File: Marshallers.py

package info (click to toggle)
python-hdf5storage 0.1.19-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 896 kB
  • sloc: python: 3,504; makefile: 132
file content (1799 lines) | stat: -rw-r--r-- 79,058 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
# Copyright (c) 2013-2023, Freja Nordsiek
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

""" Module for the classes to marshall Python types to/from file.

"""

import sys
import posixpath
import collections

try:
    from pkg_resources import parse_version
except:
    from distutils.version import StrictVersion as parse_version

import numpy as np
import h5py

from hdf5storage.utilities import *
from hdf5storage import lowlevel
from hdf5storage.lowlevel import write_data, read_data


# Ubuntu 12.04's h5py doesn't have __version__ set so we need to try to
# grab the version and if it isn't available, just assume it is 2.0.
try:
    _H5PY_VERSION = h5py.__version__
except:
    _H5PY_VERSION = '2.0'


def write_object_array(f, data, options):
    """ Writes an array of objects recursively.

    Writes the elements of the given object array recursively in the
    HDF5 Group ``options.group_for_references`` and returns an
    ``h5py.Reference`` array to all the elements.

    Parameters
    ----------
    f : h5py.File
        The HDF5 file handle that is open.
    data : numpy.ndarray of objects
        Numpy object array to write the elements of.
    options : hdf5storage.core.Options
        hdf5storage options object.

    Returns
    -------
    numpy.ndarray of h5py.Reference
        A reference array pointing to all the elements written to the
        HDF5 file. For those that couldn't be written, the respective
        element points to the canonical empty.

    Raises
    ------
    TypeNotMatlabCompatibleError
        If writing a type not compatible with MATLAB and
        `options.action_for_matlab_incompatible` is set to ``'error'``.

    See Also
    --------
    read_object_array
    hdf5storage.Options.group_for_references
    h5py.Reference

    """
    # We need to grab the special reference dtype and make an empty
    # array to store all the references in.
    ref_dtype = h5py.special_dtype(ref=h5py.Reference)
    data_refs = np.zeros(shape=data.shape, dtype='object')

    # We need to make sure that the group to hold references is present,
    # and create it if it isn't.

    if options.group_for_references not in f:
        f.create_group(options.group_for_references)

    grp2 = f[options.group_for_references]

    if not isinstance(grp2, h5py.Group):
        del f[options.group_for_references]
        f.create_group(options.group_for_references)
        grp2 = f[options.group_for_references]

    # The Dataset 'a' needs to be present as the canonical empty. It is
    # just and np.uint32/64([0, 0]) with its a MATLAB_class of
    # 'canonical empty' and the 'MATLAB_empty' attribute set. If it
    # isn't present or is incorrectly formatted, it is created
    # truncating anything previously there.
    if 'a' not in grp2 or grp2['a'].shape != (2,) \
            or not grp2['a'].dtype.name.startswith('uint') \
            or np.any(grp2['a'][...] != np.uint64([0, 0])) \
            or get_attribute_string(grp2['a'], 'MATLAB_class') != \
            'canonical empty' \
            or get_attribute(grp2['a'], 'MATLAB_empty') != 1:
        if 'a' in grp2:
            del grp2['a']
        grp2.create_dataset('a', data=np.uint64([0, 0]))
        set_attribute_string(grp2['a'], 'MATLAB_class',
                             'canonical empty')
        set_attribute(grp2['a'], 'MATLAB_empty',
                      np.uint8(1))

    # Go through all the elements of data and write them, gabbing their
    # references and putting them in data_refs. They will be put in
    # group_for_references, which is also what the H5PATH needs to be
    # set to if we are doing MATLAB compatibility (otherwise, the
    # attribute needs to be deleted). If an element can't be written
    # (doing matlab compatibility, but it isn't compatible with matlab
    # and action_for_matlab_incompatible option is True), the reference
    # to the canonical empty will be used for the reference array to
    # point to.
    for index, x in np.ndenumerate(data):
        data_refs[index] = None
        name_for_ref = next_unused_name_in_group(grp2, 16)
        write_data(f, grp2, name_for_ref, x, None, options)
        if name_for_ref in grp2:
            data_refs[index] = grp2[name_for_ref].ref
            if options.matlab_compatible:
                set_attribute_string(grp2[name_for_ref],
                                     'H5PATH', grp2.name)
            else:
                del_attribute(grp2[name_for_ref], 'H5PATH')
        else:
            data_refs[index] = grp2['a'].ref

    # Now, the dtype needs to be changed to the reference type and the
    # whole thing copied over to data_to_store.
    return data_refs.astype(ref_dtype).copy()


def read_object_array(f, data, options):
    """ Reads an array of objects recursively.

    Read the elements of the given HDF5 Reference array recursively
    in the and constructs a ``numpy.object_`` array from its elements,
    which is returned.

    Parameters
    ----------
    f : h5py.File
        The HDF5 file handle that is open.
    data : numpy.ndarray of h5py.Reference
        The array of HDF5 References to read and make an object array
        from.
    options : hdf5storage.core.Options
        hdf5storage options object.

    Raises
    ------
    NotImplementedError
        If reading the object from file is currently not supported.

    Returns
    -------
    numpy.ndarray of numpy.object\\_
        The Python object array containing the items pointed to by
        `data`.

    See Also
    --------
    write_object_array
    hdf5storage.Options.group_for_references
    h5py.Reference

    """
    # Go through all the elements of data and read them using their
    # references, and the putting the output in new object array.
    data_derefed = np.zeros(shape=data.shape, dtype='object')
    for index, x in np.ndenumerate(data):
        try:
            data_derefed[index] = read_data(f, f[x].parent, \
                posixpath.basename(f[x].name), options)
        except:
            raise
    return data_derefed


class TypeMarshaller(object):
    """ Base class for marshallers of Python types.

    Base class providing the class interface for marshallers of Python
    types to/from disk. All marshallers should inherit from this class
    or at least replicate its functionality. This includes several
    attributes that are needed in order for reading/writing methods to
    know if it is the appropriate marshaller to use and methods to
    actually do the reading and writing.

    Subclasses should run this class's ``__init__()`` first
    thing. Inheritance information is in the **Notes** section of each
    method. Generally, ``read``, ``write``, and ``write_metadata`` need
    to be overridden and the different attributes set to the proper
    values.

    For marshalling types that are containers of other data, one will
    need to appropriate read/write them with the lowlevel functions
    ``lowlevel.read_data`` and ``lowlevel.write_data``.

    Attributes
    ----------
    python_attributes : set of str
        Attributes used to store type information.
    matlab_attributes : set of str
        Attributes used for MATLAB compatibility.
    types : list of types
        Types the marshaller can work on.
    python_type_strings : list of str
        Type strings of readable types.
    matlab_classes : list of str
        Readable MATLAB classes.

    See Also
    --------
    hdf5storage.core.Options
    h5py.Dataset
    h5py.Group
    h5py.AttributeManager
    hdf5storage.lowlevel.read_data
    hdf5storage.lowlevel.write_data

    """
    def __init__(self):
        #: Attributes used to store type information.
        #:
        #: set of str
        #:
        #: ``set`` of attribute names the marshaller uses when
        #: an ``Option.store_python_metadata`` is ``True``.
        self.python_attributes = set(['Python.Type'])

        #: Attributes used for MATLAB compatibility.
        #:
        #: ``set`` of ``str``
        #:
        #: ``set`` of attribute names the marshaller uses when maintaing
        #: Matlab HDF5 based mat file compatibility
        #: (``Option.matlab_compatible`` is ``True``).
        self.matlab_attributes = set(['H5PATH'])

        #: List of Python types that can be marshalled.
        #:
        #: list of types
        #:
        #: ``list`` of the types (gotten by doing ``type(data)``) that the
        #: marshaller can marshall. Default value is ``[]``.
        self.types = []

        #: Type strings of readable types.
        #:
        #: list of str
        #:
        #: ``list`` of the ``str`` that the marshaller would put in the
        #: HDF5 attribute 'Python.Type' to identify the Python type to be
        #: able to read it back correctly. Default value is ``[]``.
        self.python_type_strings = []

        #: MATLAB class strings of readable types.
        #:
        #: list of str
        #:
        #: ``list`` of the MATLAB class ``str`` that the marshaller can
        #: read into Python objects. Default value is ``[]``.
        self.matlab_classes = []

    def get_type_string(self, data, type_string):
        """ Gets type string.

