File: make_randoms.py

package info (click to toggle)
python-hdf5storage 0.1.14-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 668 kB
  • ctags: 407
  • sloc: python: 3,188; makefile: 133
file content (304 lines) | stat: -rw-r--r-- 11,778 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# -*- coding: utf-8 -*-

# Copyright (c) 2013-2016, Freja Nordsiek
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import sys
import posixpath
import string
import random
import warnings

import numpy as np
import numpy.random


random.seed()


# The dtypes that can be made
dtypes = ['bool', 'uint8', 'uint16', 'uint32', 'uint64',
          'int8', 'int16', 'int32', 'int64',
          'float32', 'float64', 'complex64', 'complex128',
          'S', 'U']

# Define the sizes of random datasets to use.
max_string_length = 10
max_array_axis_length = 8
max_list_length = 6
max_posix_path_depth = 5
max_posix_path_lengths = 17
object_subarray_dimensions = 2
max_object_subarray_axis_length = 5
min_dict_keys = 4
max_dict_keys = 12
max_dict_key_length = 10
dict_value_subarray_dimensions = 2
max_dict_value_subarray_axis_length = 5
min_structured_ndarray_fields = 2
max_structured_ndarray_fields = 5
max_structured_ndarray_field_lengths = 10
max_structured_ndarray_axis_length = 2
structured_ndarray_subarray_dimensions = 2
max_structured_ndarray_subarray_axis_length = 4


def random_str_ascii_letters(length):
    # Makes a random ASCII str of the specified length.
    if sys.hexversion >= 0x03000000:
        ltrs = string.ascii_letters
        return ''.join([random.choice(ltrs) for i in
                       range(0, length)])
    else:
        ltrs = unicode(string.ascii_letters)
        return unicode('').join([random.choice(ltrs) for i in
                                 range(0, length)])


def random_str_ascii(length):
    # Makes a random ASCII str of the specified length.
    if sys.hexversion >= 0x03000000:
        ltrs = string.ascii_letters + string.digits
        return ''.join([random.choice(ltrs) for i in
                       range(0, length)])
    else:
        ltrs = unicode(string.ascii_letters + string.digits)
        return unicode('').join([random.choice(ltrs) for i in
                                 range(0, length)])


def random_str_some_unicode(length):
    # Makes a random ASCII+limited unicode str of the specified
    # length.
    ltrs = random_str_ascii(10)
    if sys.hexversion >= 0x03000000:
        ltrs += 'αβγδεζηθικλμνξοπρστυφχψωΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩς'
        c = ''
    else:
        ltrs += unicode('αβγδεζηθικλμνξοπρστυφχψω'
                        + 'ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩς', 'utf-8')
        c = unicode('')
    return c.join([random.choice(ltrs) for i in range(0, length)])


def random_bytes(length):
    # Makes a random sequence of bytes of the specified length from
    # the ASCII set.
    ltrs = bytes(range(1, 127))
    return bytes([random.choice(ltrs) for i in range(0, length)])


def random_bytes_fullrange(length):
    # Makes a random sequence of bytes of the specified length from
    # the ASCII set.
    ltrs = bytes(range(1, 255))
    return bytes([random.choice(ltrs) for i in range(0, length)])

def random_int():
    return random.randint(-(2**31 - 1), 2**31)


def random_float():
    return random.uniform(-1.0, 1.0) \
        * 10.0**random.randint(-300, 300)


def random_numpy(shape, dtype, allow_nan=True,
                 allow_unicode=False):
    # Makes a random numpy array of the specified shape and dtype
    # string. The method is slightly different depending on the
    # type. For 'bytes', 'str', and 'object'; an array of the
    # specified size is made and then each element is set to either
    # a numpy.bytes_, numpy.str_, or some other object of any type
    # (here, it is a randomly typed random numpy array). If it is
    # any other type, then it is just a matter of constructing the
    # right sized ndarray from a random sequence of bytes (all must
    # be forced to 0 and 1 for bool). Optionally include unicode
    # characters.
    if dtype == 'S':
        length = random.randint(1, max_string_length)
        data = np.zeros(shape=shape, dtype='S' + str(length))
        for index, x in np.ndenumerate(data):
            if allow_unicode:
                chars = random_bytes_fullrange(length)
            else:
                chars = random_bytes(length)
            data[index] = np.bytes_(chars)
        return data
    elif dtype == 'U':
        length = random.randint(1, max_string_length)
        data = np.zeros(shape=shape, dtype='U' + str(length))
        for index, x in np.ndenumerate(data):
            if allow_unicode:
                chars = random_str_some_unicode(length)
            else:
                chars = random_str_ascii(length)
            data[index] = np.unicode_(chars)
        return data
    elif dtype == 'object':
        data = np.zeros(shape=shape, dtype='object')
        for index, x in np.ndenumerate(data):
            data[index] = random_numpy( \
                shape=random_numpy_shape( \
                object_subarray_dimensions, \
                max_object_subarray_axis_length), \
                dtype=random.choice(dtypes))
        return data
    else:
        nbytes = np.ndarray(shape=(1,), dtype=dtype).nbytes
        bts = np.random.bytes(nbytes * np.prod(shape))
        if dtype == 'bool':
            bts = b''.join([{True: b'\x01', False: b'\x00'}[ \
                ch > 127] for ch in bts])
        data = np.ndarray(shape=shape, dtype=dtype, buffer=bts)
        # If it is a floating point type and we are supposed to
        # remove NaN's, then turn them to zeros. Numpy will throw
        # RuntimeWarnings for some NaN values, so those warnings need to
        # be caught and ignored.
        if not allow_nan and data.dtype.kind in ('f', 'c'):
            data = data.copy()
            with warnings.catch_warnings():
                warnings.simplefilter('ignore', RuntimeWarning)
                if data.dtype.kind == 'f':
                    data[np.isnan(data)] = 0.0
                else:
                    data.real[np.isnan(data.real)] = 0.0
                    data.imag[np.isnan(data.imag)] = 0.0
        return data


