS instance to which the vdata belongs
# _id vdata identifier
# _offset current record offset
# _setfields last arg to setfields()
self._vs_inst = vsinst
self._id = id
self._offset = 0
self._setfields = None
def __getattr__(self, name):
"""Some vdata properties can be queried/set through the following
attributes. Their names all start with an "_" to avoid
clashes with user-defined attributes. Most are read-only.
Only the _class, _fields, _interlace and _name can be modified.
_fields and _interlace can only be set once.
Name RO Description C library routine
----- -- ----------------- -----------------
_class class name VSgetclass
_fields X field names VSgetfields
_interlace interlace mode VSgetinterlace
_isattr X attribute vs real vdata VSisattr
_name name VSgetname
_nattrs X number of attributes VSfnattrs
_nfields X number of fields VFnfields
_nrecs X number of records VSelts
_recsize X record size VSQueryvsize
_refnum X reference number VSQueryref
_tag X tag VSQuerytag
_tnattrs X total number of attr. VSnattrs
"""
# Check for a user defined attribute first.
att = self.attr(name)
if att._index is not None: # Then the attribute exists
return att.get()
# Check for a predefined attribute
elif name == "_class":
status, nm = _C.VSgetclass(self._id)
_checkErr('_class', status, 'cannot get vdata class')
return nm
elif name == "_fields":
n, fields = _C.VSgetfields(self._id)
_checkErr('_fields', n, "cannot get vdata field names")
return fields.split(',')
elif name == "_interlace":
mode = _C.VSgetinterlace(self._id)
_checkErr('_interlace', mode, "cannot get vdata interlace mode")
return mode
elif name == "_isattr":
return _C.VSisattr(self._id)
elif name == "_name":
status, nm = _C.VSgetname(self._id)
_checkErr('_name', status, 'cannot get vdata name')
return nm
elif name == "_nattrs":
n = _C.VSfnattrs(self._id, -1) # -1: vdata attributes
_checkErr("_nfields", n, "cannot retrieve number of attributes")
return n
elif name == "_nfields":
n = _C.VFnfields(self._id)
_checkErr("_nfields", n, "cannot retrieve number of fields")
return n
elif name == "_nrecs":
n = _C.VSelts(self._id)
_checkErr('_nrecs', n, 'cannot get vdata number of records')
return n
elif name == "_recsize":
return self.inquire()[3]
elif name == "_refnum":
n = _C.VSQueryref(self._id)
_checkErr('refnum', n, 'cannot get reference number')
return n
elif name == "_tag":
n = _C.VSQuerytag(self._id)
_checkErr('_tag', n, 'cannot get tag')
return n
elif name == "_tnattrs":
n = _C.VSnattrs(self._id)
_checkErr('_tnattrs', n, 'execution error')
return n
raise AttributeError
def __setattr__(self, name, value):
# A name starting with an underscore will be treated as
# a standard python attribute, and as an HDF attribute
# otherwise.
# Forbid assigning to our predefined attributes
if name in ["_fields", "_isattr", "_nattrs", "_nfields",
"_nrecs", "_recsize", "_refnum", "_tag", "_tnattrs"]:
raise AttributeError("%s: read-only attribute" % name)
# Handle the 3 VS attributes: _class, _interlace
# and _name. _interlace can only be set once.
elif name == "_class":
_checkErr(name, _C.VSsetclass(self._id, value),
'cannot set _class property')
elif name == "_interlace":
_checkErr(name, _C.VSsetinterlace(self._id, value),
'cannot set _interlace property')
elif name == "_name":
_checkErr(name, _C.VSsetname(self._id, value),
'cannot set _name property')
# Try to set the attribute.
else:
_setattr(self, name, value)
def __getitem__(self, elem):
# This method is called when the vdata is read
# like a Python sequence.
# Parse the indexing expression.
start, count = self.__buildStartCount(elem)
# Reset current position if necessary.
if self._offset != start[0]:
self.seek(start[0])
# Get records. A negative count means that an index was used.
recs = self.read(abs(count[0]))
# See if all the fields must be returned.
f0 = start[1]
if f0 == 0 and count[1] == self._nfields:
out = recs
else:
# Return only a subset of the vdata fields.
out = []
f1 = f0 + count[1]
for r in recs:
out.append(r[f0:f1])
# If an index was used (not a slice), return the record as
# a list, instead of returning it inside a 2-level list,
if count[0] < 0:
return out[0]
return out
def __setitem__(self, elem, data):