        Finds the type string for 'data' contained in
        ``python_type_strings`` using its ``type``. Non-``None``
        'type_string` overrides whatever type string is looked up.
        The override makes it easier for subclasses to convert something
        that the parent marshaller can write to disk but still put the
        right type string in place).

        Parameters
        ----------
        data : type to be marshalled
            The Python object that is being written to disk.
        type_string : str or None
            If it is a ``str``, it overrides any looked up type
            string. ``None`` means don't override.

        Returns
        -------
        str
            The type string associated with 'data'. Will be
            'type_string' if it is not ``None``.

        Notes
        -----
        Subclasses probably do not need to override this method.

        """
        if type_string is not None:
            return type_string
        else:
            i = self.types.index(type(data))
            return self.python_type_strings[i]

    def write(self, f, grp, name, data, type_string, options):
        """ Writes an object's metadata to file.

        Writes the Python object 'data' to 'name' in h5py.Group 'grp'.

        Parameters
        ----------
        f : h5py.File
            The HDF5 file handle that is open.
        grp : h5py.Group or h5py.File
            The parent HDF5 Group (or File if at '/') that contains the
            object with the specified name.
        name : str
            Name of the object.
        data
            The object to write to file.
        type_string : str or None
            The type string for `data`. If it is ``None``, one will have
            to be gotten by ``get_type_string``.
        options : hdf5storage.core.Options
            hdf5storage options object.

        Raises
        ------
        NotImplementedError
            If writing 'data' to file is currently not supported.
        TypeNotMatlabCompatibleError
            If writing a type not compatible with MATLAB and
            `options.action_for_matlab_incompatible` is set to
            ``'error'``.

        Notes
        -----
        Must be overridden in a subclass because a
        ``NotImplementedError`` is thrown immediately.

        See Also
        --------
        hdf5storage.lowlevel.write_data

        """
        raise NotImplementedError('Can''t write data type: '
                                  + str(type(data)))

    def write_metadata(self, f, grp, name, data, type_string, options):
        """ Writes an object to file.

        Writes the metadata for a Python object `data` to file at `name`
        in h5py.Group `grp`. Metadata is written to HDF5
        Attributes. Existing Attributes that are not being used are
        deleted.

        Parameters
        ----------
        f : h5py.File
            The HDF5 file handle that is open.
        grp : h5py.Group or h5py.File
            The parent HDF5 Group (or File if at '/') that contains the
            object with the specified name.
        name : str
            Name of the object.
        data
            The object to write to file.
        type_string : str or None
            The type string for `data`. If it is ``None``, one will have
            to be gotten by ``get_type_string``.
        options : hdf5storage.core.Options
            hdf5storage options object.

        Notes
        -----
        The attribute 'Python.Type' is set to the type string. All H5PY
        Attributes not in ``python_attributes`` and/or
        ``matlab_attributes`` (depending on the attributes of 'options')
        are deleted. These are needed functions for writting essentially
        any Python object, so subclasses should probably call the
        baseclass's version of this function if they override it and
        just provide the additional functionality needed. This requires
        that the names of any additional HDF5 Attributes are put in the
        appropriate set.

        """
        # Make sure we have a complete type_string.
        type_string = self.get_type_string(data, type_string)

        # The metadata that is written depends on the format.

        dsetgrp = grp[name]
        if options.store_python_metadata:
            set_attribute_string(dsetgrp, 'Python.Type', type_string)

        # If we are not storing python information or doing MATLAB
        # compatibility, then attributes not in the python and/or
        # MATLAB lists need to be removed.

        attributes_used = set()

        if options.store_python_metadata:
            attributes_used |= self.python_attributes

        if options.matlab_compatible:
            attributes_used |= self.matlab_attributes

        for attribute in (set(dsetgrp.attrs.keys()) - attributes_used):
            del_attribute(dsetgrp, attribute)

    def read(self, f, grp, name, options):
        """ Read a Python object from file.

        Reads the Python object 'name' from the HDF5 Group 'grp', if
        possible, and returns it.

        Parameters
        ----------
        f : h5py.File
            The HDF5 file handle that is open.
        grp : h5py.Group or h5py.File
            The parent HDF5 Group (or File if at '/') that contains the
            object with the specified name.
        name : str
            Name of the object.
        options : hdf5storage.core.Options
            hdf5storage options object.

        Raises
        ------
        NotImplementedError
            If reading the object from file is currently not supported.

        Returns
        -------
        data
            The Python object 'name' in the HDF5 Group 'grp'.

        Notes
        -----
        Must be overridden in a subclass because a
        ``NotImplementedError`` is thrown immediately.

        See Also
        --------
        hdf5storage.lowlevel.read_data

        """
        raise NotImplementedError('Can''t read data: ' + name)


class NumpyScalarArrayMarshaller(TypeMarshaller):
    def __init__(self):
        TypeMarshaller.__init__(self)
        self.python_attributes |= set(['Python.Shape', 'Python.Empty',
                                   'Python.numpy.UnderlyingType',
                                   'Python.numpy.Container',
                                   'Python.Fields'])
        self.matlab_attributes |= set(['MATLAB_class', 'MATLAB_empty',
                                      'MATLAB_int_decode',
                                      'MATLAB_fields'])
        # As np.str_ is the unicode type string in Python 3 and the bare
        # bytes string in Python 2, we have to use np.unicode_ which is
        # or points to the unicode one in both versions.
        self.types = [np.ndarray, np.matrix,
                      np.chararray, np.core.records.recarray,
                      np.bool_, np.void,
                      np.uint8, np.uint16, np.uint32, np.uint64,
                      np.int8, np.int16, np.int32, np.int64,
                      np.float32, np.float64,
                      np.complex64, np.complex128,
                      np.bytes_, np.str_, np.object_]
        self._numpy_types = list(self.types)
        # Using Python 3 type strings.
        self.python_type_strings = ['numpy.ndarray', 'numpy.matrix',
                                    'numpy.chararray',
                                    'numpy.recarray',
                                    'numpy.bool_', 'numpy.void',
                                    'numpy.uint8', 'numpy.uint16',
                                    'numpy.uint32', 'numpy.uint64',
                                    'numpy.int8', 'numpy.int16',
                                    'numpy.int32', 'numpy.int64',
                                    'numpy.float32', 'numpy.float64',
                                    'numpy.complex64',
                                    'numpy.complex128',
                                    'numpy.bytes_', 'numpy.str_',
                                    'numpy.object_']

        # If we are storing in MATLAB format, we will need to be able to
        # set the MATLAB_class attribute. The different numpy types just
        # need to be properly mapped to the right strings. Some types do
        # not have a string since MATLAB does not support them.

        self.__MATLAB_classes = {np.bool_: 'logical',
                                 np.uint8: 'uint8',
                                 np.uint16: 'uint16',
                                 np.uint32: 'uint32',
                                 np.uint64: 'uint64',
                                 np.int8: 'int8',
                                 np.int16: 'int16',
                                 np.int32: 'int32',
                                 np.int64: 'int64',
                                 np.float32: 'single',
                                 np.float64: 'double',
                                 np.complex64: 'single',
                                 np.complex128: 'double',
                                 np.bytes_: 'char',
                                 np.str_: 'char',
                                 np.object_: 'cell'}

