File: __init__.py

package info (click to toggle)
python-hdf5storage 0.1.19-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 896 kB
  • sloc: python: 3,504; makefile: 132
file content (1813 lines) | stat: -rw-r--r-- 68,379 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
# Copyright (c) 2013-2023, Freja Nordsiek
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
This is the hdf5storage package, a Python package to read and write
python data types to HDF5 (Heirarchal Data Format) files beyond just
Numpy types.

Version 0.1.19

"""

__version__ = "0.1.19"

import sys
import os
import posixpath
import copy
import inspect
import datetime
import h5py

from . import lowlevel
from hdf5storage.lowlevel import Hdf5storageError, CantReadError, \
    TypeNotMatlabCompatibleError

from . import Marshallers


class Options(object):
    """ Set of options governing how data is read/written to/from disk.

    There are many ways that data can be transformed as it is read or
    written from a file, and many attributes can be used to describe the
    data depending on its format. The option with the most effect is the
    `matlab_compatible` option. It makes sure that the file is
    compatible with MATLAB's HDF5 based version 7.3 mat file format. It
    overrides several options to the values in the following table.

    ==================================  ====================
    attribute                           value
    ==================================  ====================
    delete_unused_variables             ``True``
    structured_numpy_ndarray_as_struct  ``True``
    make_atleast_2d                     ``True``
    convert_numpy_bytes_to_utf16        ``True``
    convert_numpy_str_to_utf16          ``True``
    convert_bools_to_uint8              ``True``
    reverse_dimension_order             ``True``
    store_shape_for_empty               ``True``
    complex_names                       ``('real', 'imag')``
    group_for_references                ``'/#refs#'``
    compression_algorithm               ``'gzip'``
    ==================================  ====================

    In addition to setting these options, a specially formatted block of
    bytes is put at the front of the file so that MATLAB can recognize
    its format.

    Parameters
    ----------
    store_python_metadata : bool, optional
        See Attributes.
    matlab_compatible : bool, optional
        See Attributes.
    action_for_matlab_incompatible : str, optional
        See Attributes. Only valid values are 'ignore', 'discard', and
        'error'.
    delete_unused_variables : bool, optional
        See Attributes.
    structured_numpy_ndarray_as_struct : bool, optional
        See Attributes.
    make_atleast_2d : bool, optional
        See Attributes.
    convert_numpy_bytes_to_utf16 : bool, optional
        See Attributes.
    convert_numpy_str_to_utf16 : bool, optional
        See Attributes.
    convert_bools_to_uint8 : bool, optional
        See Attributes.
    reverse_dimension_order : bool, optional
        See Attributes.
    store_shape_for_empty : bool, optional
        See Attributes.
    complex_names : tuple of two str, optional
        See Attributes.
    group_for_references : str, optional
        See Attributes.
    oned_as : str, optional
        See Attributes.
    compress : bool, optional
        See Attributes.
    compress_size_threshold : int, optional
        See Attributes.
    compression_algorithm : str, optional
        See Attributes.
    gzip_compression_level : int, optional
        See Attributes.
    shuffle_filter : bool, optional
        See Attributes.
    compressed_fletcher32_filter : bool, optional
        See Attributes.
    uncompressed_fletcher32_filter : bool, optional
        See Attributes.
    marshaller_collection : MarshallerCollection, optional
        See Attributes.
    **keywords :
        Additional keyword arguments. They are ignored. They are allowed
        to be given to be more compatible with future versions of this
        package where more options will be added.

    Attributes
    ----------
    store_python_metadata : bool
    matlab_compatible : bool
    action_for_matlab_incompatible : str
    delete_unused_variables : bool
    structured_numpy_ndarray_as_struct : bool
    make_atleast_2d : bool
    convert_numpy_bytes_to_utf16 : bool
    convert_numpy_str_to_utf16 : bool
    convert_bools_to_uint8 : bool
    reverse_dimension_order : bool
    store_shape_for_empty : bool
    complex_names : tuple of two str
    group_for_references : str
    oned_as : {'row', 'column'}
    compress : bool
    compress_size_threshold : int
    compression_algorithm : {'gzip', 'lzf', 'szip'}
    gzip_compression_level : int
    shuffle_filter : bool
    compressed_fletcher32_filter : bool
    uncompressed_fletcher32_filter : bool
    scalar_options : dict
        ``h5py.Group.create_dataset`` options for writing scalars.
    array_options : dict
        ``h5py.Group.create_dataset`` options for writing scalars.
    marshaller_collection : MarshallerCollection
        Collection of marshallers to disk.

    """
    def __init__(self, store_python_metadata=True,
                 matlab_compatible=True,
                 action_for_matlab_incompatible='error',
                 delete_unused_variables=False,
                 structured_numpy_ndarray_as_struct=False,
                 make_atleast_2d=False,
                 convert_numpy_bytes_to_utf16=False,
                 convert_numpy_str_to_utf16=False,
                 convert_bools_to_uint8=False,
                 reverse_dimension_order=False,
                 store_shape_for_empty=False,
                 complex_names=('r', 'i'),
                 group_for_references="/#refs#",
                 oned_as='row',
                 compress=True,
                 compress_size_threshold=16*1024,
                 compression_algorithm='gzip',
                 gzip_compression_level=7,
                 shuffle_filter=True,
                 compressed_fletcher32_filter=True,
                 uncompressed_fletcher32_filter=False,
                 marshaller_collection=None,
                 **keywords):

        # Set the defaults.

        self._store_python_metadata = True
        self._action_for_matlab_incompatible = 'error'
        self._delete_unused_variables = False
        self._structured_numpy_ndarray_as_struct = False
        self._make_atleast_2d = False
        self._convert_numpy_bytes_to_utf16 = False
        self._convert_numpy_str_to_utf16 = False
        self._convert_bools_to_uint8 = False
        self._reverse_dimension_order = False
        self._store_shape_for_empty = False
        self._complex_names = ('r', 'i')
        self._group_for_references = "/#refs#"
        self._oned_as = 'row'
        self._compress = True
        self._compress_size_threshold = 16*1024
        self._compression_algorithm = 'gzip'
        self._gzip_compression_level = 7
        self._shuffle_filter = True
        self._compressed_fletcher32_filter = True
        self._uncompressed_fletcher32_filter = False
        self._matlab_compatible = True

        # Apply all the given options using the setters, making sure to
        # do matlab_compatible last since it will override most of the
        # other ones.

        self.store_python_metadata = store_python_metadata
        self.action_for_matlab_incompatible = \
            action_for_matlab_incompatible
        self.delete_unused_variables = delete_unused_variables
        self.structured_numpy_ndarray_as_struct = \
            structured_numpy_ndarray_as_struct
        self.make_atleast_2d = make_atleast_2d
        self.convert_numpy_bytes_to_utf16 = convert_numpy_bytes_to_utf16
        self.convert_numpy_str_to_utf16 = convert_numpy_str_to_utf16
        self.convert_bools_to_uint8 = convert_bools_to_uint8
        self.reverse_dimension_order = reverse_dimension_order
        self.store_shape_for_empty = store_shape_for_empty
        self.complex_names = complex_names
        self.group_for_references = group_for_references
        self.oned_as = oned_as
        self.compress = compress
        self.compress_size_threshold = compress_size_threshold
        self.compression_algorithm = compression_algorithm
        self.gzip_compression_level = gzip_compression_level
        self.shuffle_filter = shuffle_filter
        self.compressed_fletcher32_filter = compressed_fletcher32_filter
        self.uncompressed_fletcher32_filter = \
            uncompressed_fletcher32_filter
        self.matlab_compatible = matlab_compatible