# This method is called when the vdata is written
# like a Python sequence.
#
# When indexing the vdata, 'data' must specify exactly
# one record, which must be specified as a sequence. If the index is
# equal to the current number of records, the record
# is appended to the vdata.
#
# When slicing the vdata, 'data' must specify a list of records.
# The number of records in the top level-list must match the width
# of the slice, except if the slice extends past the end of the
# vdata. In that case, extra records can be specified in the list,
# which will be appended to the vdata. In other words,
# to append records to vdata 'vd', assign records to
# the slice 'vd[vd._nrecs:]'.
#
# For ex., given a vdata 'vd' holding 5 records, and lists
# 'reca', 'recb', etc holding record values:
# vd[0] = reca # updates record 0
# vd[1] = [recb, recc] # error: only one record allowed
# vd[1:3] = [reca,recb] # updates second and third record
# vd[1:4] = [reca, recb] # error: 3 records needed
# vd[5:] = [reca,recb] # appends 2 records to the vdata
# Check that arg is a list.
if not type(data) in [tuple, list]:
raise HDF4Error("record(s) must be specified as a list")
start, count = self.__buildStartCount(elem, setitem=1)
# Records cannot be partially written.
if start[1] != 0 or count[1] != self._nfields:
raise HDF4Error("each vdata field must be written")
# If an index (as opposed to a slice) was applied to the
# vdata, a single record must be passed. Since write() requires
# a 2-level list, wrap this record inside a list.
if count[0] < 0:
if len(data) != self._nfields:
raise HDF4Error("record does not specify all fields")
data = [data]
# A slice was used. The slice length must match the number of
# records, except if the end of the slice equals the number
# of records. Then, extra recors can be specified, which will
# be appended to the vdata.
else:
if count[0] != len(data):
if start[0] + count[0] != self._nrecs:
raise HDF4Error("illegal number of records")
# Reset current record position if necessary.
if self._offset != start[0]:
self.seek(start[0])
# Write records.
recs = self.write(data)
def __del__(self):
"""Delete the instance, first calling the detach() method
if not already done. """
try:
if self._id:
self.detach()
except:
pass
def detach(self):
"""Terminate access to the vdata.
Args::
no argument
Returns::
None
C library equivalent : VSdetach
"""
_checkErr('detach', _C.VSdetach(self._id), "cannot detach vdata")
self._id = None
def fdefine(self, name, type, order):
"""Define a field. To initialize a newly created vdata with
fields created with fdefine(), assign a tuple of field names
to the _fields attribute or call the setfields() method.
Args::
name field name
type field data type (one of HC.xxx)
order field order (number of values in the field)
Returns::
None
C library equivalent : VSfdefine
"""
_checkErr('fdefine', _C.VSfdefine(self._id, name, type, order),
'cannot define field')
def setfields(self, *fldNames):
"""Define the name and order of the fields to access
with the read() and write() methods.
Args::
fldNames variable length argument specifying one or more
vdata field names
Returns::
None
C library equivalent : VSsetfields
setfields() indicates how to perform the matching between the vdata
fields and the values passed to the write() method or returned
by the read() method.
For example, if the vdata contains fields 'a', 'b' and 'c' and
a "setfields('c','a')" call is made, read() will thereafter return
for each record the values of field 'c' and 'a', in that order.
Field 'b' will be ignored.
When writing to a vdata, setfields() has a second usage. It is used
to initialize the structure of the vdata, that is, the name and order
of the fields that it will contain. The fields must have been
previously defined by calls to the fdefine() method.
Following that first call, setfields() can be called again to
change the order in which the record values will be passed
to the write() method. However, since it is mandatory to write
whole records, subsequent calls to setfields() must specify every
field name: only the field order can be changed.
"""
_checkErr('setfields', _C.VSsetfields(self._id, ','.join(fldNames)),
'cannot execute')
self._setfields = fldNames # remember for read/write routines
def field(self, name_index):
"""Get a VDField instance representing a field of the vdata.
