1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
# Copyright (c) 2023 European Synchrotron Radiation Facility
# License: MIT https://opensource.org/license/mit/
from __future__ import annotations
import json
import os
import sys
import tempfile
import time
from typing import Optional, NamedTuple
import h5py
import numpy
# Set affinity and env. var. before importing hdf5plugin
if len(sys.argv) >= 2:
NCPU = int(sys.argv[1])
print(f"Set affinity: Using {NCPU} CPU(s)")
os.sched_setaffinity(0, list(range(0, NCPU, 4)))
os.environ["OPENMP_NUM_THREADS"] = str(NCPU)
os.environ["BLOSC_NTHREADS"] = str(NCPU)
else:
NCPU = len(os.sched_getaffinity(0))
print(f"Default affinity: Using {NCPU} CPU(s)")
# Directory where to run read/write benchmarks
DIRECTORY = "/dev/shm"
# Function to get data to use for tests
def get_data():
with h5py.File("/dev/shm/kevlar.h5") as h5file:
return h5file["/entry/data/data"][::10] # Take 100 frames
import hdf5plugin
class Result(NamedTuple):
"""Store benchmark result"""
raw_nbytes: int
compressed_nbytes: int
write_duration: float
read_duration: float
chunks: tuple[int]
compression_rate = property(
lambda self: self.raw_nbytes / self.compressed_nbytes)
write_speed = property(
lambda self: (self.raw_nbytes / 1024**2) / self.write_duration,
doc="Unit: MB/sec")
read_speed = property(
lambda self: (self.raw_nbytes / 1024**2) / self.read_duration,
doc="Unit: MB/sec")
def benchmark(
data: numpy.ndarray,
directory: Optional[str] = None,
**kwargs
) -> Result:
"""Run benchmark for given conditions
:param data: Dataset to use
:param directory: Directory where to write HDF5 file for benchmark
:param kwargs: Arguments passed to h5py.Group.create_dataset
"""
if directory is None:
tmpdir = tempfile.TemporaryDirectory()
dirname = tmpdir.name
else:
dirname = directory
filename = os.path.join(dirname, 'hdf5plugin_benchmark.h5')
if os.path.exists(filename):
os.remove(filename)
# Compression
with h5py.File(filename, "w") as h5file:
dataset = h5file.create_dataset(
"data", shape=data.shape, dtype=data.dtype, **kwargs)
start_write_time = time.perf_counter()
dataset[:] = data
dataset.flush()
write_duration = time.perf_counter() - start_write_time
# Decompression
with h5py.File(filename, "r") as h5file:
dataset = h5file["data"]
start_time = time.perf_counter()
read_data = dataset[()]
read_duration = time.perf_counter() - start_time
storage_size = dataset.id.get_storage_size()
chunks = dataset.chunks
os.remove(filename)
return Result(data.nbytes, storage_size, write_duration, read_duration, chunks=chunks)
DEFAULT_FILTERS = { # Filters available with h5py/libhdf5
"Raw": None,
"GZip": "gzip",
"LZF": "lzf",
}
LOSSLESS_FILTERS = {
"BZip2": hdf5plugin.BZip2(),
"LZ4": hdf5plugin.LZ4(),
"ZStd": hdf5plugin.Zstd(),
}
BITSHUFFLE_FILTERS = {
"Bitshuffle-lz4": hdf5plugin.Bitshuffle(cname='lz4'),
"Bitshuffle-zstd": hdf5plugin.Bitshuffle(cname='zstd'),
}
BLOSC_FILTERS = {}
for cname in ('lz4', 'blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd'):
for shuffle_name, shuffle in [('NoShuffle', hdf5plugin.Blosc.NOSHUFFLE),
('Shuffle', hdf5plugin.Blosc.SHUFFLE),
('BitShuffle', hdf5plugin.Blosc.BITSHUFFLE)]:
for clevel in [5]: #(1, 3, 5, 9):
BLOSC_FILTERS[f"Blosc-{cname}-{shuffle_name}-{clevel}"] = hdf5plugin.Blosc(
cname=cname, clevel=clevel, shuffle=shuffle)
BLOSC2_FILTERS = {}
for cname in ('lz4', 'blosclz', 'lz4', 'lz4hc', 'zlib', 'zstd'):
for filters_name, filters in [('NoFilter', hdf5plugin.Blosc2.NOFILTER),
('Shuffle', hdf5plugin.Blosc2.SHUFFLE),
('BitShuffle', hdf5plugin.Blosc2.BITSHUFFLE)]:
for clevel in [5]: # (1, 3, 5, 9):
BLOSC2_FILTERS[f"Blosc2-{cname}-{filters_name}-{clevel}"] = hdf5plugin.Blosc2(
cname=cname, clevel=clevel, filters=filters)
FILTERS = {
**DEFAULT_FILTERS,
**LOSSLESS_FILTERS,
**BITSHUFFLE_FILTERS,
**BLOSC_FILTERS,
**BLOSC2_FILTERS,
}
print("Read benchmark data...")
data = get_data()
print("Run benchmarks:")
chunks = (1,) + data.shape[1:]
results = {}
for name, compression in FILTERS.items():
print(f"- {name}")
results[name] = benchmark(
data,
directory=DIRECTORY,
chunks=chunks,
compression=compression,
)._asdict()
print("Write results")
with open("benchmark.json", "w") as f:
json.dump(
dict(
config=dict(
ncpu=NCPU,
affinity=list(os.sched_getaffinity(0)),
openmp_num_threads=os.environ.get("OPENMP_NUM_THREADS", "unset"),
blosc_nthreads=os.environ.get("BLOSC_NTHREADS", "unset"),
hdf5plugin=hdf5plugin.get_config().build_config._asdict(),
chunks=chunks,
),
results=results,
),
f,
indent=2,
default=lambda obj: type(obj).__name__,
)
|