        # Make a dict to look up the opposite direction (given a matlab
        # class, what numpy type to use.

        self.__MATLAB_classes_reverse = {'logical': np.bool_,
                                         'uint8': np.uint8,
                                         'uint16': np.uint16,
                                         'uint32': np.uint32,
                                         'uint64': np.uint64,
                                         'int8': np.int8,
                                         'int16': np.int16,
                                         'int32': np.int32,
                                         'int64': np.int64,
                                         'single': np.float32,
                                         'double': np.float64,
                                         'char': np.str_,
                                         'cell': np.object_,
                                         'canonical empty': np.float64,
                                         'struct': np.object_}


        # Set matlab_classes to the supported classes (the values).
        self.matlab_classes = list(self.__MATLAB_classes.values())

        # For h5py >= 2.2, half precisions (np.float16) are supported.
        if parse_version(_H5PY_VERSION) \
                >= parse_version('2.2'):
            self.types.append(np.float16)
            self.python_type_strings.append('numpy.float16')

    def write(self, f, grp, name, data, type_string, options):
        # If we are doing matlab compatibility and the data type is not
        # one of those that is supported for matlab, skip writing the
        # data or throw an error if appropriate. structured ndarrays and
        # recarrays are compatible if the
        # structured_numpy_ndarray_as_struct option is set.
        if options.matlab_compatible \
                and not (data.dtype.type in self.__MATLAB_classes \
                or (data.dtype.fields is not None \
                and options.structured_numpy_ndarray_as_struct)):
            if options.action_for_matlab_incompatible == 'error':
                raise lowlevel.TypeNotMatlabCompatibleError( \
                    'Data type ' + data.dtype.name
                    + ' not supported by MATLAB.')
            elif options.action_for_matlab_incompatible == 'discard':
                return

        # Need to make a set of data that will be stored. It will start
        # out as a copy of data and then be steadily manipulated.

        data_to_store = data.copy()

        # recarrays must be converted to structured ndarrays in order
        # for h5py to be able to write them.
        if isinstance(data_to_store, np.core.records.recarray):
            data_to_store = data_to_store.view(np.ndarray)

        # Optionally convert bytes_ strings to UTF-16, if possible (all
        # are in the ASCII character set). This is done by simply
        # converting to uint16's and checking that each one's value is
        # less than 128 (in the ASCII character set). This will require
        # making them at least 1 dimensional. If it fails, throw an
        # exception.
        if data.dtype.type == np.bytes_ \
                and options.convert_numpy_bytes_to_utf16:
            if data_to_store.nbytes == 0:
                data_to_store = np.uint16([])
            else:
                data_to_store = np.uint16(np.atleast_1d( \
                    data_to_store).view(np.ndarray).view(np.uint8))
                if np.any(data_to_store >= 128):
                    raise NotImplementedError( \
                        'Can''t write non-ASCII numpy.bytes_.')

        # As of 2013-12-13, h5py cannot write numpy.str_ (UTF-32
        # encoding) types (its numpy.unicode_ in Python 2, which is an
        # alias for it in Python 3). If the option is set to try to
        # convert them to UTF-16, then an attempt at the conversion is
        # made. If no conversion is to be done, the conversion throws an
        # exception (a UTF-32 character had no UTF-16 equivalent), or a
        # UTF-32 character gets turned into a UTF-16 doublet (the
        # increase in the number of columns will be by a factor more
        # than the length of the strings); then it will be simply
        # converted to uint32's byte for byte instead.

        if data.dtype.type == np.str_:
            new_data = None
            if options.convert_numpy_str_to_utf16:
                try:
                    new_data = convert_numpy_str_to_uint16( \
                        data_to_store)
                except:
                    pass
            if new_data is None or (type(data_to_store) == np.str_ \
                    and len(data_to_store) != len(new_data)) \
                    or (isinstance(data_to_store, np.ndarray) \
                    and new_data.shape[-1] != data_to_store.shape[-1] \
                    * (data_to_store.dtype.itemsize//4)):
                data_to_store = convert_numpy_str_to_uint32( \
                    data_to_store)
            else:
                data_to_store = new_data

        # Convert scalars to arrays if that option is set. For 1d
        # arrays, an option determines whether they become row or column
        # vectors.

        if options.make_atleast_2d:
            new_data = np.atleast_2d(data_to_store)
            if len(data_to_store.shape) == 1 \
                    and options.oned_as == 'column':
                new_data = new_data.T
            data_to_store = new_data

        # Reverse the dimension order if that option is set.

        if options.reverse_dimension_order:
            data_to_store = data_to_store.T

        # Bools need to be converted to uint8 if the option is given.
        if data_to_store.dtype.name == 'bool' \
                and options.convert_bools_to_uint8:
            data_to_store = np.uint8(data_to_store)

        # If data is empty, we instead need to store the shape of the
        # array if the appropriate option is set.

        if options.store_shape_for_empty and (data.size == 0 \
                or ((data.dtype.type == np.bytes_ \
                or data.dtype.type == np.str_) \
                and data.nbytes == 0)):
            data_to_store = np.uint64(data_to_store.shape)

        # If it is a complex type, then it needs to be encoded to have
        # the proper complex field names.
        if np.iscomplexobj(data_to_store):
            data_to_store = encode_complex(data_to_store,
                                           options.complex_names)

        # If we are storing an object type and it isn't empty
        # (data_to_store is still an object), then we must recursively
        # write what each element points to and make an array of the
        # references to them.
        if data_to_store.dtype.name == 'object':
            data_to_store = write_object_array(f, data_to_store,
                                               options)

        # If it an ndarray with fields and we are writing such things as
        # a Group/struct or if its shape is zero (h5py can't write it
        # Dataset then), that needs to be handled. Otherwise, it is
        # simply written as is to a Dataset. As HDF5 Reference types do
        # look like a structured object array, those have to be excluded
        # explicitly. Complex types may have been converted so that they
        # can have different field names as an HDF5 COMPOUND type, so
        # those have to be excluded too. Also, if any of its fields are
        # an object time (no matter how nested), then rather than
        # converting that field to a HDF5 Reference types, it will just
        # be written as a Group instead (just have to see if ", 'O'" is
        # in str(data_to_store.dtype).
        #
        # A flag, wrote_as_struct, is set depending on which path is
        # taken, which is then passed onto write_metadata.

        if data_to_store.dtype.fields is not None \
                and h5py.check_dtype(ref=data_to_store.dtype) \
                is not h5py.Reference \
                and not np.iscomplexobj(data) \
                and (options.structured_numpy_ndarray_as_struct \
                or (data_to_store.dtype.hasobject \
                or '\\x00' in str(data_to_store.dtype)) \
                or does_dtype_have_a_zero_shape(data_to_store.dtype)):
            wrote_as_struct = True
            # Grab the list of fields that don't have a null character
            # or a / in them since those can't be written.
            field_names = [n for n in data_to_store.dtype.names
                           if '/' not in n and '\x00' not in n]

            # Throw and exception if we had to exclude any field names.
            if len(field_names) != len(data_to_store.dtype.names):
                raise NotImplementedError("Null characters ('\x00') " \
                    + "and '/' in the field names of this type of " \
                    + 'numpy.ndarray are not supported.')