Args::
name_index name or index number of the field
Returns::
VDfield instance representing the field
C library equivalent : no equivalent
"""
# Transform a name to an index number
if isinstance(name_index, str):
status, index = _C.VSfindex(self._id, name_index)
_checkErr('field', status, "illegal field name: %s" % name_index)
else:
n = _C.VFnfields(self._id)
_checkErr('field', n, 'cannot execute')
index = name_index
if index >= n:
raise HDF4Error("field: illegal index number")
return VDField(self, index)
def seek(self, recIndex):
"""Seek to the beginning of the record identified by its
record index. A succeeding read will load this record in
memory.
Args::
recIndex index of the record in the vdata; numbering
starts at 0. Legal values range from 0
(start of vdata) to the current number of
records (at end of vdata).
Returns::
record index
An exception is raised if an attempt is made to seek beyond the
last record.
The C API prohibits seeking past the next-to-last record,
forcing one to read the last record to advance to the end
of the vdata. The python API removes this limitation.
Seeking to the end of the vdata can also be done by calling
method ``seekend()``.
C library equivalent : VSseek
"""
if recIndex > self._nrecs - 1:
if recIndex == self._nrecs:
return self.seekend()
else:
raise HDF4Error("attempt to seek past last record")
n = _C.VSseek(self._id, recIndex)
_checkErr('seek', n, 'cannot seek')
self._offset = n
return n
def seekend(self):
"""Set the current record position past the last vdata record.
Subsequent write() calls will append records to the vdata.
Args::
no argument
Returns::
index of the last record plus 1
C library equivalent : no equivalent
"""
try:
# Seek to the next-to-last record position
n = self.seek(self._nrecs - 1) # updates _offset
# Read last record, ignoring values
self.read(1) # updates _offset
return self._nrecs
except HDF4Error:
raise HDF4Error("seekend: cannot execute")
def tell(self):
"""Return current record position in the vdata.
Args::
no argument
Returns::
current record position; 0 is at start of vdata.
C library equivalent : no equivalent
"""
return self._offset
def read(self, nRec=1):
"""Retrieve the values of a number of records, starting
at the current record position. The current record position
is advanced by the number of records read. Current position
is 0 after "opening" the vdata with the attach() method.
Args::
nRec number of records to read
Returns::
2-level list. First level is a sequence of records,
second level gives the sequence of values for each record.
The values returned for each record are those of the fields
specified in the last call to method setfields(), in that
order. The complete vdata field set is returned if
setfields() has not been called.
An exception is raised if the current record position is
already at the end of the vdata when read() is called. This
exception can be caught as an "end of vdata" indication to
exit a loop which scans each record of the vdata. Otherwise,
the number of records to be read is lowered to the number of
records remaining in the vdata, if that number is less than
the number asked for by parameter 'nRec'. Setting 'nRec' to
an arbitrarily large value can thus be used to retrieve the
remaining records in the vdata.
C library equivalent : VSread
"""
# Validate number of records to read vs the current offset.
# Return "end of vdata" exception if already at end of vdata
# otherwise "clip" the number of records if it exceeds the
# number of remaining records in the vdata.
n = self._nrecs
if self._offset == n:
raise HDF4Error("end of vdata reached")
if self._offset + nRec > n:
nRec = self._offset + nRec - n
fields = self._setfields or self._fields
nFields = len(fields)
fieldList = ','.join(fields)
_checkErr('read', _C.VSsetfields(self._id, fieldList),
'error defining fields to read')
# Allocate a buffer to store the packed records.
bufSize = self.sizeof(fields) * nRec
bigBuf = _C.array_byte(bufSize)
# Read records
nRead = _C.VSread(self._id, bigBuf, nRec, 0) # 0: FULL_INTERLACE
_checkErr('read', nRead, 'read error')
self._offset += nRec
# Allocate an array to store a pointer to the field buffer.
fldArr = _C.new_array_voidp(1)
# Initialize return value
values = []
for numRec in range(nRead):
v = []
for numFld in range(nFields):
v.append(None)
values.append(v)
# Unpack each field in turn.
for numFld in range(nFields):
fld = self.field(fields[numFld])
data_type = fld._type
order = fld._order
n_values = order * nRead
# Allocate a buffer to store the field values.
if data_type in [HC.CHAR8, HC.UCHAR8, HC.UINT8]:
buf = _C.array_byte(n_values)
elif data_type == HC.INT8:
buf = _C.array_int8(n_values)
elif data_type == HC.INT16:
buf = _C.array_int16(n_values)
elif data_type == HC.UINT16:
buf = _C.array_uint16(n_values)
elif data_type == HC.INT32:
buf = _C.array_int32(n_values)
elif data_type == HC.UINT32:
buf = _C.array_uint32(n_values)
elif data_type == HC.FLOAT32:
buf = _C.array_float32(n_values)
elif data_type == HC.FLOAT64:
buf = _C.array_float64(n_values)
else:
raise HDF4Error("read: illegal or unupported type %d" % \
data_type)
