1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
|
/*******************************************************
HIDAPI - Multi-Platform library for
communication with HID devices.
libusb/hidapi Team
Copyright 2022, All Rights Reserved.
At the discretion of the user of this library,
this software may be licensed under the terms of the
GNU General Public License v3, a BSD-Style license, or the
original HIDAPI license as outlined in the LICENSE.txt,
LICENSE-gpl3.txt, LICENSE-bsd.txt, and LICENSE-orig.txt
files located at the root of the source distribution.
These files may also be found in the public source
code repository located at:
https://github.com/libusb/hidapi .
********************************************************/
#include "hidapi_descriptor_reconstruct.h"
/**
* @brief References to report descriptor buffer.
*
*/
struct rd_buffer {
unsigned char* buf; /* Pointer to the array which stores the reconstructed descriptor */
size_t buf_size; /* Size of the buffer in bytes */
size_t byte_idx; /* Index of the next report byte to write to buf array */
};
/**
* @brief Function that appends a byte to encoded report descriptor buffer.
*
* @param[in] byte Single byte to append.
* @param rpt_desc Pointer to report descriptor buffer struct.
*/
static void rd_append_byte(unsigned char byte, struct rd_buffer* rpt_desc) {
if (rpt_desc->byte_idx < rpt_desc->buf_size) {
rpt_desc->buf[rpt_desc->byte_idx] = byte;
rpt_desc->byte_idx++;
}
}
/**
* @brief Writes a short report descriptor item according USB HID spec 1.11 chapter 6.2.2.2.
*
* @param[in] rd_item Enumeration identifying type (Main, Global, Local) and function (e.g Usage or Report Count) of the item.
* @param[in] data Data (Size depends on rd_item 0,1,2 or 4bytes).
* @param list Chained list of report descriptor bytes.
*
* @return Returns 0 if successful, -1 for error.
*/
static int rd_write_short_item(rd_items rd_item, LONG64 data, struct rd_buffer* rpt_desc) {
if (rd_item & 0x03) {
// Invalid input data, last to bits are reserved for data size
return -1;
}
if (rd_item == rd_main_collection_end) {
// Item without data (1Byte prefix only)
unsigned char oneBytePrefix = (unsigned char) rd_item + 0x00;
rd_append_byte(oneBytePrefix, rpt_desc);
}
else if ((rd_item == rd_global_logical_minimum) ||
(rd_item == rd_global_logical_maximum) ||
(rd_item == rd_global_physical_minimum) ||
(rd_item == rd_global_physical_maximum)) {
// Item with signed integer data
if ((data >= -128) && (data <= 127)) {
// 1Byte prefix + 1Byte data
unsigned char oneBytePrefix = (unsigned char) rd_item + 0x01;
char localData = (char)data;
rd_append_byte(oneBytePrefix, rpt_desc);
rd_append_byte(localData & 0xFF, rpt_desc);
}
else if ((data >= -32768) && (data <= 32767)) {
// 1Byte prefix + 2Byte data
unsigned char oneBytePrefix = (unsigned char) rd_item + 0x02;
INT16 localData = (INT16)data;
rd_append_byte(oneBytePrefix, rpt_desc);
rd_append_byte(localData & 0xFF, rpt_desc);
rd_append_byte(localData >> 8 & 0xFF, rpt_desc);
}
else if ((data >= -2147483648LL) && (data <= 2147483647)) {
// 1Byte prefix + 4Byte data
unsigned char oneBytePrefix = (unsigned char) rd_item + 0x03;
INT32 localData = (INT32)data;
rd_append_byte(oneBytePrefix, rpt_desc);
rd_append_byte(localData & 0xFF, rpt_desc);
rd_append_byte(localData >> 8 & 0xFF, rpt_desc);
rd_append_byte(localData >> 16 & 0xFF, rpt_desc);
rd_append_byte(localData >> 24 & 0xFF, rpt_desc);
}
else {
// Data out of 32 bit signed integer range
return -1;
}
}
else {
// Item with unsigned integer data
if ((data >= 0) && (data <= 0xFF)) {
// 1Byte prefix + 1Byte data
unsigned char oneBytePrefix = (unsigned char) rd_item + 0x01;
unsigned char localData = (unsigned char)data;
rd_append_byte(oneBytePrefix, rpt_desc);
rd_append_byte(localData & 0xFF, rpt_desc);
}
else if ((data >= 0) && (data <= 0xFFFF)) {
// 1Byte prefix + 2Byte data
unsigned char oneBytePrefix = (unsigned char) rd_item + 0x02;
UINT16 localData = (UINT16)data;
rd_append_byte(oneBytePrefix, rpt_desc);
rd_append_byte(localData & 0xFF, rpt_desc);
rd_append_byte(localData >> 8 & 0xFF, rpt_desc);
}
else if ((data >= 0) && (data <= 0xFFFFFFFF)) {
// 1Byte prefix + 4Byte data
unsigned char oneBytePrefix = (unsigned char) rd_item + 0x03;
UINT32 localData = (UINT32)data;
rd_append_byte(oneBytePrefix, rpt_desc);
rd_append_byte(localData & 0xFF, rpt_desc);
rd_append_byte(localData >> 8 & 0xFF, rpt_desc);
rd_append_byte(localData >> 16 & 0xFF, rpt_desc);
rd_append_byte(localData >> 24 & 0xFF, rpt_desc);