            # If the group doesn't exist, it needs to be created. If it
            # already exists but is not a group, it needs to be deleted
            # before being created.

            if name not in grp:
                grp.create_group(name)
            elif not isinstance(grp[name], h5py.Group):
                del grp[name]
                grp.create_group(name)

            grp2 = grp[name]

            # Write the metadata, and set the MATLAB_class to 'struct'
            # explicitly.
            if options.matlab_compatible:
                set_attribute_string(grp2, 'MATLAB_class',
                                     'struct')

            # Delete any Datasets/Groups not corresponding to a field
            # name in data if that option is set.

            if options.delete_unused_variables:
                for field in set([i for i in grp2]).difference( \
                        set(field_names)):
                    del grp2[field]

            # Go field by field making an object array (make an empty
            # object array and assign element wise) and write it inside
            # the Group. If it only has a single element, write that
            # single element extracted from it (will be a standard
            # Dataset as opposed to a HDF5 Reference array). The H5PATH
            # attribute needs to be set appropriately, while all other
            # attributes need to be deleted.
            grp2_name = grp2.name
            for field in field_names:
                new_data = np.zeros(shape=data_to_store.shape,
                                    dtype='object')
                for index, x in np.ndenumerate(data_to_store):
                    new_data[index] = x[field]

                # If we are supposed to reverse dimension order, it has
                # already been done, but write_data expects that it
                # hasn't, so it needs to be reversed again before
                # passing it on.
                if options.reverse_dimension_order:
                    new_data = new_data.T

                # If there is only a single element, write it extracted
                # (don't need to use a Reference array in this
                # case). Otherwise, write the whole thing.
                if np.prod(new_data.shape) == 1:
                    write_data(f, grp2, field, new_data.flatten()[0],
                               None, options)
                else:
                    write_data(f, grp2, field, new_data, None, options)

                if field in grp2:
                    grp2_field = grp2[field]
                    if options.matlab_compatible:
                        set_attribute_string(grp2_field, 'H5PATH',
                                             grp2_name)
                    else:
                        del_attribute(grp2_field, 'H5PATH')

                    # In the case that we wrote a Reference array (not a
                    # single element), then all other attributes need to
                    # be removed.
                    if np.prod(new_data.shape) != 1:
                        for attribute in (set( \
                                grp2_field.attrs.keys()) \
                                - set(['H5PATH'])):
                            del_attribute(grp2_field, attribute)
        else:
            wrote_as_struct = False
            # If it has fields and it isn't a Reference type, none of
            # them can contain a / character.
            if data_to_store.dtype.fields is not None \
                    and h5py.check_dtype(ref=data_to_store.dtype) \
                    is not h5py.Reference:
                for n in data_to_store.dtype.fields:
                    if '\x00' in n:
                        raise NotImplementedError( \
                            "Null characters ('\x00') " \
                            + 'in the field names of this type of ' \
                            + 'numpy.ndarray are not supported.')

            # Set the storage options such as compression, chunking,
            # filters, etc. If the data is being compressed (compression
            # is enabled and the data is bigger than the threshold),
            # turn on compression, set the algorithm, set the
            # compression level, and enable the shuffle and fletcher32
            # filters appropriately. If the data is not being
            # compressed, turn on the fletcher32 filter if
            # indicated. Compression should not be done for scalars.
            filters = dict()
            is_scalar = (data_to_store.shape != tuple())
            if is_scalar and options.compress \
                    and data_to_store.nbytes \
                    >= options.compress_size_threshold:
                filters['compression'] = \
                    options.compression_algorithm
                if filters['compression'] == 'gzip':
                    filters['compression_opts'] = \
                        options.gzip_compression_level
                filters['shuffle'] = options.shuffle_filter
                filters['fletcher32'] = \
                    options.compressed_fletcher32_filter
            else:
                filters['compression'] = None
                filters['shuffle'] = False
                filters['compression_opts'] = None
                if is_scalar:
                    filters['fletcher32'] = \
                        options.uncompressed_fletcher32_filter
                else:
                    filters['fletcher32'] = False

            # Set the chunking to auto if it is being chuncked
            # (compressed or using the fletcher32 filter).
            if filters['compression'] is not None \
                    or filters['fletcher32']:
                filters['chunks'] = True
            else:
                filters['chunks'] = None

            # The data must first be written. If name is not present
            # yet, then it must be created. If it is present, but not a
            # Dataset, has the wrong dtype, is the wrong shape, doesn't
            # use the same compression, or doesn't use the same filters;
            # then it must be deleted and then written. Otherwise, it is
            # just overwritten in place.
            if name not in grp:
                grp.create_dataset(name, data=data_to_store,
                                   **filters)
            else:
                # avoid multiple calls to __getitem__ by storing the
                # reference in a local variable
                dset = grp[name]
                if not isinstance(dset, h5py.Dataset) \
                        or dset.dtype != data_to_store.dtype \
                        or dset.shape != data_to_store.shape \
                        or dset.compression != filters['compression'] \
                        or dset.shuffle != filters['shuffle'] \
                        or dset.fletcher32 != filters['fletcher32'] \
                        or dset.compression_opts != \
                        filters['compression_opts']:
                    del grp[name]
                    grp.create_dataset(name, data=data_to_store,
                                       **filters)
                else:
                    dset[...] = data_to_store

        # Write the metadata using the inherited function (good enough).
        self.write_metadata(f, grp, name, data, type_string,
                            options, wrote_as_struct=wrote_as_struct)

    def write_metadata(self, f, grp, name, data, type_string, options,
                       wrote_as_struct=False):
        # wote_as_struct is used to pass whether data was written like a
        # matlab struct or not. If yes, then the field names must be put
        # in the metadata.

        # First, call the inherited version to do most of the work.

        TypeMarshaller.write_metadata(self, f, grp, name, data,
                                      type_string, options)

        # Write the underlying numpy type if we are storing python
        # information.

        # If we are storing python information; the shape, underlying
        # numpy type, and its type of container ('scalar', 'ndarray',
        # 'matrix', or 'chararray') need to be stored.

        # avoid multiple calls to __getitem__ by storing the
        # reference in a local variable
        dsetgrp = grp[name]

        if options.store_python_metadata:
            set_attribute(dsetgrp, 'Python.Shape',
                          np.uint64(data.shape))

            # Now, in Python 3, the dtype names for bare bytes and
            # unicode strings start with 'bytes' and 'str' respectively,
            # but in Python 2, they start with 'string' and 'unicode'
            # respectively. The Python 2 ones must be converted to the
            # Python 3 ones for writing.
            set_attribute_string(dsetgrp, \
                'Python.numpy.UnderlyingType', \
                data.dtype.name.replace('string', 'bytes').replace( \
                'unicode', 'str'))
            if isinstance(data, np.matrix):
                container = 'matrix'
            elif isinstance(data, np.chararray):
                container = 'chararray'
            elif isinstance(data, np.core.records.recarray):
                container = 'recarray'
            elif isinstance(data, np.ndarray):
                container = 'ndarray'
            else:
                container = 'scalar'
            set_attribute_string(dsetgrp, 'Python.numpy.Container',
                                 container)

        # If it was written like a matlab struct, then we set the
        # 'Python.Fields' and 'MATLAB_fields' Attributes to the field
        # names if we are storing python metadata or doing matlab
        # compatibility and we are storing a structured ndarray as a
        # structure.
        if wrote_as_struct:
            # Grab the list of fields. They need to be converted to
            # unicode in Python 2.x.
            if sys.hexversion >= 0x03000000:
                field_names = list(data.dtype.names)
            else:
                field_names = [c.decode('UTF-8')
                               for c in list(data.dtype.names)]

            # Write or delete 'Python.Fields' as appropriate.
            if options.store_python_metadata:
                set_attribute_string_array(dsetgrp,
                                           'Python.Fields',
                                           field_names)
            else:
                del_attribute(dsetgrp, 'Python.Fields')

