1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
.. currentmodule:: hdf5storage
============
Introduction
============
Getting Started
===============
Most of the functionality that one will use is contained in the main
module ::
import hdf5storage
Lower level functionality needed mostly for extending this package to
work with more datatypes are in its submodules.
The main functions in this module are :py:func:`write` and
:py:func:`read` which write a single Python variable to an HDF5 file or
read the specified contents at one location in an HDF5 file and convert
to Python types.
HDF5 files are structured much like a Unix filesystem, so everything can
be referenced with a POSIX style path, which look like
``'/pyth/hf'``. Unlike a Windows path, back slashes (``'/'``) are used
as directory separators instead of forward slashes (``'\'``) and the
base of the file system is just ``'/'`` instead of something like
``'C:\'``. In the language of HDF5, what we call directories and files
in filesystems are called groups and datasets.
:py:func:`write` has many options for controlling how the data is
stored, and what metadata is stored, but we can ignore that for now. If
we have a variable named ``foo`` that we want to write to an HDF5 file
named ``data.h5``, we would write it by ::
hdf5storage.write(foo, path='/foo', filename='data.h5')
And then we can read it back from the file with the :py:func:`read`
function, which returns the read data. Here, we will put the data we
read back into the variable ``bar`` ::
bar = hdf5storage.read(path='/foo', filename='data.h5')
Writing And Reading Several Python Variables at Once
====================================================
To write and read more than one Python variable, one could use
:py:func:`write` and :py:func:`read` for each variable individually.
This can incur a major performance penalty, especially for large HDF5
files, since each call opens and closes the HDF5 file (sometimes more
than once).
Version ``0.1.10`` added a way to do this without incuring this
performance penalty by adding two new functions: :py:func:`writes` and
:py:func:`reads`.
They can write and read more than one Python variable at once, though
they can still work with a single variable. In fact, :py:func:`write`
and :py:func:`read` are now wrappers around them. :py:func:`savemat`
and :py:func:`loadmat` currently use them for the improved performance.
.. versionadded:: 0.1.10
Ability to write and read more than one Python variable at a time
without opening and closing the HDF5 file each time.
Main Options Controlling Writing/Reading Data
=============================================
There are many individual options that control how data is written and
read to/from file. These can be set by passing an :py:class:`Options`
object to :py:func:`write` and :py:func:`read` by ::
options = hdf5storage.Options(...)
hdf5storage.write(... , options=options)
hdf5storage.read(... , options=options)
or passing the individual keyword arguments used by the
:py:class:`Options` constructor to :py:func:`write` and
:py:func:`read`. The two methods cannot be mixed (the functions will
give precedence to the given :py:class:`Options` object).
.. note::
Functions in the various submodules only support the
:py:class:`Options` object method of passing options.
The two main options are :py:attr:`Options.store_python_metadata` and
:py:attr:`Options.matlab_compatible`. A more minor option is
:py:attr:`Options.oned_as`.
.. versionadded:: 0.1.9
Support for the transparent compression of data has been added. It
is enabled by default, compressing all python objects resulting in
HDF5 Datasets larger than 16 KB with the GZIP/Deflate algorithm.
store_python_metadata
---------------------
``bool``
Setting this options causes metadata to be written so that the written
objects can be read back into Python accurately. As HDF5 does not
natively support many Python data types (essentially only Numpy types),
most Python data types have to be converted before being written. If
metadata isn't also written, the data cannot be read back to its
original form and will instead be read back as the Python type most
closely resembling how it is stored, which will be a Numpy type of some
sort.
.. note
This option is especially important when we consider that when
``matlab_compatible == True``, many additional conversions and
manipulations will be done to the data that cannot be reversed
without this metadata.
matlab_compatible
-----------------
``bool``
Setting this option causes the writing of HDF5 files be done in a way
compatible with MATLAB v7.3 MAT files. This consists of writing some
file metadata so that MATLAB recognizes the file, adding specific
metadata to every stored object so that MATLAB recognizes them, and
transforming the data to be in the form that MATLAB expects for certain
types (for example, MATLAB expects everything to be at least a 2D array
and strings to be stored in UTF-16 but with no doublets).