def random_numpy_scalar(dtype):
    # How a random scalar is made depends on th type. For must, it
    # is just a single number. But for the string types, it is a
    # string of any length.
    if dtype == 'S':
        return np.bytes_(random_bytes(random.randint(1,
                         max_string_length)))
    elif dtype == 'U':
        return np.unicode_(random_str_ascii(
                           random.randint(1,
                           max_string_length)))
    else:
        return random_numpy(tuple(), dtype)[()]


def random_numpy_shape(dimensions, max_length):
    # Makes a random shape tuple having the specified number of
    # dimensions. The maximum size along each axis is max_length.
    return tuple([random.randint(1, max_length) for x in range(0,
                 dimensions)])


def random_list(N, python_or_numpy='numpy'):
    # Makes a random list of the specified type. If instructed, it
    # will be composed entirely from random numpy arrays (make a
    # random object array and then convert that to a
    # list). Otherwise, it will be a list of random bytes.
    if python_or_numpy == 'numpy':
        return random_numpy((N,), dtype='object').tolist()
    else:
        data = []
        for i in range(0, N):
            data.append(random_bytes(random.randint(1,
                        max_string_length)))
        return data


def random_dict():
    # Makes a random dict (random number of randomized keys with
    # random numpy arrays as values).
    data = dict()
    for i in range(0, random.randint(min_dict_keys, \
            max_dict_keys)):
        name = random_str_ascii(max_dict_key_length)
        data[name] = \
            random_numpy(random_numpy_shape( \
            dict_value_subarray_dimensions, \
            max_dict_value_subarray_axis_length), \
            dtype=random.choice(dtypes))
    return data


def random_structured_numpy_array(shape, field_shapes=None,
                                  nonascii_fields=False,
                                  names=None):
    # Make random field names (if not provided with field names),
    # dtypes, and sizes. Though, if field_shapes is explicitly given,
    # the sizes should be random. The field names must all be of type
    # str, not unicode in Python 2. Optionally include non-ascii
    # characters in the field names (will have to be encoded in Python
    # 2.x). String types will not be used due to the difficulty in
    # assigning the length.
    if names is None:
        if nonascii_fields:
            name_func = random_str_some_unicode
        else:
            name_func = random_str_ascii
        names = [name_func(
                 max_structured_ndarray_field_lengths)
                 for i in range(0, random.randint(
                 min_structured_ndarray_fields,
                 max_structured_ndarray_fields))]
        if sys.hexversion < 0x03000000:
            for i, name in enumerate(names):
                names[i] = name.encode('UTF-8')
    dts = [random.choice(list(set(dtypes)
           - set(('S', 'U'))))
           for i in range(len(names))]
    if field_shapes is None:
        shapes = [random_numpy_shape(
                  structured_ndarray_subarray_dimensions,
                  max_structured_ndarray_subarray_axis_length)
                  for i in range(len(names))]
    else:
        shapes = [field_shapes] * len(names)
    # Construct the type of the whole thing.
    dt = np.dtype([(names[i], dts[i], shapes[i])
                  for i in range(len(names))])
    # Make the array. If dt.itemsize is 0, then we need to make an
    # array of int8's the size in shape and convert it to work
    # around a numpy bug. Otherwise, we will just create an empty
    # array and then proceed by assigning each field.
    if dt.itemsize == 0:
        return np.zeros(shape=shape, dtype='int8').astype(dt)
    else:
        data = np.empty(shape=shape, dtype=dt)
        for index, x in np.ndenumerate(data):
            for i, name in enumerate(names):
                data[name][index] = random_numpy(shapes[i], \
                    dts[i], allow_nan=False)
        return data


def random_name():
    # Makes a random POSIX path of a random depth.
    depth = random.randint(1, max_posix_path_depth)
    path = '/'
    for i in range(0, depth):
        path = posixpath.join(path, random_str_ascii(
                              random.randint(1,
                              max_posix_path_lengths)))
    return path