            # If we are making it MATLAB compatible and have h5py
            # version >= 2.3, then we can set the MATLAB_fields
            # Attribute as long as all keys are mappable to
            # ASCII. Otherwise, the attribute should be deleted. It is
            # written as a vlen='S1' array of bytes_ arrays of the
            # individual characters.
            if options.matlab_compatible \
                    and parse_version( \
                    _H5PY_VERSION) \
                    >= parse_version('2.3'):
                try:
                    dt = h5py.special_dtype(vlen=np.dtype('S1'))
                    fs = np.empty(shape=(len(field_names),), dtype=dt)
                    for i, s in enumerate(field_names):
                        fs[i] = np.array([c.encode('ascii') for c in s],
                                         dtype='S1')
                except UnicodeEncodeError:
                    del_attribute(dsetgrp, 'MATLAB_fields')
                else:
                    set_attribute(dsetgrp, 'MATLAB_fields', fs)
            else:
                del_attribute(dsetgrp, 'MATLAB_fields')
        else:
            del_attribute(dsetgrp, 'Python.Fields')
            del_attribute(dsetgrp, 'MATLAB_fields')

        # If data is empty, we need to set the Python.Empty and
        # MATLAB_empty attributes to 1 if we are storing type info or
        # making it MATLAB compatible. Otherwise, no empty attribute is
        # set and existing ones must be deleted.

        if data.size == 0  or ((data.dtype.type == np.bytes_ \
                or data.dtype.type == np.str_)
                and data.nbytes == 0):
            if options.store_python_metadata:
                set_attribute(dsetgrp, 'Python.Empty',
                              np.uint8(1))
            else:
                del_attribute(dsetgrp, 'Python.Empty')
            if options.matlab_compatible:
                set_attribute(dsetgrp, 'MATLAB_empty',
                              np.uint8(1))
            else:
                del_attribute(dsetgrp, 'MATLAB_empty')
        else:
            del_attribute(dsetgrp, 'Python.Empty')
            del_attribute(dsetgrp, 'MATLAB_empty')

        # If we are making it MATLAB compatible, the MATLAB_class
        # attribute needs to be set looking up the data type (gotten
        # using np.dtype.type). If it is a string or bool type, then
        # the MATLAB_int_decode attribute must be set to the number of
        # bytes each element takes up (dtype.itemsize). If the dtype has
        # fields and we are writing it as a structure, the class needs
        # to be overriddent to 'struct'. Otherwise, the attributes must
        # be deleted.

        tp = data.dtype.type
        if options.matlab_compatible:
            if data.dtype.fields is not None \
                    and options.structured_numpy_ndarray_as_struct:
                set_attribute_string(dsetgrp, 'MATLAB_class',
                                     'struct')
            elif tp in self.__MATLAB_classes:
                set_attribute_string(dsetgrp, 'MATLAB_class',
                                     self.__MATLAB_classes[tp])
                if tp in (np.bytes_, np.str_, np.bool_):
                    set_attribute(dsetgrp, 'MATLAB_int_decode',
                                  np.int64(grp[name].dtype.itemsize))
                else:
                    del_attribute(dsetgrp, 'MATLAB_int_decode')
            else:
                del_attribute(dsetgrp, 'MATLAB_class')
                del_attribute(dsetgrp, 'MATLAB_empty')
                del_attribute(dsetgrp, 'MATLAB_int_decode')
        else:
            del_attribute(dsetgrp, 'MATLAB_class')
            del_attribute(dsetgrp, 'MATLAB_empty')
            del_attribute(dsetgrp, 'MATLAB_int_decode')

    def read(self, f, grp, name, options):
        # If name is not present, then we can't read it and have to
        # throw an error.
        if name not in grp:
            raise NotImplementedError(name + ' is not present.')

        # Get the object.
        dsetgrp = grp[name]

        # Get the different attributes this marshaller uses.

        if sys.hexversion >= 0x03000000:
            defaultfactory = type(None)
        else:
            defaultfactory = lambda : None
        attributes = collections.defaultdict(defaultfactory)
        read_all_attributes_into(dsetgrp.attrs, attributes)

        str_attrs = dict()
        for attr_name in ('Python.Type',
                          'Python.numpy.UnderlyingType',
                          'Python.numpy.Container',
                          'MATLAB_class'):
            value = attributes[attr_name]
            if value is None:
                str_attrs[attr_name] = value
            elif (sys.hexversion >= 0x03000000 \
                    and isinstance(value, str)) \
                    or (sys.hexversion < 0x03000000 \
                    and isinstance(value, unicode)):
                str_attrs[attr_name] = value
            elif isinstance(value, bytes):
                str_attrs[attr_name] = value.decode()
            elif isinstance(value, np.str_):
                str_attrs[attr_name] = str(value)
            elif isinstance(value, np.bytes_):
                str_attrs[attr_name] = value.decode()
            else:
                str_attrs[attr_name] = None

        type_string = str_attrs['Python.Type']
        underlying_type = str_attrs['Python.numpy.UnderlyingType']
        container = str_attrs['Python.numpy.Container']
        matlab_class = str_attrs['MATLAB_class']

        shape = attributes['Python.Shape']
        python_empty = attributes['Python.Empty']
        matlab_empty = attributes['MATLAB_empty']

        python_fields = attributes['Python.Fields']
        if python_fields is not None:
            python_fields = [convert_to_str(x)
                             for x in python_fields]

        # Read the MATLAB_fields Attribute if it was present.
        matlab_fields = attributes['MATLAB_fields']

        # If it is a Dataset, it can simply be read and then acted upon
        # (if it is an HDF5 Reference array, it will need to be read
        # recursively). If it is a Group, then it is a structured
        # ndarray like object that needs to be read field wise and
        # constructed.
        if isinstance(dsetgrp, h5py.Dataset):
            # Read the data.
            data = dsetgrp[...]

            # If it is a reference type, then we need to make an object
            # array that is its replicate, but with the objects they are
            # pointing to in their elements instead of just the
            # references.
            if h5py.check_dtype(ref=dsetgrp.dtype) is not None:
                data = read_object_array(f, data, options)
        else:
            # Starting with an empty dict, all that has to be done is
            # iterate through all the Datasets and Groups in dsetgrp
            # and add them to a dict with their name as the key. Since
            # we don't want an exception thrown by reading an element to
            # stop the whole reading process, the reading is wrapped in
            # a try block that just catches exceptions and then does
            # nothing about them (nothing needs to be done). We also
            # need to keep track of whether any of the fields are
            # Groups, aren't Reference arrays, or have attributes other
            # than H5PATH since that means that the fields are the
            # values (single element structured ndarray), as opposed to
            # Reference arrays to all the values (multi-element structed
            # ndarray). In Python 2, the field names need to be
            # converted to str from unicode when storing the fields in
            # struct_data.
            struct_data = dict()
            is_multi_element = True
            for k, fld in dsetgrp.items():
                # We must exclude group_for_references
                if fld.name == options.group_for_references:
                    continue
                if isinstance(fld, h5py.Group) \
                        or h5py.check_dtype(ref=fld.dtype) is None \
                        or len(set(fld.attrs.keys()) \
                        & ((set(self.python_attributes) \
                        | set(self.matlab_attributes))
                        - set(['H5PATH', 'MATLAB_empty',
                        'Python.Empty']))) != 0:
                    is_multi_element = False
                try:
                    struct_data[k] = read_data(f, dsetgrp, k,
                                               options)
                except:
                    pass

            # If it isn't multi element, we need to pack all the values
            # in struct_array inside of numpy.object_'s so that the code
            # after this that depends on this will work.
            if not is_multi_element:
                for k, v in struct_data.items():
                    obj = np.zeros((1,), dtype='object')
                    obj[0] = v
                    struct_data[k] = obj

            # The dtype for the structured ndarray needs to be
            # composed. This is done by going through each field (in the
            # proper order, if the fields were given, or any order if
            # not) and determine the dtype and shape of that field to
            # put in the list.