.. note::
There are many individual small options in the :py:class:`Options`
class that this option sets to specific values. Setting
``matlab_compatible`` automatically sets them, while changing their
values to something else automatically turns ``matlab_compatible``
off.
action_for_matlab_incompatible
------------------------------
{``'ignore'``, ``'discard'``, ``'error'``}
The action to perform when doing MATLAB compatibility
(``matlab_compatible == True``) but a type
being written is not MATLAB compatible. The actions are to write the
data anyways ('ignore'), don't write the incompatible data ('discard'),
or throw a :py:exc:`lowlevel.TypeNotMatlabCompatibleError`
exception. The default is 'error'.
oned_as
-------
{'row', 'column'}
This option is only actually relevant when
``matlab_compatible == True``. MATLAB only supports 2D and higher
dimensionality arrays, but Numpy supports 1D arrays. So, 1D arrays have
to be made 2 dimensional making them either into row vectors or column
vectors. This option sets which they become when imported into MATLAB.
compress
--------
.. versionadded:: 0.1.9
``bool``
Whether to use compression when writing data. Enabled (``True``) by default. See :ref:`Compression` for more information.
Convenience Functions for MATLAB MAT Files
==========================================
Two functions are provided for reading and writing to MATLAB MAT files
in a convenient way. They are :py:func:`savemat` and :py:func:`loadmat`,
which are modelled after the SciPy functions of the same name
(:py:func:`scipy.io.savemat` and :py:func:`scipy.io.loadmat`), which
work with non-HDF5 based MAT files. They take not only the same options,
but dispatch calls automatically to the SciPy versions when instructed
to write to a non-HDF5 based MAT file, or read a MAT file that is not
HDF5 based. SciPy must be installed to take advantage of this
functionality.
:py:func:`savemat` takes a ``dict`` having data (values) and the names
to give each piece of data (keys), and writes them to a MATLAB
compatible MAT file. The `format` keyword sets the MAT file format, with
``'7.3'`` being the HDF5 based format supported by this package and
``'5'`` and ``'4'`` being the non HDF5 based formats supported by
SciPy. If you want the data to be able to be read accurately back into
Python, you should set ``store_python_metadata=True``. Writing a couple
variables to a file looks like ::
hdf5storage.savemat('data.mat', {'foo': 2.3, 'bar': (1+2j)}, format='7.3', oned_as='column', store_python_metadata=True)
Then, to read variables back, we can either explicitly name the
variables we want ::
out = hdf5storage.loadmat('data.mat', variable_names=['foo', 'bar'])
or grab all variables by either not giving the `variable_names` option
or setting it to ``None``. ::
out = hdf5storage.loadmat('data.mat')
Example: Write And Readback Including Different Metadata
========================================================
Making The Data
---------------
Make a ``dict`` containing many different types in it that we want to
store to disk in an HDF5 file. The initialization method depends on
the Python version.
Python 3
^^^^^^^^
The ``dict`` keys must be ``str`` (the unicode string type).
>>> import numpy as np
>>> import hdf5storage
>>> a = {'a': True,
... 'b': None,
... 'c': 2,
... 'd': -3.2,
... 'e': (1-2.3j),
... 'f': 'hello',
... 'g': b'goodbye',
... 'h': ['list', 'of', 'stuff', [30, 2.3]],
... 'i': np.zeros(shape=(2,), dtype=[('bi', 'uint8')]),
... 'j':{'aa': np.bool_(False),
... 'bb': np.uint8(4),
... 'cc': np.uint32([70, 8]),
... 'dd': np.int32([]),
... 'ee': np.float32([[3.3], [5.3e3]]),
... 'ff': np.complex128([[3.4, 3], [9+2j, 0]]),
... 'gg': np.array(['one', 'two', 'three'], dtype='str'),
... 'hh': np.bytes_(b'how many?'),
... 'ii': np.object_(['text', np.int8([1, -3, 0])])}}
Python 2
^^^^^^^^
The same thing but in Python 2 where the ``dict`` keys must be
``unicode``. The other datatypes are translated from the Python 3
example appropriately. The rest of the examples on this page are run
identically in Python 2 and 3, but the outputs are listed as is
returned in Python 3.