# Unpack the field values.
_C.array_voidp_setitem(fldArr, 0, buf)
_checkErr('read',
_C.VSfpack(self._id, 1, fieldList, bigBuf, bufSize,
nRead, fld._name, fldArr),
"cannot execute")
# Extract values from the field buffer.
k = 0
for numRec in range(nRead):
if order == 1:
values[numRec][numFld] = buf[k]
k += 1
else:
# Handle strings specially
if data_type == HC.CHAR8:
s = ''
for i in range(order):
v = buf[k]
if v != 0:
s += chr(v)
k += 1
values[numRec][numFld] = s
# Return field values as a list
else:
values[numRec][numFld] = []
for i in range(order):
values[numRec][numFld].append(buf[k])
k += 1
del buf
return values
def write(self, values):
"""Write records to the vdata. Writing starts at the current
record position, which is advanced by the number of records
written.
Args::
values: 2-level sequence. First level is a sequence of records.
A second level gives the sequence of record values.
It is mandatory to always write whole records. Thus
every record field must appear at the second level.
The record values are ordered according the list of
field names set in the last call to the setfields()
method. The ordre of the complete vdata field set is
used if setfields() has not been called.
Returns::
number of records written
To append to a vdata already holding 'n' records, it is necessary
to first move the current record position to 'n-1' with a call to
method seek(), then to call method read() for the side effect
of advancing the current record position past this last record.
Method seekend() does just that.
C library equivalent : VSwrite
"""
nFields = self._nfields
# Fields give the order the record values, as defined in the
# last call to setfields()
fields = self._setfields or self._fields
# We must pack values using the effective field order in the vdata
fieldList = ','.join(self._fields)
# Validate the values argument.
if nFields != len(fields):
raise HDF4Error("write: must write whole records")
if type(values) not in [list, tuple]:
raise HDF4Error("write: values must be a sequence")
nRec = len(values)
for n in range(nRec):
rec = values[n]
if type(rec) not in [list, tuple]:
raise HDF4Error("write: records must be given as sequences")
# Make sure each record is complete.
if len(rec) != nFields:
raise HDF4Error("write: records must specify every field")
# Allocate a buffer to store the packed records.
bufSize = self._recsize * nRec
bigBuf = _C.array_byte(bufSize)
# Allocate an array to store a pointer to the field buffer.
fldArr = _C.new_array_voidp(1)
# Pack each field in turn.
for numFld in range(nFields):
fld = self.field(fields[numFld])
data_type = fld._type
order = fld._order
n_values = order * nRec
# Allocate a buffer to store the field values.
if data_type in [HC.CHAR8, HC.UCHAR8, HC.UINT8]:
buf = _C.array_byte(n_values)
elif data_type == HC.INT8:
buf = _C.array_int8(n_values)
elif data_type == HC.INT16:
buf = _C.array_int16(n_values)
elif data_type == HC.UINT16:
buf = _C.array_uint16(n_values)
elif data_type == HC.INT32:
buf = _C.array_int32(n_values)
elif data_type == HC.UINT32:
buf = _C.array_uint32(n_values)
elif data_type == HC.FLOAT32:
buf = _C.array_float32(n_values)
elif data_type == HC.FLOAT64:
buf = _C.array_float64(n_values)
else:
raise HDF4Error("write: illegal or unupported type %d" % \
data_type)
# Load the field buffer with values.
k = 0
for numRec in range(nRec):
val = values[numRec][numFld]
# Single-valued field
if order == 1:
buf[k] = val
k += 1
# Multi-valued field
else:
# Handle strings specially.
if data_type == HC.CHAR8:
if not isinstance(val, str):
raise HDF4Error("char fields must be set with strings")
n = len(val)
for i in range(order):
buf[k] = i < n and ord(val[i]) or 0
k += 1
# Should validate field elements ...
elif type(val) not in [list, tuple]:
raise HDF4Error("multi-values fields must be given as sequences")
else:
for i in range(order):
buf[k] = val[i]
k += 1
# Store address of the field buffer in first position
# of the field array. Pack the field values.
_C.array_voidp_setitem(fldArr, 0, buf) # fldArr[0] = buf
_checkErr('write',
_C.VSfpack(self._id, 0, fieldList, bigBuf, bufSize,
nRec, fld._name, fldArr),
"cannot execute")
del buf
# Write the packed records.
n = _C.VSwrite(self._id, bigBuf, nRec, 0) # 0: FULL_INTERLACE
_checkErr('write', n, 'cannot execute')
self._offset += nRec
return n
def inquire(self):
"""Retrieve info about the vdata.