            if python_fields is not None or matlab_fields is not None:
                if python_fields is not None:
                    fields = python_fields
                else:
                    fields = [numpy_to_bytes(k).decode()
                              for k in matlab_fields]
                # Now, there may be fields available that were not
                # given, but still should be read. Keys that are not in
                # python_fields need to be added to the list.
                extra_fields = list(set(struct_data.keys())
                                    - set(fields))
                fields.extend(sorted(extra_fields))
            else:
                fields = sorted(list(struct_data.keys()))

            dt_whole = []
            for k in fields:
                # In Python 2, the field names for a structured ndarray
                # must be str as opposed to unicode, so k needs to be
                # converted in the Python 2 case.
                if sys.hexversion >= 0x03000000:
                    k_name = k
                else:
                    k_name = k.encode('UTF-8')

                # Read the value.
                v = struct_data[k]

                # If any of the elements are not Numpy types or if they
                # don't all have the exact same dtype and shape, then
                # this field will just be an object field.
                if v.size == 0 or type(v.flat[0]) \
                        not in self._numpy_types:
                    dt_whole.append((k_name, 'object'))
                    continue

                first = v.flatten()[0]
                dt = first.dtype
                sp = first.shape
                all_same = True
                for index, x in np.ndenumerate(v):
                    if not isinstance(x, tuple(self.types)) \
                            or dt != x.dtype or sp != x.shape:
                        all_same = False
                        break

                # If they are all the same, then dt and shape should be
                # used. Otherwise, it has to be object.
                if all_same:
                    dt_whole.append((k_name, dt, sp))
                else:
                    dt_whole.append((k_name, 'object'))

            # Make the structured ndarray with the constructed
            # dtype. The shape is simply the shape of the object arrays
            # of its fields, so we might as well use the shape of
            # v. Then, all the elements of every field need to be
            # assigned. Now, if dtype's itemsize is 0, a TypeError will
            # be thrown by numpy due to a bug in numpy. np.zeros (as
            # well as ones and empty) does not like to make arrays with
            # no bytes. A workaround is to make an empty array of some
            # other type and convert its dtype. The smallest one we can
            # make is an np.int8([]). Yes, one byte will be wasted, but
            # at least no errors will happen.
            dtwhole = np.dtype(dt_whole)
            if dtwhole.itemsize == 0:
                data = np.zeros(shape=v.shape,
                                dtype='int8').astype(dtwhole)
            else:
                data = np.zeros(shape=v.shape, dtype=dtwhole)
            for k, v in struct_data.items():
                # There is no sense iterating through the elements if
                # the shape is an empty shape.
                if all(data.shape) and all(v.shape):
                    for index, x in np.ndenumerate(v):
                        if sys.hexversion >= 0x03000000:
                            data[k][index] = x
                        else:
                            data[k.encode('UTF-8')][index] = x

        # If metadata is present, that can be used to do convert to the
        # desired/closest Python data types. If none is present, or not
        # enough of it, then no conversions can be done.
        if type_string is not None and underlying_type is not None and \
                shape is not None:
            # If the Attributes 'Python.Fields' and/or 'MATLAB_fields'
            # are present, the underlying type needs to be changed to
            # the proper dtype for the structure.
            if python_fields is not None or matlab_fields is not None:
                if python_fields is not None:
                    fields = python_fields
                else:
                    fields = [numpy_to_bytes(k).decode()
                              for k in matlab_fields]
                struct_dtype = list()
                for k in fields:
                    if sys.hexversion >= 0x03000000:
                        struct_dtype.append((k, 'object'))
                    else:
                        struct_dtype.append((k.encode('UTF-8'),
                                            'object'))
            else:
                struct_dtype = None

            # If it is empty ('Python.Empty' set to 1), then the shape
            # information is stored in data and we need to set data to
            # the empty array of the proper type (in underlying_type)
            # and the given shape. If we are going to transpose it
            # later, we need to transpose it now so that it still keeps
            # the right shape. Also, if it is a structure that we just
            # figured out the dtype for, that needs to be used.
            if python_empty == 1:
                if underlying_type.startswith('bytes'):
                    if underlying_type == 'bytes':
                        nchars = 1
                    else:
                        nchars = int(int(
                                     underlying_type[len('bytes'):])
                                     / 8)
                    data = np.zeros(tuple(shape),
                                    dtype='S' + str(nchars))
                elif underlying_type.startswith('str'):
                    if underlying_type == 'str':
                        nchars = 1
                    else:
                        nchars = int(int(
                                     underlying_type[len('str'):])
                                     / 32)
                    data = np.zeros(tuple(shape),
                                    dtype='U' + str(nchars))
                elif struct_dtype is not None:
                    data = np.zeros(tuple(shape),
                                    dtype=struct_dtype)
                else:
                    data = np.zeros(tuple(shape),
                                    dtype=underlying_type)
                if matlab_class is not None or \
                        options.reverse_dimension_order:
                    data = data.T

            # If it is a complex type, then it needs to be decoded
            # properly.
            if underlying_type.startswith('complex'):
                data = decode_complex(data)

            # If its underlying type is 'bool' but it is something else,
            # then it needs to be converted (means it was written with
            # the convert_bools_to_uint8 option).
            if underlying_type == 'bool' and data.dtype.name != 'bool':
                data = np.bool_(data)

            # If MATLAB attributes are present or the reverse dimension
            # order option was given, the dimension order needs to be
            # reversed. This needs to be done before any reshaping as
            # the shape was stored before any dimensional reordering.
            if matlab_class is not None or \
                    options.reverse_dimension_order:
                data = data.T

            # String types might have to be decoded depending on the
            # underlying type, and MATLAB class if given. They also need
            # to be properly decoded into strings of the right length if
            # it originally represented an array of strings (turned into
            # uints of some sort). The length in bits is contained in
            # the dtype name, which is the underlying_type.
            if underlying_type.startswith('bytes'):
                if underlying_type == 'bytes':
                    data = np.bytes_(b'')
                else:
                    data = convert_to_numpy_bytes(data, \
                        length=int(underlying_type[5:])//8)
            elif underlying_type.startswith('str') \
                    or matlab_class == 'char':
                if underlying_type == 'str':
                    data = np.str_('')
                elif underlying_type.startswith('str'):
                    data = convert_to_numpy_str(data, \
                        length=int(underlying_type[3:])//32)
                else:
                    data = convert_to_numpy_str(data)

            # If the shape of data and the shape attribute are
            # different but give the same number of elements, then data
            # needs to be reshaped.
            if tuple(shape) != data.shape \
                    and np.prod(shape) == np.prod(data.shape):
                data = data.reshape(tuple(shape))

            # If data is a structured ndarray and the type string says
            # it is a recarray, then turn it into one.
            if type_string == 'numpy.recarray':
                data = data.view(np.core.records.recarray)

            # Convert to scalar, matrix, chararray, or ndarray depending
            # on the container type. For an empty scalar string, it
            # needs to be manually set to '' and b'' or there will be
            # problems.
            if container == 'scalar':
                if underlying_type.startswith('bytes'):
                    if python_empty == 1:
                        data = np.bytes_(b'')
                    elif isinstance(data, np.ndarray):
                        data = data.flatten()[0]
                elif underlying_type.startswith('str'):
                    if python_empty == 1:
                        data = np.str_('')
                    elif isinstance(data, np.ndarray):
                        data = data.flatten()[0]
                else:
                    data = data.flatten()[0]
            elif container == 'matrix':
                data = np.asmatrix(data)
            elif container == 'chararray':
                data = data.view(np.chararray)
            elif container == 'ndarray':
                data = np.asarray(data)

        elif matlab_class in self.__MATLAB_classes_reverse:
            # MATLAB formatting information was given. The extraction
            # did most of the work except handling empties, array
            # dimension order, and string conversion.