        # Set the h5py options to use for writing scalars and arrays to
        # blank for now.

        self.scalar_options = dict()
        self.array_options = dict()

        # Use the given marshaller collection if it was
        # given. Otherwise, use the default.

        #: Collection of marshallers to disk.
        #:
        #: MarshallerCollection
        #:
        #: See Also
        #: --------
        #: MarshallerCollection
        self.marshaller_collection = marshaller_collection
        if not isinstance(marshaller_collection, MarshallerCollection):
            self.marshaller_collection = MarshallerCollection()

    @property
    def store_python_metadata(self):
        """ Whether or not to store Python metadata.

        bool

        If ``True`` (default), information on the Python type for each
        object written to disk is put in its attributes so that it can
        be read back into Python as the same type.

        """
        return self._store_python_metadata

    @store_python_metadata.setter
    def store_python_metadata(self, value):
        # Check that it is a bool, and then set it. This option does not
        # effect MATLAB compatibility
        if isinstance(value, bool):
            self._store_python_metadata = value

    @property
    def matlab_compatible(self):
        """ Whether or not to make the file compatible with MATLAB.

        bool

        If ``True`` (default), data is written to file in such a way
        that it compatible with MATLAB's version 7.3 mat file format
        which is HDF5 based. Setting it to ``True`` forces other options
        to hold the specific values in the table below.

        ==================================  ====================
        attribute                           value
        ==================================  ====================
        delete_unused_variables             ``True``
        structured_numpy_ndarray_as_struct  ``True``
        make_atleast_2d                     ``True``
        convert_numpy_bytes_to_utf16        ``True``
        convert_numpy_str_to_utf16          ``True``
        convert_bools_to_uint8              ``True``
        reverse_dimension_order             ``True``
        store_shape_for_empty               ``True``
        complex_names                       ``('real', 'imag')``
        group_for_references                ``'/#refs#'``
        compression_algorithm               ``'gzip'``
        ==================================  ====================

        In addition to setting these options, a specially formatted
        block of bytes is put at the front of the file so that MATLAB
        can recognize its format.

        """
        return self._matlab_compatible

    @matlab_compatible.setter
    def matlab_compatible(self, value):
        # If it is a bool, it can be set. If it is set to true, then
        # several other options need to be set appropriately.
        if isinstance(value, bool):
            self._matlab_compatible = value
            if value:
                self._delete_unused_variables = True
                self._structured_numpy_ndarray_as_struct = True
                self._make_atleast_2d = True
                self._convert_numpy_bytes_to_utf16 = True
                self._convert_numpy_str_to_utf16 = True
                self._convert_bools_to_uint8 = True
                self._reverse_dimension_order = True
                self._store_shape_for_empty = True
                self._complex_names = ('real', 'imag')
                self._group_for_references = "/#refs#"
                self._compression_algorithm = 'gzip'

    @property
    def action_for_matlab_incompatible(self):
        """ The action to do when writing non-MATLAB compatible data.

        {'ignore', 'discard', 'error'}

        The action to perform when doing MATLAB compatibility but a type
        being written is not MATLAB compatible. The actions are to write
        the data anyways ('ignore'), don't write the incompatible data
        ('discard'), or throw a ``TypeNotMatlabCompatibleError``
        exception. The default is 'error'.

        See Also
        --------
        matlab_compatible
        hdf5storage.lowlevel.TypeNotMatlabCompatibleError

        """
        return self._action_for_matlab_incompatible

    @action_for_matlab_incompatible.setter
    def action_for_matlab_incompatible(self, value):
        # Check that it is one of the allowed values, and then set
        # it. This option does not effect MATLAB compatibility.
        if value in ('ignore', 'discard', 'error'):
            self._action_for_matlab_incompatible = value

    @property
    def delete_unused_variables(self):
        """ Whether or not to delete file variables not written to.

        bool

        If ``True`` (defaults to ``False`` unless MATLAB compatibility
        is being done), variables in the file below where writing starts
        that are not written to are deleted.

        Must be ``True`` if doing MATLAB compatibility.

        """
        return self._delete_unused_variables

    @delete_unused_variables.setter
    def delete_unused_variables(self, value):
        # Check that it is a bool, and then set it. If it is false, we
        # are not doing MATLAB compatible formatting.
        if isinstance(value, bool):
            self._delete_unused_variables = value
        if not self._delete_unused_variables:
            self._matlab_compatible = False

    @property
    def structured_numpy_ndarray_as_struct(self):
        """ Whether or not to convert structured ndarrays to structs.

        bool

        If ``True`` (defaults to ``False`` unless MATLAB compatibility
        is being done), all ``numpy.ndarray``s with fields (compound
        dtypes) are written as HDF5 Groups with the fields as Datasets
        (correspond to struct arrays in MATLAB).

        Must be ``True`` if doing MATLAB compatibility. MATLAB cannot
        handle the compound types made by writing these types.

        """
        return self._structured_numpy_ndarray_as_struct

    @structured_numpy_ndarray_as_struct.setter
    def structured_numpy_ndarray_as_struct(self, value):
        # Check that it is a bool, and then set it. If it is false, we
        # are not doing MATLAB compatible formatting.
        if isinstance(value, bool):
            self._structured_numpy_ndarray_as_struct = value
        if not self._structured_numpy_ndarray_as_struct:
            self._matlab_compatible = False

    @property
    def make_atleast_2d(self):
        """ Whether or not to convert scalar types to 2D arrays.

        bool

        If ``True`` (defaults to ``False`` unless MATLAB compatibility
        is being done), all scalar types are converted to 2D arrays when
        written to file. ``oned_as`` determines whether 1D arrays are
        turned into row or column vectors.

        Must be ``True`` if doing MATLAB compatibility. MATLAB can only
        import 2D and higher dimensional arrays.

        See Also
        --------
        oned_as

        """
        return self._make_atleast_2d

    @make_atleast_2d.setter
    def make_atleast_2d(self, value):
        # Check that it is a bool, and then set it. If it is false, we
        # are not doing MATLAB compatible formatting.
        if isinstance(value, bool):
            self._make_atleast_2d = value
        if not self._make_atleast_2d:
            self._matlab_compatible = False

    @property
    def convert_numpy_bytes_to_utf16(self):
        """ Whether or not to convert numpy.bytes\\_ to UTF-16.

        bool

        If ``True`` (defaults to ``False`` unless MATLAB compatibility
        is being done), ``numpy.bytes_`` and anything that is converted
        to them (``bytes``, and ``bytearray``) are converted to UTF-16
        before being written to file as ``numpy.uint16``.