>>> import numpy as np
>>> import hdf5storage
>>> a = {u'a': True,
... u'b': None,
... u'c': 2,
... u'd': -3.2,
... u'e': (1-2.3j),
... u'f': u'hello',
... u'g': 'goodbye',
... u'h': [u'list', u'of', u'stuff', [30, 2.3]],
... u'i': np.zeros(shape=(2,), dtype=[('bi', 'uint8')]),
... u'j':{u'aa': np.bool_(False),
... u'bb': np.uint8(4),
... u'cc': np.uint32([70, 8]),
... u'dd': np.int32([]),
... u'ee': np.float32([[3.3], [5.3e3]]),
... u'ff': np.complex128([[3.4, 3], [9+2j, 0]]),
... u'gg': np.array([u'one', u'two', u'three'], dtype='unicode'),
... u'hh': np.str_('how many?'),
... u'ii': np.object_([u'text', np.int8([1, -3, 0])])}}
Using No Metadata
-----------------
Write it to a file at the ``'/a'`` directory, but include no Python or
MATLAB metadata. Then, read it back and notice that many objects come
back quite different from what was written. Namely, everything was
converted to Numpy types. This even included the dictionaries which were
converted to structured ``np.ndarray``s. This happens because all
other types (other than ``dict``) must be converted to these types
before being written to the HDF5 file, and without metadata, the
conversion cannot be reversed (while ``dict`` isn't converted, it has
the same form and thus cannot be extracted reversibly).
>>> hdf5storage.write(data=a, path='/a', filename='data.h5',
... store_python_metadata=False,
... matlab_compatible=False)
>>> hdf5storage.read(path='/a', filename='data.h5')
array([ (True,
[],
2,
-3.2,
(1-2.3j),
b'hello',
b'goodbye',
[array(b'list', dtype='|S4'),
array(b'of', dtype='|S2'),
array(b'stuff', dtype='|S5'),
array([array(30), array(2.3)], dtype=object)],
[(0,), (0,)],
[(False,
4,
array([70, 8], dtype=uint32),
array([], dtype=int32),
array([[ 3.29999995e+00], [ 5.30000000e+03]], dtype=float32),
array([[ 3.4+0.j, 3.0+0.j], [ 9.0+2.j, 0.0+0.j]]),
array([111, 110, 101, 0, 0, 116, 119, 111, 0, 0, 116, 104, 114,
101, 101], dtype=uint32),
b'how many?',
array([array(b'text', dtype='|S4'),
array([ 1, -3, 0], dtype=int8)],
dtype=object))])],
dtype=[('a', '?'),
('b', '<f8', (0,)),
('c', '<i8'),
('d', '<f8'),
('e', '<c16'),
('f', 'S5'),
('g', 'S7'), ('h', 'O', (4,)),
('i', [('bi', 'u1')], (2,)),
('j', [('aa', '?'),
('bb', 'u1'),
('cc', '<u4', (2,)),
('dd', '<i4', (0,)),
('ee', '<f4', (2, 1)),
('ff', '<c16', (2, 2)),
('gg', '<u4', (15,)),
('hh', 'S9'),
('ii', 'O', (2,))],
(1,))])
Including Python Metadata
-------------------------
Do the same thing, but now include Python metadata
(``store_python_metadata == True``). This time, everything is read back
the same (or at least, it should) as it was written.
>>> hdf5storage.write(data=a, path='/a', filename='data_typeinfo.h5',
... store_python_metadata=True,
... matlab_compatible=False)
>>> hdf5storage.read(path='/a', filename='data_typeinfo.h5')
{'a': True,
'b': None,
'c': 2,
'd': -3.2,
'e': (1-2.3j),
'f': 'hello',
'g': b'goodbye',
'h': ['list', 'of', 'stuff', [30, 2.3]],
'i': array([(0,), (0,)],
dtype=[('bi', 'u1')]),
'j': {'aa': False,
'bb': 4,
'cc': array([70, 8], dtype=uint32),
'dd': array([], dtype=int32),
'ee': array([[ 3.29999995e+00],
[ 5.30000000e+03]], dtype=float32),
'ff': array([[ 3.4+0.j, 3.0+0.j],
[ 9.0+2.j, 0.0+0.j]]),
'gg': array(['one', 'two', 'three'],
dtype='<U5'),
'hh': b'how many?',
'ii': array(['text', array([ 1, -3, 0], dtype=int8)], dtype=object)}}
Including MATLAB Metadata
-------------------------
Do the same thing, but this time including only MATLAB metadata
(``matlab_compatible == True``). This time, the data that is read back
is different from what was written, but in a different way than when no
metadata was used. The biggest differences are that everything was
turned into an at least 2D array, all arrays are transposed, and all
string types got converted to ``numpy.str_``. This happens because
MATLAB can only work with 2D and higher arrays, uses Fortran array
ordering instead of C ordering like Python does, and strings are stored
in a subset of UTF-16 (no doublets) in the version 7.3 MAT files.