            # If it is empty ('MATLAB_empty' set to 1), then the shape
            # information is stored in data and we need to set data to
            # the empty array of the proper type. If it is a MATLAB
            # struct, then the proper dtype has to be constructed from
            # the field names if present (the dtype of each individual
            # field is set to object).
            if matlab_empty == 1:
                if matlab_fields is None:
                    data = np.zeros(tuple(np.uint64(data)), \
                        dtype=self.__MATLAB_classes_reverse[ \
                        matlab_class])
                else:
                    dt_whole = list()
                    for k in matlab_fields:
                        if sys.hexversion >= 0x03000000:
                            dt_whole.append((numpy_to_bytes(k).decode(),
                                            'object'))
                        else:
                            dt_whole.append((numpy_to_bytes(k),
                                             'object'))
                    data = np.zeros(shape=tuple(np.uint64(data)),
                                    dtype=dt_whole)

            # The order of the dimensions must be switched from Fortran
            # order which MATLAB uses to C order which Python uses.
            data = data.T

            # Now, if the matlab class is 'single' or 'double', data
            # could possibly be a complex type which needs to be
            # properly decoded.
            if matlab_class in ['single', 'double']:
                data = decode_complex(data)

            # If it is a logical, then it must be converted to
            # numpy.bool8.
            if matlab_class == 'logical':
                data = np.bool_(data)

            # If it is a 'char' type, the proper conversion to
            # numpy.unicode needs to be done.
            if matlab_class == 'char':
                data = convert_to_numpy_str(data)

        # Done adjusting data, so it can be returned.
        return data


class PythonScalarMarshaller(NumpyScalarArrayMarshaller):
    def __init__(self):
        NumpyScalarArrayMarshaller.__init__(self)

        # In Python 3, there is only a single integer type int, which is
        # variable width. In Python 2, there is the fixed width int and
        # the variable width long. Python 2 needs to be able to save
        # with either, but Python 3 needs to map both to int, which can
        # be done by just putting the type int for its entry in types.
        if sys.hexversion >= 0x03000000:
            self.types = [bool, int, int, float, complex]
        else:
            self.types = [bool, int, long, float, complex]
        self.python_type_strings = ['bool', 'int', 'long', 'float',
                                    'complex']
        # As the parent class already has MATLAB strings handled, there
        # are no MATLAB classes that this marshaller should be used for.
        self.matlab_classes = []

    def write(self, f, grp, name, data, type_string, options):
        # data just needs to be converted to the appropriate numpy
        # type. If it is a Python 3.x int or Python 2.x long that is too
        # big to fit in a numpy.int64, we need to throw an not
        # implemented exception so it doesn't get packaged as an
        # object. It is converted explicitly to a numpy.int64. If it is
        # too big, there will be an OverflowError. Otherwise, data is
        # passed through np.array and then access [()] to get the scalar
        # back as a scalar numpy type. The proper type_string needs to
        # be grabbed now as the parent function will have a modified
        # form of data to guess from if not given the right one
        # explicitly.
        if sys.hexversion >= 0x03000000:
            tp = int
        else:
            tp = long
        if type(data) == tp:
            try:
                out = np.int64(data)
            except OverflowError:
                raise NotImplementedError('Int/long too big to fit '
                                          + 'into numpy.int64.')
        else:
            out = data
        NumpyScalarArrayMarshaller.write(self, f, grp, name,
                                         np.array(out)[()],
                                         self.get_type_string(data,
                                         type_string), options)

    def read(self, f, grp, name, options):
        # Use the parent class version to read it and do most of the
        # work.
        data = NumpyScalarArrayMarshaller.read(self, f, grp, name,
                                               options)

        # The type string determines how to convert it back to a Python
        # type (just look up the entry in types). As it might be
        # returned as an ndarray, we just need to use the item
        # method. Now, since int and long are unified in Python 3.x and
        # the size of int in Python 2.x is not always the same, if the
        # type_string is 'int', then we need to check to see if it can
        # fit into an int if we are in Python 2.x. If it will fit, it is
        # returned as an int. If it would not fit, it is returned as a
        # long.
        type_string = get_attribute_string(grp[name], 'Python.Type')
        if type_string in self.python_type_strings:
            tp = self.types[self.python_type_strings.index(
                            type_string)]
            sdata = data.item()
            if sys.hexversion >= 0x03000000 or tp != int:
                return tp(sdata)
            else:
                num = long(sdata)
                if num > sys.maxint or num < -(sys.maxint - 1):
                    return num
                else:
                    return int(num)
        else:
            # Must be some other type, so return it as is.
            return data


class PythonStringMarshaller(NumpyScalarArrayMarshaller):
    def __init__(self):
        NumpyScalarArrayMarshaller.__init__(self)
        # In Python 3, the unicode and bare bytes type strings are str
        # and bytes, but before Python 3, they were unicode and str
        # respectively. The Python 3 python_type_strings will be used,
        # though.
        if sys.hexversion >= 0x03000000:
            self.types = [str, bytes, bytearray]
        else:
            self.types = [unicode, str, bytearray]
        self.python_type_strings = ['str', 'bytes', 'bytearray']
        # As the parent class already has MATLAB strings handled, there
        # are no MATLAB classes that this marshaller should be used for.
        self.matlab_classes = []

    def write(self, f, grp, name, data, type_string, options):
        # data just needs to be converted to a numpy string of the
        # appropriate type (str to np.str_ and the others to np.bytes_).
        if (sys.hexversion >= 0x03000000 and isinstance(data, str)) \
                or (sys.hexversion < 0x03000000 \
                and isinstance(data, unicode)):
            cdata = np.str_(data)
        else:
            cdata = np.bytes_(data)

        # Now pass it to the parent version of this function to write
        # it. The proper type_string needs to be grabbed now as the
        # parent function will have a modified form of data to guess
        # from if not given the right one explicitly.
        NumpyScalarArrayMarshaller.write(self, f, grp, name, cdata,
                                         self.get_type_string(data,
                                         type_string), options)

    def read(self, f, grp, name, options):
        # Use the parent class version to read it and do most of the
        # work.
        data = NumpyScalarArrayMarshaller.read(self, f, grp, name,
                                               options)

        # The type string determines how to convert it back to a Python
        # type (just look up the entry in types). Otherwise, return it
        # as is.
        type_string = get_attribute_string(grp[name], 'Python.Type')
        if type_string == 'str':
            return convert_to_str(data)
        elif type_string == 'bytes':
            if sys.hexversion >= 0x03000000:
                return bytes(data)
            else:
                return str(data)
        elif type_string == 'bytearray':
            return bytearray(data)
        else:
            return data


class PythonNoneMarshaller(NumpyScalarArrayMarshaller):
    def __init__(self):
        NumpyScalarArrayMarshaller.__init__(self)
        self.types = [type(None)]
        self.python_type_strings = ['builtins.NoneType']
        # None corresponds to no MATLAB class.
        self.matlab_classes = []

    def write(self, f, grp, name, data, type_string, options):
        # Just going to use the parent function with an empty double
        # (two dimensional so that MATLAB will import it as a []) as the
        # data and the right type_string set (parent can't guess right
        # from the modified form).
        NumpyScalarArrayMarshaller.write(self, f, grp, name,
                                         np.float64([]),
                                         self.get_type_string(data,
                                         type_string), options)

    def read(self, f, grp, name, options):
        # There is only one value, so return it.
        return None


class PythonDictMarshaller(TypeMarshaller):
    def __init__(self):
        TypeMarshaller.__init__(self)
        self.python_attributes |= set(['Python.Fields'])
        self.matlab_attributes |= set(['MATLAB_class', 'MATLAB_fields'])
        self.types = [dict]
        self.python_type_strings = ['dict']
        self.__MATLAB_classes = {dict: 'struct'}
        # Set matlab_classes to empty since NumpyScalarArrayMarshaller
        # handles Groups by default now.
        self.matlab_classes = list()

    def write(self, f, grp, name, data, type_string, options):
        # Check for any field names that are not unicode since they
        # cannot be handled. Also check for null characters and /
        # characters since they can't be handled either. How it is
        # checked (what type it is) and the error message are different
        # for each Python version.