        Must be ``True`` if doing MATLAB compatibility. MATLAB uses
        UTF-16 for its strings.

        See Also
        --------
        numpy.bytes_
        convert_numpy_str_to_utf16

        """
        return self._convert_numpy_bytes_to_utf16

    @convert_numpy_bytes_to_utf16.setter
    def convert_numpy_bytes_to_utf16(self, value):
        # Check that it is a bool, and then set it. If it is false, we
        # are not doing MATLAB compatible formatting.
        if isinstance(value, bool):
            self._convert_numpy_bytes_to_utf16 = value
        if not self._convert_numpy_bytes_to_utf16:
            self._matlab_compatible = False

    @property
    def convert_numpy_str_to_utf16(self):
        """ Whether or not to convert numpy.str\\_ to UTF-16.

        bool

        If ``True`` (defaults to ``False`` unless MATLAB compatibility
        is being done), ``numpy.str_`` and anything that is converted
        to them (``str``) will be converted to UTF-16 if possible before
        being written to file as ``numpy.uint16``. If doing so would
        lead to a loss of data (character can't be translated to
        UTF-16) or would change the shape of an array of ``numpy.str_``
        due to a character being converted into a pair 2-bytes, the
        conversion will not be made and the string will be stored in
        UTF-32 form as a ``numpy.uint32``.

        Must be ``True`` if doing MATLAB compatibility. MATLAB uses
        UTF-16 for its strings.

        See Also
        --------
        numpy.bytes_
        convert_numpy_str_to_utf16

        """
        return self._convert_numpy_str_to_utf16

    @convert_numpy_str_to_utf16.setter
    def convert_numpy_str_to_utf16(self, value):
        # Check that it is a bool, and then set it. If it is false, we
        # are not doing MATLAB compatible formatting.
        if isinstance(value, bool):
            self._convert_numpy_str_to_utf16 = value
        if not self._convert_numpy_str_to_utf16:
            self._matlab_compatible = False

    @property
    def convert_bools_to_uint8(self):
        """ Whether or not to convert bools to ``numpy.uint8``.

        bool

        If ``True`` (defaults to ``False`` unless MATLAB compatibility
        is being done), bool types are converted to ``numpy.uint8``
        before being written to file.

        Must be ``True`` if doing MATLAB compatibility. MATLAB doesn't
        use the enums that ``h5py`` wants to use by default and also
        uses uint8 intead of int8.

        """
        return self._convert_bools_to_uint8

    @convert_bools_to_uint8.setter
    def convert_bools_to_uint8(self, value):
        # Check that it is a bool, and then set it. If it is false, we
        # are not doing MATLAB compatible formatting.
        if isinstance(value, bool):
            self._convert_bools_to_uint8 = value
        if not self._convert_bools_to_uint8:
            self._matlab_compatible = False

    @property
    def reverse_dimension_order(self):
        """ Whether or not to reverse the order of array dimensions.

        bool

        If ``True`` (defaults to ``False`` unless MATLAB compatibility
        is being done), the dimension order of ``numpy.ndarray`` and
        ``numpy.matrix`` are reversed. This switches them from C
        ordering to Fortran ordering. The switch of ordering is
        essentially a transpose.

        Must be ``True`` if doing MATLAB compatibility. MATLAB uses
        Fortran ordering.

        """
        return self._reverse_dimension_order

    @reverse_dimension_order.setter
    def reverse_dimension_order(self, value):
        # Check that it is a bool, and then set it. If it is false, we
        # are not doing MATLAB compatible formatting.
        if isinstance(value, bool):
            self._reverse_dimension_order = value
        if not self._reverse_dimension_order:
            self._matlab_compatible = False

    @property
    def store_shape_for_empty(self):
        """ Whether to write the shape if an object has no elements.

        bool

        If ``True`` (defaults to ``False`` unless MATLAB compatibility
        is being done), objects that have no elements (e.g. a
        0x0x2 array) will have their shape (an array of the number of
        elements along each axis) written to disk in place of nothing,
        which would otherwise be written.

        Must be ``True`` if doing MATLAB compatibility. For empty
        arrays, MATLAB requires that the shape array be written in its
        place along with the attribute 'MATLAB_empty' set to 1 to flag
        it.

        """
        return self._store_shape_for_empty

    @store_shape_for_empty.setter
    def store_shape_for_empty(self, value):
        # Check that it is a bool, and then set it. If it is false, we
        # are not doing MATLAB compatible formatting.
        if isinstance(value, bool):
            self._store_shape_for_empty = value
        if not self._store_shape_for_empty:
            self._matlab_compatible = False

    @property
    def complex_names(self):
        """ Names to use for the real and imaginary fields.

        tuple of two str

        ``(r, i)`` where `r` and `i` are two ``str``. When reading and
        writing complex numbers, the real part gets the name in `r` and
        the imaginary part gets the name in `i`. ``h5py`` uses
        ``('r', 'i')`` by default, unless MATLAB compatibility is being
        done in which case its default is ``('real', 'imag')``.

        Must be ``('real', 'imag')`` if doing MATLAB compatibility.

        """
        return self._complex_names

    @complex_names.setter
    def complex_names(self, value):
        # Check that it is a tuple of two strings, and then set it. If
        # it is something other than ('real', 'imag'), then we are not
        # doing MATLAB compatible formatting.
        if isinstance(value, tuple) and len(value) == 2 \
                and isinstance(value[0], str) \
                and isinstance(value[1], str):
            self._complex_names = value
        if self._complex_names != ('real', 'imag'):
            self._matlab_compatible = False

    @property
    def group_for_references(self):
        """ Path for where to put objects pointed at by references.

        str

        The absolute POSIX path for the Group to place all data that is
        pointed to by another piece of data (needed for
        ``numpy.object_`` and similar types). This path is automatically
        excluded from its parent group when reading back a ``dict``.

        Must be ``'/#refs#`` if doing MATLAB compatibility.

        """
        return self._group_for_references

    @group_for_references.setter
    def group_for_references(self, value):
        # Check that it an str and a valid absolute POSIX path, and then
        # set it. If it is something other than "/#refs#", then we are
        # not doing MATLAB compatible formatting.
        if isinstance(value, str):
            pth = posixpath.normpath(value)
            if len(pth) > 1 and posixpath.isabs(pth):
                self._group_for_references = value
        if self._group_for_references != "/#refs#":
            self._matlab_compatible = False

    @property
    def oned_as(self):
        """ Vector that 1D arrays become when making everything >= 2D.

        {'row', 'column'}

        When the ``make_atleast_2d`` option is set (set implicitly by
        doing MATLAB compatibility), this option controls whether 1D
        arrays become row vectors or column vectors.

        See Also
        --------
        make_atleast_2d

        """
        return self._oned_as

    @oned_as.setter
    def oned_as(self, value):
        # Check that it is one of the valid values before setting it.
        if value in ('row', 'column'):
            self._oned_as = value

    @property
    def compress(self):
        """ Whether to compress large python objects (datasets).

        bool

        If ``True``, python objects (datasets) larger than
        ``compress_size_threshold`` will be compressed.