}
else {
// Data out of 32 bit unsigned integer range
return -1;
}
}
return 0;
}
static struct rd_main_item_node * rd_append_main_item_node(int first_bit, int last_bit, rd_node_type type_of_node, int caps_index, int collection_index, rd_main_items main_item_type, unsigned char report_id, struct rd_main_item_node **list) {
struct rd_main_item_node *new_list_node;
// Determine last node in the list
while (*list != NULL)
{
list = &(*list)->next;
}
new_list_node = malloc(sizeof(*new_list_node)); // Create new list entry
new_list_node->FirstBit = first_bit;
new_list_node->LastBit = last_bit;
new_list_node->TypeOfNode = type_of_node;
new_list_node->CapsIndex = caps_index;
new_list_node->CollectionIndex = collection_index;
new_list_node->MainItemType = main_item_type;
new_list_node->ReportID = report_id;
new_list_node->next = NULL; // NULL marks last node in the list
*list = new_list_node;
return new_list_node;
}
static struct rd_main_item_node * rd_insert_main_item_node(int first_bit, int last_bit, rd_node_type type_of_node, int caps_index, int collection_index, rd_main_items main_item_type, unsigned char report_id, struct rd_main_item_node **list) {
// Insert item after the main item node referenced by list
struct rd_main_item_node *next_item = (*list)->next;
(*list)->next = NULL;
rd_append_main_item_node(first_bit, last_bit, type_of_node, caps_index, collection_index, main_item_type, report_id, list);
(*list)->next->next = next_item;
return (*list)->next;
}
static struct rd_main_item_node * rd_search_main_item_list_for_bit_position(int search_bit, rd_main_items main_item_type, unsigned char report_id, struct rd_main_item_node **list) {
// Determine first INPUT/OUTPUT/FEATURE main item, where the last bit position is equal or greater than the search bit position
while (((*list)->next->MainItemType != rd_collection) &&
((*list)->next->MainItemType != rd_collection_end) &&
!(((*list)->next->LastBit >= search_bit) &&
((*list)->next->ReportID == report_id) &&
((*list)->next->MainItemType == main_item_type))
)
{
list = &(*list)->next;
}
return *list;
}
int hid_winapi_descriptor_reconstruct_pp_data(void *preparsed_data, unsigned char *buf, size_t buf_size)
{
hidp_preparsed_data *pp_data = (hidp_preparsed_data *) preparsed_data;
// Check if MagicKey is correct, to ensure that pp_data points to an valid preparse data structure
if (memcmp(pp_data->MagicKey, "HidP KDR", 8) != 0) {
return -1;
}
struct rd_buffer rpt_desc = {
.buf = buf,
.buf_size = buf_size,
.byte_idx = 0
};
// Set pointer to the first node of link_collection_nodes
phid_pp_link_collection_node link_collection_nodes = (phid_pp_link_collection_node)(((unsigned char*)&pp_data->caps[0]) + pp_data->FirstByteOfLinkCollectionArray);
// ****************************************************************************************************************************
// Create lookup tables for the bit range of each report per collection (position of first bit and last bit in each collection)
// coll_bit_range[COLLECTION_INDEX][REPORT_ID][INPUT/OUTPUT/FEATURE]
// ****************************************************************************************************************************
// Allocate memory and initialize lookup table
rd_bit_range ****coll_bit_range;
coll_bit_range = malloc(pp_data->NumberLinkCollectionNodes * sizeof(*coll_bit_range));
for (USHORT collection_node_idx = 0; collection_node_idx < pp_data->NumberLinkCollectionNodes; collection_node_idx++) {
coll_bit_range[collection_node_idx] = malloc(256 * sizeof(*coll_bit_range[0])); // 256 possible report IDs (incl. 0x00)
for (int reportid_idx = 0; reportid_idx < 256; reportid_idx++) {
coll_bit_range[collection_node_idx][reportid_idx] = malloc(NUM_OF_HIDP_REPORT_TYPES * sizeof(*coll_bit_range[0][0]));
for (HIDP_REPORT_TYPE rt_idx = 0; rt_idx < NUM_OF_HIDP_REPORT_TYPES; rt_idx++) {
coll_bit_range[collection_node_idx][reportid_idx][rt_idx] = malloc(sizeof(rd_bit_range));
coll_bit_range[collection_node_idx][reportid_idx][rt_idx]->FirstBit = -1;
coll_bit_range[collection_node_idx][reportid_idx][rt_idx]->LastBit = -1;
}
}
}
// Fill the lookup table where caps exist
for (HIDP_REPORT_TYPE rt_idx = 0; rt_idx < NUM_OF_HIDP_REPORT_TYPES; rt_idx++) {
for (USHORT caps_idx = pp_data->caps_info[rt_idx].FirstCap; caps_idx < pp_data->caps_info[rt_idx].LastCap; caps_idx++) {
int first_bit, last_bit;
first_bit = (pp_data->caps[caps_idx].BytePosition - 1) * 8
+ pp_data->caps[caps_idx].BitPosition;