Args::
no argument
Returns::
5-element tuple with the following elements:
-number of records in the vdata
-interlace mode
-list of vdata field names
-size in bytes of the vdata record
-name of the vdata
C library equivalent : VSinquire
"""
status, nRecs, interlace, fldNames, size, vName = \
_C.VSinquire(self._id)
_checkErr('inquire', status, "cannot query vdata info")
return nRecs, interlace, fldNames.split(','), size, vName
def fieldinfo(self):
"""Retrieve info about all vdata fields.
Args::
no argument
Returns::
list where each element describes a field of the vdata;
each field is described by an 7-element tuple containing
the following elements:
- field name
- field data type (one of HC.xxx constants)
- field order
- number of attributes attached to the field
- field index number
- field external size
- field internal size
C library equivalent : no equivalent
"""
lst = []
for n in range(self._nfields):
fld = self.field(n)
lst.append((fld._name,
fld._type,
fld._order,
fld._nattrs,
fld._index,
fld._esize,
fld._isize))
return lst
def sizeof(self, fields):
"""Retrieve the size in bytes of the given fields.
Args::
fields sequence of field names to query
Returns::
total size of the fields in bytes
C library equivalent : VSsizeof
"""
if type(fields) in [tuple, list]:
str = ','.join(fields)
else:
str = fields
n = _C.VSsizeof(self._id, str)
_checkErr('sizeof', n, "cannot retrieve field sizes")
return n
def fexist(self, fields):
"""Check if a vdata contains a given set of fields.
Args::
fields sequence of field names whose presence in the
vdata must be checked
Returns::
true (1) if the given fields are present
false (0) otherwise
C library equivalent : VSfexist
"""
if type(fields) in [tuple, list]:
str = ','.join(fields)
else:
str = fields
ret = _C.VSfexist(self._id, str)
if ret < 0:
return 0
else:
return 1
def attr(self, name_or_index):
"""Create a VDAttr instance representing a vdata attribute.
Args::
name_or_index attribute name or index number; if a name is
given, the attribute may not exist; in that
case, it will be created when the VSAttr
instance set() method is called
Returns::
VSAttr instance for the attribute. Call the methods of this
class to query, read or set the attribute.
C library equivalent : no equivalent
"""
return VDAttr(self, name_or_index, -1) # -1: vdata attribute
def findattr(self, name):
"""Search the vdata for a given attribute.
Args::
name attribute name
Returns::
if found, VDAttr instance describing the attribute
None otherwise
C library equivalent : VSfindattr
"""
try:
att = self.attr(name)
if att._index is None:
att = None
except HDF4Error:
att = None
return att
def attrinfo(self):
"""Return info about all the vdata attributes.
Args::
no argument
Returns::
dictionary describing each vdata attribute; for each attribute
a (name,data) pair is added to the dictionary, where 'data' is
a tuple holding:
- attribute data type (one of HC.xxx constants)
- attribute order
- attribute value
- attribute size in bytes
C library equivalent : no equivalent
"""
dic = {}
for n in range(self._nattrs):
att = self.attr(n)
name, type, order, size = att.info()
dic[name] = (type, order, att.get(), size)
return dic
def __buildStartCount(self, elem, setitem=0):