        See Also
        --------
        compress_size_threshold
        compression_algorithm
        shuffle_filter
        compressed_fletcher32_filter

        """
        return self._compress

    @compress.setter
    def compress(self, value):
        # Check that it is a bool, and then set it.
        if isinstance(value, bool):
            self._compress = value

    @property
    def compress_size_threshold(self):
        """ Minimum size of a python object before it is compressed.

        int

        Minimum size in bytes a python object must be for it to be
        compressed if ``compress`` is set. Must be non-negative.

        See Also
        --------
        compress

        """
        return self._compress_size_threshold

    @compress_size_threshold.setter
    def compress_size_threshold(self, value):
        # Check that it is a non-negative integer, and then set it.
        if isinstance(value, int) and value >= 0:
            self._compress_size_threshold = value

    @property
    def compression_algorithm(self):
        """ Algorithm to use for compression.

        {'gzip', 'lzf', 'szip'}

        Compression algorithm to use When the ``compress`` option is set
        and a python object is larger than ``compress_size_threshold``.
        ``'gzip'`` is the only MATLAB compatible option.

        ``'gzip'`` is also known as the Deflate algorithm, which is the
        default compression algorithm of ZIP files and is a common
        compression algorithm used on tarballs. It is the most
        compatible option. It has good compression and is reasonably
        fast. Its compression level is set with the
        ``gzip_compression_level`` option, which is an integer between 0
        and 9 inclusive.

        ``'lzf'`` is a very fast but low to moderate compression
        algorithm. It is less commonly used than gzip/Deflate, but
        doesn't have any patent or license issues.

        ``'szip'`` is a compression algorithm that has some patents and
        license restrictions. It is not always available.

        See Also
        --------
        compress
        compress_size_threshold
        h5py.Group.create_dataset

        """
        return self._compression_algorithm

    @compression_algorithm.setter
    def compression_algorithm(self, value):
        # Check that it is one of the valid values before setting it. If
        # it is something other than 'gzip', then we are not doing
        # MATLAB compatible formatting.
        if value in ('gzip', 'lzf', 'szip'):
            self._compression_algorithm = value
        if self._compression_algorithm != 'gzip':
            self._matlab_compatible = False

    @property
    def gzip_compression_level(self):
        """ The compression level to use when doing the gzip algorithm.

        int

        Compression level to use when data is being compressed with the
        ``'gzip'`` algorithm. Must be an integer between 0 and 9
        inclusive. Lower values are faster while higher values give
        better compression.

        See Also
        --------
        compress
        compression_algorithm

        """
        return self._gzip_compression_level

    @gzip_compression_level.setter
    def gzip_compression_level(self, value):
        # Check that it is an integer between 0 and 9.
        if isinstance(value, int) and value >= 0 and value <= 9:
            self._gzip_compression_level = value

    @property
    def shuffle_filter(self):
        """ Whether to use the shuffle filter on compressed python objects.

        bool

        If ``True``, python objects (datasets) that are compressed are
        run through the shuffle filter, which reversibly rearranges the
        data to improve compression.

        See Also
        --------
        compress
        h5py.Group.create_dataset

        """
        return self._shuffle_filter

    @shuffle_filter.setter
    def shuffle_filter(self, value):
        # Check that it is a bool, and then set it.
        if isinstance(value, bool):
            self._shuffle_filter = value

    @property
    def compressed_fletcher32_filter(self):
        """ Whether to use the fletcher32 filter on compressed python objects.

        bool

        If ``True``, python objects (datasets) that are compressed are
        run through the fletcher32 filter, which stores a checksum with
        each chunk so that data corruption can be more easily detected.

        See Also
        --------
        compress
        shuffle_filter
        uncompressed_flether32_filter
        h5py.Group.create_dataset

        """
        return self._compressed_fletcher32_filter

    @compressed_fletcher32_filter.setter
    def compressed_fletcher32_filter(self, value):
        # Check that it is a bool, and then set it.
        if isinstance(value, bool):
            self._compressed_fletcher32_filter = value

    @property
    def uncompressed_fletcher32_filter(self):
        """ Whether to use the fletcher32 filter on uncompressed non-scalar python objects.

        bool

        If ``True``, python objects (datasets) that are **NOT**
        compressed and are not scalars (when converted to a Numpy type,
        their shape is not an empty ``tuple``) are run through the
        fletcher32 filter, which stores a checksum with each chunk so
        that data corruption can be more easily detected. This forces
        all uncompressed data to be chuncked regardless of how small and
        can increase file sizes.

        See Also
        --------
        compress
        shuffle_filter
        compressed_flether32_filter
        h5py.Group.create_dataset

        """
        return self._uncompressed_fletcher32_filter

    @uncompressed_fletcher32_filter.setter
    def uncompressed_fletcher32_filter(self, value):
        # Check that it is a bool, and then set it.
        if isinstance(value, bool):
            self._uncompressed_fletcher32_filter = value


class MarshallerCollection(object):
    """ Represents, maintains, and retreives a set of marshallers.

    Maintains a list of marshallers used to marshal data types to and
    from HDF5 files. It includes the builtin marshallers from the
    ``hdf5storage.Marshallers`` module as well as any user supplied or
    added marshallers. While the builtin list cannot be changed; user
    ones can be added or removed. Also has functions to get the
    marshaller appropriate for ``type`` or type_string for a python data
    type.

    User marshallers must provide the same interface as
    ``hdf5storage.Marshallers.TypeMarshaller``, which is probably most
    easily done by inheriting from it.

    Parameters
    ----------
    marshallers : marshaller or list of marshallers, optional
        The user marshaller/s to add to the collection. Could also be a
        ``tuple``, ``set``, or ``frozenset`` of marshallers.

    See Also
    --------
    hdf5storage.Marshallers
    hdf5storage.Marshallers.TypeMarshaller

    """
    def __init__(self, marshallers=[]):
        # Two lists of marshallers need to be maintained: one for the
        # builtin ones in the Marshallers module, and another for user
        # supplied ones.

        # Grab all the marshallers in the Marshallers module (they are
        # the classes) by inspection.
        self._builtin_marshallers = [m() for key, m in dict(
                                     inspect.getmembers(Marshallers,
                                     inspect.isclass)).items()
                                     if m != Marshallers.parse_version]
        self._user_marshallers = []

        # A list of all the marshallers will be needed along with
        # dictionaries to lookup up the marshaller to use for given
        # types, type string, or MATLAB class string (they are the
        # keys).
        self._marshallers = []
        self._types = dict()
        self._type_strings = dict()
        self._matlab_classes = dict()

        # Add any user given marshallers.
        self.add_marshaller(copy.deepcopy(marshallers))

    def _update_marshallers(self):
        """ Update the full marshaller list and other data structures.

        Makes a full list of both builtin and user marshallers and
        rebuilds internal data structures used for looking up which
        marshaller to use for reading/writing Python objects to/from
        file.