        if sys.hexversion >= 0x03000000:
            for fieldname in data:
                if not isinstance(fieldname, str):
                    raise NotImplementedError('Dictionaries with non-'
                                              + 'str keys are not '
                                              + 'supported: '
                                              + repr(fieldname))
                if '\x00' in fieldname or '/' in fieldname:
                    raise NotImplementedError('Dictionary keys with ' \
                        + "null characters ('\x00') and '/' are not " \
                        + 'supported.')
        else:
            for fieldname in data:
                if not isinstance(fieldname, unicode):
                    raise NotImplementedError('Dictionaries with non-'
                                              + 'unicode keys are not '
                                              + 'supported: '
                                              + repr(fieldname))
                if unicode('\x00') in fieldname \
                        or unicode('/') in fieldname:
                    raise NotImplementedError('Dictionary keys with ' \
                        + "null characters ('\x00') and '/' are not " \
                        + 'supported.')

        # If the group doesn't exist, it needs to be created. If it
        # already exists but is not a group, it needs to be deleted
        # before being created.

        if name not in grp:
            grp2 = grp.create_group(name)
        elif not isinstance(grp[name], h5py.Group):
            del grp[name]
            grp2 = grp.create_group(name)
        else:
            grp2 = grp[name]

        # Write the metadata.
        self.write_metadata(f, grp, name, data, type_string, options)

        # Delete any Datasets/Groups not corresponding to a field name
        # in data if that option is set.

        if options.delete_unused_variables:
            for field in set([i for i in grp2]).difference( \
                    set([i for i in data])):
                del grp2[field]

        # Go through all the elements of data and write them. The H5PATH
        # needs to be set as the path of grp2 on all of them if we are
        # doing MATLAB compatibility (otherwise, the attribute needs to
        # be deleted).
        grp2_name = grp2.name
        for k, v in data.items():
            write_data(f, grp2, k, v, None, options)
            if k in grp2:
                if options.matlab_compatible:
                    set_attribute_string(grp2[k], 'H5PATH', grp2_name)
                else:
                    del_attribute(grp2[k], 'H5PATH')

    def write_metadata(self, f, grp, name, data, type_string, options):
        # First, call the inherited version to do most of the work and
        # get the group.

        TypeMarshaller.write_metadata(self, f, grp, name, data,
                                      type_string, options)
        grp2 = grp[name]

        # Grab all the keys and sort the list.
        fields = sorted(list(data.keys()))

        # If we are storing python metadata, we need to set the
        # 'Python.Fields' Attribute to be all the keys.
        if options.store_python_metadata:
            set_attribute_string_array(grp2, 'Python.Fields',
                                       fields)

        # If we are making it MATLAB compatible and have h5py version
        # >= 2.3, then we can set the MATLAB_fields Attribute as long as
        # all keys are mappable to ASCII. Otherwise, the attribute
        # should be deleted. It is written as a vlen='S1' array of
        # bytes_ arrays of the individual characters.
        if options.matlab_compatible \
                and parse_version(_H5PY_VERSION) \
                >= parse_version('2.3'):
            try:
                dt = h5py.special_dtype(vlen=np.dtype('S1'))
                fs = np.empty(shape=(len(fields),), dtype=dt)
                for i, s in enumerate(fields):
                    fs[i] = np.array([c.encode('ascii') for c in s],
                                     dtype='S1')
            except UnicodeDecodeError:
                del_attribute(grp2, 'MATLAB_fields')
            else:
                set_attribute(grp2, 'MATLAB_fields', fs)
        else:
            del_attribute(grp2, 'MATLAB_fields')

        # If we are making it MATLAB compatible, the MATLAB_class
        # attribute needs to be set for the data type. If the type
        # cannot be found or if we are not doing MATLAB compatibility,
        # the attributes need to be deleted.

        tp = type(data)
        if options.matlab_compatible and tp in self.__MATLAB_classes:
            set_attribute_string(grp2, 'MATLAB_class',
                                 self.__MATLAB_classes[tp])
        else:
            del_attribute(grp2, 'MATLAB_class')

    def read(self, f, grp, name, options):
        # If name is not present or is not a Group, then we can't read
        # it and have to throw an error.
        grp2 = grp.get(name)
        if grp2 is None:
            raise NotImplementedError('No object with name ' + name
                                      + 'is present.')
        if not isinstance(grp2, h5py.Group):
            raise NotImplementedError(name + ' is not a Group.')

        # Starting with an empty dict, all that has to be done is
        # iterate through all the Datasets and Groups in grp[name] and
        # add them to the dict with their name as the key. Since we
        # don't want an exception thrown by reading an element to stop
        # the whole reading process, the reading is wrapped in a try
        # block that just catches exceptions and then does nothing about
        # them (nothing needs to be done).
        data = dict()
        for k, dsetgrp in grp2.items():
            # We must exclude group_for_references
            if dsetgrp.name == options.group_for_references:
                continue
            try:
                data[k] = read_data(f, grp2, k, options)
            except:
                pass
        return data


class PythonListMarshaller(NumpyScalarArrayMarshaller):
    def __init__(self):
        NumpyScalarArrayMarshaller.__init__(self)
        self.types = [list]
        self.python_type_strings = ['list']
        # As the parent class already has MATLAB strings handled, there
        # are no MATLAB classes that this marshaller should be used for.
        self.matlab_classes = []

    def write(self, f, grp, name, data, type_string, options):
        # data just needs to be converted to the appropriate numpy type
        # (pass it through np.object_ to get the and then pass it to the
        # parent version of this function. The proper type_string needs
        # to be grabbed now as the parent function will have a modified
        # form of data to guess from if not given the right one
        # explicitly.
        out = np.zeros(dtype='object', shape=(len(data), ))
        out[:] = data
        NumpyScalarArrayMarshaller.write(self, f, grp, name,
                                         out,
                                         self.get_type_string(data,
                                         type_string), options)

    def read(self, f, grp, name, options):
        # Use the parent class version to read it and do most of the
        # work.
        data = NumpyScalarArrayMarshaller.read(self, f, grp, name,
                                               options)

        # Passing it through list does all the work of making it a list
        # again.
        return list(data)


class PythonTupleSetDequeMarshaller(PythonListMarshaller):
    def __init__(self):
        PythonListMarshaller.__init__(self)
        self.types = [tuple, set, frozenset, collections.deque]
        self.python_type_strings = ['tuple', 'set', 'frozenset',
                                    'collections.deque']
        # As the parent class already has MATLAB strings handled, there
        # are no MATLAB classes that this marshaller should be used for.
        self.matlab_classes = []

    def write(self, f, grp, name, data, type_string, options):
        # data just needs to be converted to a list and then pass it to
        # the parent version of this function. The proper type_string
        # needs to be grabbed now as the parent function will have a
        # modified form of data to guess from if not given the right one
        # explicitly.
        PythonListMarshaller.write(self, f, grp, name, list(data),
                                  self.get_type_string(data,
                                  type_string), options)

    def read(self, f, grp, name, options):
        # Use the parent class version to read it and do most of the
        # work.
        data = PythonListMarshaller.read(self, f, grp, name,
                                        options)

        # The type string determines how to convert it back to a Python
        # type (just look up the entry in types).
        type_string = get_attribute_string(grp[name], 'Python.Type')
        if type_string in self.python_type_strings:
            tp = self.types[self.python_type_strings.index(
                            type_string)]
            return tp(data)
        else:
            # Must be some other type, so return it as is.
            return data