# Called by __getitem__() and __setitem__() methods
# to parse the expression used inside square brackets to
# index/slice a vdata.
# If 'setitem' is set, the call comes from __setitem__()
# We then allow the start value to be past the last record
# so as to be able to append to the vdata.
#
# Return a 2-element tuple:
# - tuple of the start indices along the vdata dimensions
# - tuple of the count values along the vdata dimensions
# a count of -1 indicates that an index, not a slice
# was applied on the corresponding dimension.
# Make sure the indexing expression does not exceed the
# vdata number of dimensions (2).
if isinstance(elem, tuple):
if len(elem) > 2:
raise HDF4Error("illegal indexing expression")
else: # Convert single index to sequence
elem = [elem]
start = []
count = []
shape = [self._nrecs, self._nfields]
n = -1
for e in elem:
n += 1
# Simple index
if isinstance(e, int):
is_slice = False
if e < 0:
e += shape[n]
if e < 0 or e >= shape[n]:
if e == shape[n] and setitem:
pass
else:
raise HDF4Error("index out of range")
beg = e
end = e + 1
# Slice index
elif isinstance(e, slice):
is_slice = True
# None or 0 means not specified
if e.start:
beg = e.start
if beg < 0:
beg += shape[n]
else:
beg = 0
# None or maxint means not specified
if e.stop and e.stop != sys.maxsize:
end = e.stop
if end < 0:
end += shape[n]
else:
end = shape[n]
# Bug
else:
raise ValueError("invalid indexing expression")
# Clip end index and compute number of elements to get
if end > shape[n]:
end = shape[n]
if beg > end:
beg = end
if is_slice:
cnt = end - beg
else:
cnt = -1
start.append(beg)
count.append(cnt)
if n == 0:
start.append(0)
count.append(shape[1])
return start, count
class VDField(object):
"""The VDField class represents a vdata field.
To create a VDField instance, call the field() method of a
VD class instance. """
def __init__(self, vdinst, fIndex):
# This method should not be called directly by the user program.
# To create a VDField instance, obtain a VD class instance and
# call its field() method.
# Args:
# vdinst VD instance to which the field belongs
# fIndex field index
#
# Private attributes:
# _vd_inst VD instance to which the field belongs
# _idx field index
self._vd_inst = vdinst
self._idx = fIndex
def __getattr__(self, name):
"""Some field properties can be queried through the following
read-only attributes. Their names all start with an "_" to avoid
clashes with user-defined attributes.
Name Description C library routine
----- ------------------- -----------------
_esize field external size VFfieldesize
_index field index number VSfindex
_isize field internal size VFfieldisize
_name field name VFfieldname
_nattrs number of attributes VSfnattrs
_order field order VFfieldorder
_type field type VFfieldtype
"""
# Check for a user defined attribute first.
att = self.attr(name)
if att._index is not None: # Then the attribute exists
return att.get()
# Check for a predefined attribute.
elif name == "_esize":
n = _C.VFfieldesize(self._vd_inst._id, self._idx)
_checkErr('_esize', n, "execution error")
return n
elif name == "_index":
return self._idx
elif name == "_isize":
n = _C.VFfieldisize(self._vd_inst._id, self._idx)
_checkErr('_isize', n, "execution error")
return n
elif name == "_name":
n = _C.VFfieldname(self._vd_inst._id, self._idx)
_checkErr('_name', n, "execution error")
return n
elif name == "_nattrs":
n = _C.VSfnattrs(self._vd_inst._id, self._idx)
_checkErr('_nattrs', n, "execution error")
return n
elif name == "_order":
n = _C.VFfieldorder(self._vd_inst._id, self._idx)
_checkErr('_order', n, "execution error")
return n
elif name == "_type":
type = _C.VFfieldtype(self._vd_inst._id, self._idx)
_checkErr('_type', type, 'cannot retrieve field type')
return type
raise AttributeError
def __setattr__(self, name, value):
# Forbid assigning to our predefined attributes
if name in ["_esize", "_index", "_isize", "_name",
"_nattrs", "_order", "_type"]:
raise AttributeError("%s: read-only attribute" % name)
# Try to set the attribute.
else:
_setattr(self, name, value)
def attr(self, name_or_index):
"""Create a VDAttr instance representing a field attribute.
Args::
name_or_index attribute name or index number; if a name is
specified, the attribute may not exist; in that
case, it will be created when the VDAttr
instance set() method is called; if an
index number is specified, the attribute
must exist
Returns::
VSAttr instance for the attribute. Call the methods of this
class to query, read or set the attribute.
C library equivalent : no equivalent
"""
return VDAttr(self, name_or_index, self._idx)
def find(self, name):
"""Search the field for a given attribute.
Args::
name attribute name
Returns::
if found, VDAttr instance describing the attribute
None otherwise
C library equivalent : VSfindattr
"""
try:
att = self.attr(name)
if att._index is None:
att = None
except HDF4Error:
att = None
return att
def attrinfo(self):
"""Return info about all the field attributes.