        """
        # Combine both sets of marshallers.
        self._marshallers = copy.deepcopy(self._builtin_marshallers)
        self._marshallers.extend(copy.deepcopy(self._user_marshallers))

        # Construct the dictionary to look up the appropriate marshaller
        # by type. It would normally be a dict comprehension such as
        #
        # self._types = {tp: m for m in self._marshallers
        #                for tp in m.types}
        #
        # but that is not supported in Python 2.6 so it has to be done
        # with a for loop.

        self._types = dict()
        for m in self._marshallers:
            for tp in m.types:
                self._types[tp] = m

        # The equivalent one to read data types given type strings needs
        # to be created from it. Basically, we have to make the key be
        # the python_type_string from it. Same issue as before with
        # Python 2.6
        #
        # self._type_strings = {type_string: m for key, m in
        #                       self._types.items() for type_string in
        #                       m.python_type_strings}

        self._type_strings = dict()
        for key, m in self._types.items():
            for type_string in m.python_type_strings:
                self._type_strings[type_string] = m

        # The equivalent one to read data types given MATLAB class
        # strings needs to be created from it. Basically, we have to
        # make the key be the matlab_class from it. Same issue as before
        # with Python 2.6
        #
        # self._matlab_classes = {matlab_class: m for key, m in
        #                         self._types.items() for matlab_class in
        #                         m.matlab_classes}

        self._matlab_classes = dict()
        for key, m in self._types.items():
            for matlab_class in m.matlab_classes:
                self._matlab_classes[matlab_class] = m

    def add_marshaller(self, marshallers):
        """ Add a marshaller/s to the user provided list.

        Adds a marshaller or a list of them to the user provided set of
        marshallers.

        Parameters
        ----------
        marshallers : marshaller or list of marshallers
            The user marshaller/s to add to the user provided
            collection. Could also be a ``tuple``, ``set``, or
            ``frozenset`` of marshallers.

        """
        if not isinstance(marshallers, (list, tuple, set, frozenset)):
            marshallers = [marshallers]
        for m in marshallers:
            if m not in self._user_marshallers:
                self._user_marshallers.append(copy.deepcopy(m))
        self._update_marshallers()

    def remove_marshaller(self, marshallers):
        """ Removes a marshaller/s from the user provided list.

        Removes a marshaller or a list of them from the user provided set
        of marshallers.

        Parameters
        ----------
        marshallers : marshaller or list of marshallers
            The user marshaller/s to from the user provided collection.
            Could also be a ``tuple``, ``set``, or ``frozenset`` of
            marshallers.

        """
        if not isinstance(marshallers, (list, tuple, set, frozenset)):
            marshallers = [marshallers]
        for m in marshallers:
            if m in self._user_marshallers:
                self._user_marshallers.remove(m)
        self._update_marshallers()

    def clear_marshallers(self):
        """ Clears the list of user provided marshallers.

        Removes all user provided marshallers, but not the builtin ones
        from the ``hdf5storage.Marshallers`` module, from the list of
        marshallers used.

        """
        self._user_marshallers.clear()
        self._update_marshallers()

    def get_marshaller_for_type(self, tp):
        """ Gets the appropriate marshaller for a type.

        Retrieves the marshaller, if any, that can be used to read/write
        a Python object with type 'tp'.

        Parameters
        ----------
        tp : type
            Python object ``type``.

        Returns
        -------
        marshaller
            The marshaller that can read/write the type to
            file. ``None`` if no appropriate marshaller is found.

        See Also
        --------
        hdf5storage.Marshallers.TypeMarshaller.types

        """
        if tp in self._types:
            return copy.deepcopy(self._types[tp])
        else:
            return None

    def get_marshaller_for_type_string(self, type_string):
        """ Gets the appropriate marshaller for a type string.

        Retrieves the marshaller, if any, that can be used to read/write
        a Python object with the given type string.

        Parameters
        ----------
        type_string : str
            Type string for a Python object.

        Returns
        -------
        marshaller
            The marshaller that can read/write the type to
            file. ``None`` if no appropriate marshaller is found.

        See Also
        --------
        hdf5storage.Marshallers.TypeMarshaller.python_type_strings

        """
        if type_string in self._type_strings:
            return copy.deepcopy(self._type_strings[type_string])
        else:
            return None

    def get_marshaller_for_matlab_class(self, matlab_class):
        """ Gets the appropriate marshaller for a MATLAB class string.

        Retrieves the marshaller, if any, that can be used to read/write
        a Python object associated with the given MATLAB class string.

        Parameters
        ----------
        matlab_class : str
            MATLAB class string for a Python object.

        Returns
        -------
        marshaller
            The marshaller that can read/write the type to
            file. ``None`` if no appropriate marshaller is found.

        See Also
        --------
        hdf5storage.Marshallers.TypeMarshaller.python_type_strings

        """
        if matlab_class in self._matlab_classes:
            return copy.deepcopy(self._matlab_classes[matlab_class])
        else:
            return None


def writes(mdict, filename='data.h5', truncate_existing=False,
           truncate_invalid_matlab=False, options=None, **keywords):
    """ Writes data into an HDF5 file (high level).

    High level function to store one or more Python types (data) to
    specified pathes in an HDF5 file. The paths are specified as POSIX
    style paths where the directory name is the Group to put it in and
    the basename is the name to write it to.

    There are various options that can be used to influence how the data
    is written. They can be passed as an already constructed ``Options``
    into `options` or as additional keywords that will be used to make
    one by ``options = Options(**keywords)``.

    Two very important options are ``store_python_metadata`` and
    ``matlab_compatible``, which are ``bool``. The first makes it so
    that enough metadata (HDF5 Attributes) are written that `data` can
    be read back accurately without it (or its contents if it is a
    container type) ending up different types, transposed in the case of
    numpy arrays, etc. The latter makes it so that the appropriate
    metadata is written, string and bool and complex types are converted
    properly, and numpy arrays are transposed; which is needed to make
    sure that MATLAB can import `data` correctly (the HDF5 header is
    also set so MATLAB will recognize it).

    Parameters
    ----------
    mdict : dict, dict like
        The ``dict`` or other dictionary type object of paths
        and data to write to the file. The paths, the keys, must be
        POSIX style paths where the directory name is the Group to put
        it in and the basename is the name to write it to. The values
        are the data to write.
    filename : str, optional
        The name of the HDF5 file to write `data` to.
    truncate_existing : bool, optional
        Whether to truncate the file if it already exists before writing
        to it.
    truncate_invalid_matlab : bool, optional
        Whether to truncate a file if matlab_compatibility is being
        done and the file doesn't have the proper header (userblock in
        HDF5 terms) setup for MATLAB metadata to be placed.
    options : Options, optional
        The options to use when writing. Is mutually exclusive with any
        additional keyword arguments given (set to ``None`` or don't
        provide to use them).
    **keywords :
        If `options` was not provided or was ``None``, these are used as
        arguments to make a ``Options``.