>>> hdf5storage.write(data=a, path='/a', filename='data.mat',
... store_python_metadata=False,
... matlab_compatible=True)
>>> hdf5storage.read(path='/a', filename='data.mat')
array([ ([[True]],
[[]],
[[2]],
[[-3.2]],
[[(1-2.3j)]],
[['hello']],
[['goodbye']],
[[array([['list']], dtype='<U4'),
array([['of']], dtype='<U2'),
array([['stuff']], dtype='<U5'),
array([[array([[30]]), array([[ 2.3]])]], dtype=object)]],
[[(array([[0]], dtype=uint8),)],
[(array([[0]], dtype=uint8),)]],
[(array([[False]], dtype=bool),
array([[4]], dtype=uint8),
array([[70, 8]], dtype=uint32),
array([], shape=(1, 0), dtype=int32),
array([[ 3.29999995e+00], [ 5.30000000e+03]], dtype=float32),
array([[ 3.4+0.j, 3.0+0.j], [ 9.0+2.j, 0.0+0.j]]),
array([['one\x00\x00two\x00\x00three']], dtype='<U15'),
array([['how many?']], dtype='<U9'),
array([[array([['text']], dtype='<U4'),
array([[ 1, -3, 0]], dtype=int8)]], dtype=object))])],
dtype=[('a', '?', (1, 1)),
('b', '<f8', (1, 0)),
('c', '<i8', (1, 1)),
('d', '<f8', (1, 1)),
('e', '<c16', (1, 1)),
('f', '<U5', (1, 1)),
('g', '<U7', (1, 1)),
('h', 'O', (1, 4)),
('i', [('bi', 'u1', (1, 1))], (2, 1)),
('j', [('aa', '?', (1, 1)),
('bb', 'u1', (1, 1)),
('cc', '<u4', (1, 2)),
('dd', '<i4', (1, 0)),
('ee', '<f4', (2, 1)),
('ff', '<c16', (2, 2)),
('gg', '<U15', (1, 1)),
('hh', '<U9', (1, 1)),
('ii', 'O', (1, 2))],
(1,))])
Including both Python And MATLAB Metadata
-----------------------------------------
Do the same thing, but now include both Python metadata
(``store_python_metadata == True``) and MATLAB metadata
(``matlab_compatible == True``). This time, everything is read back
the same (or at least, it should) as it was written. The Python metadata
allows the transformations done by making the stored data MATLAB
compatible reversible.
>>> hdf5storage.write(data=a, path='/a', filename='data_typeinfo.mat',
... store_python_metadata=True,
... matlab_compatible=True)
>>> hdf5storage.read(path='/a', filename='data_typeinfo.mat')
{'a': True,
'b': None,
'c': 2,
'd': -3.2,
'e': (1-2.3j),
'f': 'hello',
'g': b'goodbye',
'h': ['list', 'of', 'stuff', [30, 2.3]],
'i': array([(0,), (0,)],
dtype=[('bi', 'u1')]),
'j': {'aa': False,
'bb': 4,
'cc': array([70, 8], dtype=uint32),
'dd': array([], dtype=int32),
'ee': array([[ 3.29999995e+00],
[ 5.30000000e+03]], dtype=float32),
'ff': array([[ 3.4+0.j, 3.0+0.j],
[ 9.0+2.j, 0.0+0.j]]),
'gg': array(['one', 'two', 'three'],
dtype='<U5'),
'hh': b'how many?',
'ii': array(['text', array([ 1, -3, 0], dtype=int8)], dtype=object)}}
|