Args::
no argument
Returns::
dictionary describing each vdata attribute; for each attribute
a (name,data) pair is added to the dictionary, where 'data' is
a tuple holding:
- attribute data type (one of HC.xxx constants)
- attribute order
- attribute value
- attribute size in bytes
C library equivalent : no equivalent
"""
dic = {}
for n in range(self._nattrs):
att = self.attr(n)
name, type, order, size = att.info()
dic[name] = (type, order, att.get(), size)
return dic
class VDAttr(object):
"""The VDAttr class encapsulates methods used to set and query attributes
defined at the level either of the vdata or of the vdata field.
To create an instance of this class, call the attr() method of a VD
(vdata) or VDField (vdata field) instance. """
def __init__(self, obj, name_or_index, fIndex):
# This constructor should not be called directly by the user
# program. The attr() method of a VD (vdata) or VDField
# (vdata field) must be called to instantiate this class.
# Args:
# obj object instance (VD or VDField) to which the
# attribute belongs
# name_or_index name or index of the attribute; if a name is
# given, an attribute with that name will be
# searched, if not found, a new index number will
# be generated
# fIndex field index, or -1 if the attribute belongs
# to the vdata
# Private attributes:
# _vd_inst VD instance
# _vdf_inst VDField instance or None
# _index attribute index or None
# _name attribute name or None
# _fIndex field index, or -1 obj is a VD instance
if isinstance(obj, VD):
self._vd_inst = obj
self._vdf_instance = None
self._fIndex = -1
else:
self._vd_inst = obj._vd_inst
self._vdf_inst = obj
self._fIndex = fIndex
# Name is given. Attribute may exist or not.
if isinstance(name_or_index, type('')):
self._name = name_or_index
self._index = _C.VSfindattr(self._vd_inst._id, self._fIndex,
self._name);
if self._index < 0:
self._index = None
# Index is given. Attribute Must exist.
else:
self._index = name_or_index
status, self._name, data_type, n_values, size = \
_C.VSattrinfo(self._vd_inst._id, self._fIndex,
self._index)
_checkErr('attr', status, 'non-existent attribute')
def get(self):
"""Retrieve the attribute value.
Args::
no argument
Returns::
attribute value(s); a list is returned if the attribute
is made up of more than one value, except in the case of a
string-valued attribute (data type HC.CHAR8) where the
values are returned as a string
C library equivalent : VSgetattr
"""
# Make sure th attribute exists.
if self._index is None:
raise HDF4Error("non existent attribute")
# Obtain attribute type and the number of values.
status, aName, data_type, n_values, size = \
_C.VSattrinfo(self._vd_inst._id, self._fIndex,
self._index)
_checkErr('get', status, 'illegal parameters')
# Get attribute value.
convert = _array_to_ret
if data_type == HC.CHAR8:
buf = _C.array_byte(n_values)
convert = _array_to_str
elif data_type in [HC.UCHAR8, HC.UINT8]:
buf = _C.array_byte(n_values)
elif data_type == HC.INT8:
buf = _C.array_int8(n_values)
elif data_type == HC.INT16:
buf = _C.array_int16(n_values)
elif data_type == HC.UINT16:
buf = _C.array_uint16(n_values)
elif data_type == HC.INT32:
buf = _C.array_int32(n_values)
elif data_type == HC.UINT32:
buf = _C.array_uint32(n_values)
elif data_type == HC.FLOAT32:
buf = _C.array_float32(n_values)
elif data_type == HC.FLOAT64:
buf = _C.array_float64(n_values)
else:
raise HDF4Error("get: attribute index %d has an "\
"illegal or unupported type %d" % \
(self._index, data_type))
status = _C.VSgetattr(self._vd_inst._id, self._fIndex,
self._index, buf)
_checkErr('get', status, 'illegal attribute ')
return convert(buf, n_values)
def set(self, data_type, values):
"""Set the attribute value.
Args::
data_type : attribute data type (see constants HC.xxx)
values : attribute value(s); specify a list to create
a multi-valued attribute; a string valued
attribute can be created by setting 'data_type'
to HC.CHAR8 and 'values' to the corresponding
string
If the attribute already exists, it will be
updated. However, it is illegal to try to change
its data type or its order (number of values).