    Raises
    ------
    NotImplementedError
        If writing `data` is not supported.
    TypeNotMatlabCompatibleError
        If writing a type not compatible with MATLAB and
        `options.action_for_matlab_incompatible` is set to ``'error'``.

    See Also
    --------
    write : Writes just a single piece of data
    reads
    read
    Options
    lowlevel.write_data : Low level version

    """
    # Pack the different options into an Options class if an Options was
    # not given.
    if not isinstance(options, Options):
        options = Options(**keywords)

    # Go through mdict, extract the paths and data, and process the
    # paths. A list of tulpes for each piece of data to write will be
    # constructed where he first element is the group name, the second
    # the target name (name of the Dataset/Group holding the data), and
    # the third element the data to write.
    towrite = []
    for p, v in mdict.items():
        # Remove double slashes and a non-root trailing slash.
        path = posixpath.normpath(p)

        # Extract the group name and the target name (will be a dataset if
        # data can be mapped to it, but will end up being made into a group
        # otherwise. As HDF5 files use posix path, conventions, posixpath
        # will do everything.
        groupname = posixpath.dirname(path)
        targetname = posixpath.basename(path)

        # If groupname got turned into blank, then it is just root.
        if groupname == '':
            groupname = '/'

        # If targetname got turned blank, then it is the current directory.
        if targetname == '':
            targetname = '.'

        # Pack into towrite.
        towrite.append((groupname, targetname, v))

    # Open/create the hdf5 file but don't write the data yet since the
    # userblock still needs to be set. This is all wrapped in a try
    # block, so that the file can be closed if any errors happen (the
    # error is re-raised).
    f = None
    try:

        # If the file doesn't already exist or the option is set to
        # truncate it if it does, just open it truncating whatever is
        # there. Otherwise, open it for read/write access without
        # truncating. Now, if we are doing matlab compatibility and it
        # doesn't have a big enough userblock (for metadata for MATLAB
        # to be able to tell it is a valid .mat file) and the
        # truncate_invalid_matlab is set, then it needs to be closed and
        # re-opened with truncation. Whenever we create the file from
        # scratch, even if matlab compatibility isn't being done, a
        # sufficiently sized userblock is going to be allocated
        # (smallest size is 512) for future use (after all, someone
        # might want to turn it to a .mat file later and need it and it
        # is only 512 bytes).

        if truncate_existing or not os.path.isfile(filename):
            f = h5py.File(filename, mode='w', userblock_size=512)
        else:
            f = h5py.File(filename, mode='a')
            if options.matlab_compatible and truncate_invalid_matlab \
                    and f.userblock_size < 128:
                f.close()
                f = h5py.File(filename, mode='w', userblock_size=512)
    except:
        raise
    finally:
        # If the hdf5 file was opened at all, get the userblock size and
        # close it since we need to set the userblock.
        if isinstance(f, h5py.File):
            userblock_size = f.userblock_size
            f.close()
        else:
            raise IOError('Unable to create or open file.')

    # If we are doing MATLAB formatting and there is a sufficiently
    # large userblock, write the new userblock. The same sort of error
    # handling is used.
    if options.matlab_compatible and userblock_size >= 128:
        # Get the time.
        now = datetime.datetime.now()

        # Construct the leading string. The MATLAB one looks like
        #
        # s = 'MATLAB 7.3 MAT-file, Platform: GLNXA64, Created on: ' \
        #     + now.strftime('%a %b %d %H:%M:%S %Y') \
        #     + ' HDF5 schema 1.00 .'
        #
        # Platform is going to be changed to CPython version. The
        # version is just gotten from sys.version_info, which is a class
        # for Python >= 2.7, but a tuple before that.

        v = sys.version_info
        if sys.hexversion >= 0x02070000:
            v = {'major': v.major, 'minor': v.minor, 'micro': v.micro}
        else:
            v = {'major': v[0], 'minor': v[1], 'micro': v[1]}

        s = 'MATLAB 7.3 MAT-file, Platform: CPython ' \
            + '{0}.{1}.{2}'.format(v['major'], v['minor'], v['micro']) \
            + ', Created on: {0} {1}'.format(
            ('Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun')[ \
            now.weekday()], \
            ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', \
             'Sep', 'Oct', 'Nov', 'Dec')[now.month - 1]) \
            + now.strftime(' %d %H:%M:%S %Y') \
            + ' HDF5 schema 1.00 .'

        # Make the bytearray while padding with spaces up to 128-12
        # (the minus 12 is there since the last 12 bytes are special.

        b = bytearray(s + (128-12-len(s))*' ', encoding='utf-8')

        # Add 8 nulls (0) and the magic number (or something) that
        # MATLAB uses. Lengths must be gone to to make sure the argument
        # to fromhex is unicode because Python 2.6 requires it.

        b.extend(bytearray.fromhex(
                 b'00000000 00000000 0002494D'.decode()))

        # Now, write it to the beginning of the file.

        try:
            fd = open(filename, 'r+b')
            fd.write(b)
        except:
            raise
        finally:
            fd.close()

    # Open the hdf5 file again and write the data, making the Group if
    # necessary. This is all wrapped in a try block, so that the file
    # can be closed if any errors happen (the error is re-raised).
    f = None
    try:
        f = h5py.File(filename, mode='a')

        # Go through each element of towrite and write them.
        for groupname, targetname, data in towrite:
            # Need to make sure groupname is a valid group in f and grab its
            # handle to pass on to the low level function.
            grp = f.get(groupname)
            if grp is None:
                grp = f.require_group(groupname)

            # Hand off to the low level function.
            lowlevel.write_data(f, grp, targetname, data,
                                None, options)
    except:
        raise
    finally:
        if isinstance(f, h5py.File):
            f.close()


def write(data, path='/', filename='data.h5', truncate_existing=False,
          truncate_invalid_matlab=False, options=None, **keywords):
    """ Writes one piece of data into an HDF5 file (high level).

    A wrapper around ``writes`` to write a single piece of data,
    `data`, to a single location, `path`.

    High level function to store a Python type (`data`) to a specified
    path (`path`) in an HDF5 file. The path is specified as a POSIX
    style path where the directory name is the Group to put it in and
    the basename is the name to write it to.

    There are various options that can be used to influence how the data
    is written. They can be passed as an already constructed ``Options``
    into `options` or as additional keywords that will be used to make
    one by ``options = Options(**keywords)``.

    Two very important options are ``store_python_metadata`` and
    ``matlab_compatible``, which are ``bool``. The first makes it so
    that enough metadata (HDF5 Attributes) are written that `data` can
    be read back accurately without it (or its contents if it is a
    container type) ending up different types, transposed in the case of
    numpy arrays, etc. The latter makes it so that the appropriate
    metadata is written, string and bool and complex types are converted
    properly, and numpy arrays are transposed; which is needed to make
    sure that MATLAB can import `data` correctly (the HDF5 header is
    also set so MATLAB will recognize it).