Returns::
None
C library equivalent : VSsetattr
"""
try:
n_values = len(values)
except:
values = [values]
n_values = 1
if data_type == HC.CHAR8:
buf = _C.array_byte(n_values)
# Allow values to be passed as a string.
# Noop if a list is passed.
values = list(values)
for n in range(n_values):
if not isinstance(values[n], int):
values[n] = ord(values[n])
elif data_type in [HC.UCHAR8, HC.UINT8]:
buf = _C.array_byte(n_values)
elif data_type == HC.INT8:
# SWIG refuses negative values here. We found that if we
# pass them as byte values, it will work.
buf = _C.array_int8(n_values)
values = list(values)
for n in range(n_values):
v = values[n]
if v >= 0:
v &= 0x7f
else:
v = abs(v) & 0x7f
if v:
v = 256 - v
else:
v = 128 # -128 in 2s complement
values[n] = v
elif data_type == HC.INT16:
buf = _C.array_int16(n_values)
elif data_type == HC.UINT16:
buf = _C.array_uint16(n_values)
elif data_type == HC.INT32:
buf = _C.array_int32(n_values)
elif data_type == HC.UINT32:
buf = _C.array_uint32(n_values)
elif data_type == HC.FLOAT32:
buf = _C.array_float32(n_values)
elif data_type == HC.FLOAT64:
buf = _C.array_float64(n_values)
else:
raise HDF4Error("set: illegal or unimplemented data_type")
for n in range(n_values):
buf[n] = values[n]
status = _C.VSsetattr(self._vd_inst._id, self._fIndex, self._name,
data_type, n_values, buf)
_checkErr('attr', status, 'cannot execute')
# Update the attribute index
self._index = _C.VSfindattr(self._vd_inst._id, self._fIndex,
self._name);
if self._index < 0:
raise HDF4Error("set: error retrieving attribute index")
def info(self):
"""Retrieve info about the attribute.
Args::
no argument
Returns::
4-element tuple with the following components:
-attribute name
-attribute data type (one of HC.xxx constants)
-attribute order (number of values)
-attribute size in bytes
C library equivalent : VSattrinfo
"""
# Make sure the attribute exists.
if self._index is None:
raise HDF4Error("non existent attribute")
status, name, type, order, size = \
_C.VSattrinfo(self._vd_inst._id, self._fIndex, self._index)
_checkErr('info', status, "execution error")
return name, type, order, size
###########################
# Support functions
###########################
def _setattr(obj, name, value):
# Called by the __setattr__ method of the VD and VDField objects.
#
# obj instance on which the attribute is set
# name attribute name
# value attribute value
if isinstance(value, six.string_types):
value = value.encode('utf8')
# Treat a name starting with and underscore as that of a
# standard python instance attribute.
if name[0] == '_':
obj.__dict__[name] = value
return
# Treat everything else as an HDF attribute.
if type(value) not in [list, tuple]:
value = [value]
typeList = []
for v in value:
t = type(v)
# Prohibit mixing numeric types and strings.
if t in [int, float] and \
not bytes in typeList:
if t not in typeList:
typeList.append(t)
# Prohibit sequence of strings or a mix of numbers and string.
elif t == bytes and not typeList:
typeList.append(t)
else:
typeList = []
break
if bytes in typeList:
xtype = HC.CHAR8
value = value[0]
# double is "stronger" than int
elif float in typeList:
xtype = HC.FLOAT64
elif int in typeList:
xtype = HC.INT32
else:
raise HDF4Error("Illegal attribute value")
# Assign value
try:
a = obj.attr(name)
a.set(xtype, value)
except HDF4Error as msg:
raise HDF4Error("cannot set attribute: %s" % msg)
def _array_to_ret(buf, nValues):
# Convert array 'buf' to a scalar or a list.
if nValues == 1:
ret = buf[0]
else:
ret = []
for i in xrange(nValues):
ret.append(buf[i])
return ret
def _array_to_str(buf, nValues):
# Convert array of bytes 'buf' to a string.
# Return empty string if there is no value.
if nValues == 0:
return ""
# When there is just one value, _array_to_ret returns a scalar
# over which we cannot iterate.
if nValues == 1:
chrs = [chr(buf[0])]
else:
chrs = [chr(b) for b in _array_to_ret(buf, nValues)]
# Strip NULL at end
if chrs[-1] == '\0':
del chrs[-1]
return ''.join(chrs)
|