    Parameters
    ----------
    data : any
        The data to write.
    path : str, optional
        The path to write `data` to. Must be a POSIX style path where
        the directory name is the Group to put it in and the basename
        is the name to write it to.
    filename : str, optional
        The name of the HDF5 file to write `data` to.
    truncate_existing : bool, optional
        Whether to truncate the file if it already exists before writing
        to it.
    truncate_invalid_matlab : bool, optional
        Whether to truncate a file if matlab_compatibility is being
        done and the file doesn't have the proper header (userblock in
        HDF5 terms) setup for MATLAB metadata to be placed.
    options : Options, optional
        The options to use when writing. Is mutually exclusive with any
        additional keyword arguments given (set to ``None`` or don't
        provide to use them).
    **keywords :
        If `options` was not provided or was ``None``, these are used as
        arguments to make a ``Options``.

    Raises
    ------
    NotImplementedError
        If writing `data` is not supported.
    TypeNotMatlabCompatibleError
        If writing a type not compatible with MATLAB and
        `options.action_for_matlab_incompatible` is set to ``'error'``.

    See Also
    --------
    writes : Writes more than one piece of data at once
    reads
    read
    Options
    lowlevel.write_data : Low level version

    """
    writes(mdict={path: data},  filename=filename,
           truncate_existing=truncate_existing,
           truncate_invalid_matlab=truncate_invalid_matlab,
           options=options, **keywords)


def reads(paths, filename='data.h5', options=None, **keywords):
    """ Reads data from an HDF5 file (high level).

    High level function to read one or more pieces of data from an HDF5
    file located at the paths specified in `paths` into Python
    types. Each path is specified as a POSIX style path where the data
    to read is located.

    There are various options that can be used to influence how the data
    is read. They can be passed as an already constructed ``Options``
    into `options` or as additional keywords that will be used to make
    one by ``options = Options(**keywords)``.

    Parameters
    ----------
    paths : iterable of str
        An iterable of paths to read data from. Each must be a POSIX
        style path where the directory name is the Group to put it in
        and the basename is the name to write it to.
    filename : str, optional
        The name of the HDF5 file to read data from.
    options : Options, optional
        The options to use when reading. Is mutually exclusive with any
        additional keyword arguments given (set to ``None`` or don't
        provide to use them).
    **keywords :
        If `options` was not provided or was ``None``, these are used as
        arguments to make a ``Options``.

    Returns
    -------
    datas : iterable
        An iterable holding the piece of data for each path in `paths`
        in the same order.

    Raises
    ------
    CantReadError
        If reading the data can't be done.

    See Also
    --------
    read : Reads just a single piece of data
    writes
    write
    Options
    lowlevel.read_data : Low level version.

    """
    # Pack the different options into an Options class if an Options was
    # not given. By default, the matlab_compatible option is set to
    # False. So, if it wasn't passed in the keywords, this needs to be
    # added to override the default value (True) for a new Options.
    if not isinstance(options, Options):
        kw = copy.deepcopy(keywords)
        if 'matlab_compatible' not in kw:
            kw['matlab_compatible'] = False
        options = Options(**kw)

    # Process the paths and stuff the group names and target names as
    # tuples into toread.
    toread = []
    for p in paths:    
        # Remove double slashes and a non-root trailing slash.

        path = posixpath.normpath(p)

        # Extract the group name and the target name (will be a dataset if
        # data can be mapped to it, but will end up being made into a group
        # otherwise. As HDF5 files use posix path, conventions, posixpath
        # will do everything.
        groupname = posixpath.dirname(path)
        targetname = posixpath.basename(path)

        # If groupname got turned into blank, then it is just root.
        if groupname == '':
            groupname = '/'

        # If targetname got turned blank, then it is the current directory.
        if targetname == '':
            targetname = '.'

        # Pack them into toread
        toread.append((groupname, targetname))

    # Open the hdf5 file and start reading the data. This is all wrapped
    # in a try block, so that the file can be closed if any errors
    # happen (the error is re-raised).
    try:
        f = None
        f = h5py.File(filename, mode='r')

        # Read the data item by item
        datas = []
        for groupname, targetname in toread:
            # Check that the containing group is in f and is indeed a
            # group. If it isn't an error needs to be thrown.
            grp = f.get(groupname)
            if grp is None or not isinstance(grp, h5py.Group):
                raise CantReadError('Could not find containing Group '
                                    + groupname + '.')

            # Hand off everything to the low level reader.
            datas.append(lowlevel.read_data(f, grp,
                                            targetname, options))
    except:
        raise
    finally:
        if f is not None:
            f.close()

    return datas


def read(path='/', filename='data.h5',
         options=None, **keywords):
    """ Reads one piece of data from an HDF5 file (high level).

    A wrapper around ``reads`` to read a single piece of data at the
    single location `path`.

    High level function to read data from an HDF5 file located at `path`
    into Python types. The path is specified as a POSIX style path where
    the data to read is located.

    There are various options that can be used to influence how the data
    is read. They can be passed as an already constructed ``Options``
    into `options` or as additional keywords that will be used to make
    one by ``options = Options(**keywords)``.

    Parameters
    ----------
    path : str, optional
        The path to read data from. Must be a POSIX style path where
        the directory name is the Group to put it in and the basename
        is the name to write it to.
    filename : str, optional
        The name of the HDF5 file to read data from.
    options : Options, optional
        The options to use when reading. Is mutually exclusive with any
        additional keyword arguments given (set to ``None`` or don't
        provide to use them).
    **keywords :
        If `options` was not provided or was ``None``, these are used as
        arguments to make a ``Options``.

    Returns
    -------
    data :
        The piece of data at `path`.

    Raises
    ------
    CantReadError
        If reading the data can't be done.

    See Also
    --------
    reads : Reads more than one piece of data at once
    writes
    write
    Options
    lowlevel.read_data : Low level version.

    """
    return reads(paths=(path,), filename=filename, options=options,
                 **keywords)[0]


def savemat(file_name, mdict, appendmat=True, format='7.3',
            oned_as='row', store_python_metadata=True,
            action_for_matlab_incompatible='error',
            marshaller_collection=None, truncate_existing=False,
            truncate_invalid_matlab=False, **keywords):
    """ Save a dictionary of python types to a MATLAB MAT file.

    Saves the data provided in the dictionary `mdict` to a MATLAB MAT
    file. `format` determines which kind/vesion of file to use. The
    '7.3' version, which is HDF5 based, is handled by this package and
    all types that this package can write are supported. Versions 4 and
    5 are not HDF5 based, so everything is dispatched to the SciPy
    package's ``scipy.io.savemat`` function, which this function is
    modelled after (arguments not specific to this package have the same
    names, etc.).

    Parameters
    ----------
    file_name : str or file-like object
        Name of the MAT file to store in. The '.mat' extension is
        added on automatically if not present if `appendmat` is set to
        ``True``. An open file-like object can be passed if the writing
        is being dispatched to SciPy (`format` < 7.3).
    mdict : dict
        The dictionary of variables and their contents to store in the
        file.
    appendmat : bool, optional
        Whether to append the '.mat' extension to `file_name` if it
        doesn't already end in it or not.
    format : {'4', '5', '7.3'}, optional
        The MATLAB mat file format to use. The '7.3' format is handled
        by this package while the '4' and '5' formats are dispatched to
        SciPy.
    oned_as : {'row', 'column'}, optional
        Whether 1D arrays should be turned into row or column vectors.
    store_python_metadata : bool, optional
        Whether or not to store Python type information. Doing so allows
        most types to be read back perfectly. Only applicable if not
        dispatching to SciPy (`format` >= 7.3).
    action_for_matlab_incompatible: str, optional
        The action to perform writing data that is not MATLAB
        compatible. The actions are to write the data anyways
        ('ignore'), don't write the incompatible data ('discard'), or
        throw a ``TypeNotMatlabCompatibleError`` exception.
    marshaller_collection : MarshallerCollection, optional
        Collection of marshallers to disk to use. Only applicable if
        not dispatching to SciPy (`format` >= 7.3).
    truncate_existing : bool, optional
        Whether to truncate the file if it already exists before writing
        to it.
    truncate_invalid_matlab : bool, optional
        Whether to truncate a file if the file doesn't have the proper
        header (userblock in HDF5 terms) setup for MATLAB metadata to be
        placed.
    **keywords :
        Additional keywords arguments to be passed onto
        ``scipy.io.savemat`` if dispatching to SciPy (`format` < 7.3).

    Raises
    ------
    ImportError
        If `format` < 7.3 and the ``scipy`` module can't be found.
    NotImplementedError
        If writing a variable in `mdict` is not supported.
    TypeNotMatlabCompatibleError
        If writing a type not compatible with MATLAB and
        `action_for_matlab_incompatible` is set to ``'error'``.

    Notes
    -----
    Writing the same data and then reading it back from disk using the
    HDF5 based version 7.3 format (the functions in this package) or the
    older format (SciPy functions) can lead to very different
    results. Each package supports a different set of data types and
    converts them to and from the same MATLAB types differently.

    See Also
    --------
    loadmat : Equivelent function to do reading.
    scipy.io.savemat : SciPy function this one models after and
        dispatches to.
    Options
    writes : Function used to do the actual writing.

    """
    # If format is a number less than 7.3, the call needs to be
    # dispatched to the scipy version, if it is available, with all the
    # relevant and extra keywords options provided.
    if float(format) < 7.3:
        import scipy.io
        scipy.io.savemat(file_name, mdict, appendmat=appendmat,
                         format=format, oned_as=oned_as, **keywords)
        return

    # Append .mat if it isn't on the end of the file name and we are
    # supposed to.
    if appendmat and not file_name.endswith('.mat'):
        file_name = file_name + '.mat'

    # Make the options with matlab compatibility forced.
    options = Options(store_python_metadata=store_python_metadata, \
        matlab_compatible=True, oned_as=oned_as, \
        action_for_matlab_incompatible=action_for_matlab_incompatible, \
        marshaller_collection=marshaller_collection)

    # Write the variables in the dictionary to file.
    writes(mdict=mdict, filename=file_name,
           truncate_existing=truncate_existing,
           truncate_invalid_matlab=truncate_invalid_matlab,
           options=options)


def loadmat(file_name, mdict=None, appendmat=True,
            variable_names=None,
            marshaller_collection=None, **keywords):
    """ Loads data to a MATLAB MAT file.

    Reads data from the specified variables (or all) in a  MATLAB MAT
    file. There are many different formats of MAT files. This package
    can only handle the HDF5 based ones (the version 7.3 and later).
    As SciPy's ``scipy.io.loadmat`` function can handle the earlier
    formats, if this function cannot read the file, it will dispatch it
    onto the scipy function with all the calling arguments it uses
    passed on. This function is modelled after the SciPy one (arguments
    not specific to this package have the same names, etc.).

    Warning
    -------
    Variables in `variable_names` that are missing from the file do not
    cause an exception and will just be missing from the output.

    Parameters
    ----------
    file_name : str
        Name of the MAT file to read from. The '.mat' extension is
        added on automatically if not present if `appendmat` is set to
        ``True``.
    mdict : dict, optional
        The dictionary to insert read variables into
    appendmat : bool, optional
        Whether to append the '.mat' extension to `file_name` if it
        doesn't already end in it or not.
    variable_names: None or sequence, optional
        The variable names to read from the file. ``None`` selects all.
    marshaller_collection : MarshallerCollection, optional
        Collection of marshallers from disk to use. Only applicable if
        not dispatching to SciPy (version 7.3 and newer files).
    **keywords :
        Additional keywords arguments to be passed onto
        ``scipy.io.loadmat`` if dispatching to SciPy if the file is not
        a version 7.3 or later format.

    Returns
    -------
    dict
        Dictionary of all the variables read from the MAT file (name
        as the key, and content as the value). If a variable was missing
        from the file, it will not be present here.

    Raises
    ------
    ImportError
        If it is not a version 7.3 .mat file and the ``scipy`` module
        can't be found when dispatching to SciPy.
    CantReadError
        If reading the data can't be done.

    Notes
    -----
    Writing the same data and then reading it back from disk using the
    HDF5 based version 7.3 format (the functions in this package) or the
    older format (SciPy functions) can lead to very different
    results. Each package supports a different set of data types and
    converts them to and from the same MATLAB types differently.

    See Also
    --------
    savemat : Equivalent function to do writing.
    scipy.io.loadmat : SciPy function this one models after and
        dispatches to.
    Options
    reads : Function used to do the actual reading.

    """
    # Will first assume that it is the HDF5 based 7.3 format. If an
    # OSError occurs, then it wasn't an HDF5 file and the scipy function
    # can be tried instead.
    try:
        # Make the options with the given marshallers.
        options = Options(marshaller_collection=marshaller_collection)

        # Append .mat if it isn't on the end of the file name and we are
        # supposed to.
        if appendmat and not file_name.endswith('.mat'):
            filename = file_name + '.mat'
        else:
            filename = file_name

        # Read everything if we were instructed.

        if variable_names is None:
            data = dict()
            with h5py.File(filename, mode='r') as f:
                for k in f:
                    # Read if not group_for_references. Data that
                    # produces errors when read is dicarded (the OSError
                    # that would happen if this is not an HDF5 file
                    # would already have happened when opening the
                    # file).
                    if f[k].name != options.group_for_references:
                        try:
                            data[k] = lowlevel.read_data(f, f, k,
                                                         options)
                        except:
                            pass

        else:
            # Extract the desired fields one by one, catching any errors
            # for missing variables (so we don't fall back to
            # scipy.io.loadmat).
            data = dict()
            with h5py.File(filename, mode='r') as f:
                for k in variable_names:
                    try:
                        data[k] = lowlevel.read_data(f, f, k, options)
                    except:
                        pass

        # Read all the variables, stuff them into mdict, and return it.
        if mdict is None:
            mdict = dict()
        for k, v in data.items():
            mdict[k] = v
        return mdict
    except OSError:
        import scipy.io
        return scipy.io.loadmat(file_name, mdict, appendmat=appendmat,
                                variable_names=variable_names,
                                **keywords)