last_bit = first_bit + pp_data->caps[caps_idx].ReportSize
* pp_data->caps[caps_idx].ReportCount - 1;
if (coll_bit_range[pp_data->caps[caps_idx].LinkCollection][pp_data->caps[caps_idx].ReportID][rt_idx]->FirstBit == -1 ||
coll_bit_range[pp_data->caps[caps_idx].LinkCollection][pp_data->caps[caps_idx].ReportID][rt_idx]->FirstBit > first_bit) {
coll_bit_range[pp_data->caps[caps_idx].LinkCollection][pp_data->caps[caps_idx].ReportID][rt_idx]->FirstBit = first_bit;
}
if (coll_bit_range[pp_data->caps[caps_idx].LinkCollection][pp_data->caps[caps_idx].ReportID][rt_idx]->LastBit < last_bit) {
coll_bit_range[pp_data->caps[caps_idx].LinkCollection][pp_data->caps[caps_idx].ReportID][rt_idx]->LastBit = last_bit;
}
}
}
// *************************************************************************
// -Determine hierachy levels of each collections and store it in:
// coll_levels[COLLECTION_INDEX]
// -Determine number of direct childs of each collections and store it in:
// coll_number_of_direct_childs[COLLECTION_INDEX]
// *************************************************************************
int max_coll_level = 0;
int *coll_levels = malloc(pp_data->NumberLinkCollectionNodes * sizeof(coll_levels[0]));
int *coll_number_of_direct_childs = malloc(pp_data->NumberLinkCollectionNodes * sizeof(coll_number_of_direct_childs[0]));
for (USHORT collection_node_idx = 0; collection_node_idx < pp_data->NumberLinkCollectionNodes; collection_node_idx++) {
coll_levels[collection_node_idx] = -1;
coll_number_of_direct_childs[collection_node_idx] = 0;
}
{
int actual_coll_level = 0;
USHORT collection_node_idx = 0;
while (actual_coll_level >= 0) {
coll_levels[collection_node_idx] = actual_coll_level;
if ((link_collection_nodes[collection_node_idx].NumberOfChildren > 0) &&
(coll_levels[link_collection_nodes[collection_node_idx].FirstChild] == -1)) {
actual_coll_level++;
coll_levels[collection_node_idx] = actual_coll_level;
if (max_coll_level < actual_coll_level) {
max_coll_level = actual_coll_level;
}
coll_number_of_direct_childs[collection_node_idx]++;
collection_node_idx = link_collection_nodes[collection_node_idx].FirstChild;
}
else if (link_collection_nodes[collection_node_idx].NextSibling != 0) {
coll_number_of_direct_childs[link_collection_nodes[collection_node_idx].Parent]++;
collection_node_idx = link_collection_nodes[collection_node_idx].NextSibling;
}
else {
actual_coll_level--;
if (actual_coll_level >= 0) {
collection_node_idx = link_collection_nodes[collection_node_idx].Parent;
}
}
}
}
// *********************************************************************************
// Propagate the bit range of each report from the child collections to their parent
// and store the merged result for the parent
// *********************************************************************************
for (int actual_coll_level = max_coll_level - 1; actual_coll_level >= 0; actual_coll_level--) {
for (USHORT collection_node_idx = 0; collection_node_idx < pp_data->NumberLinkCollectionNodes; collection_node_idx++) {
if (coll_levels[collection_node_idx] == actual_coll_level) {
USHORT child_idx = link_collection_nodes[collection_node_idx].FirstChild;
while (child_idx) {
for (int reportid_idx = 0; reportid_idx < 256; reportid_idx++) {
for (HIDP_REPORT_TYPE rt_idx = 0; rt_idx < NUM_OF_HIDP_REPORT_TYPES; rt_idx++) {
// Merge bit range from childs
if ((coll_bit_range[child_idx][reportid_idx][rt_idx]->FirstBit != -1) &&
(coll_bit_range[collection_node_idx][reportid_idx][rt_idx]->FirstBit > coll_bit_range[child_idx][reportid_idx][rt_idx]->FirstBit)) {
coll_bit_range[collection_node_idx][reportid_idx][rt_idx]->FirstBit = coll_bit_range[child_idx][reportid_idx][rt_idx]->FirstBit;
}
if (coll_bit_range[collection_node_idx][reportid_idx][rt_idx]->LastBit < coll_bit_range[child_idx][reportid_idx][rt_idx]->LastBit) {
coll_bit_range[collection_node_idx][reportid_idx][rt_idx]->LastBit = coll_bit_range[child_idx][reportid_idx][rt_idx]->LastBit;
}
child_idx = link_collection_nodes[child_idx].NextSibling;
}
}
}
}
}
}
// *************************************************************************************************
// Determine child collection order of the whole hierachy, based on previously determined bit ranges
// and store it this index coll_child_order[COLLECTION_INDEX][DIRECT_CHILD_INDEX]
// *************************************************************************************************
USHORT **coll_child_order;
coll_child_order = malloc(pp_data->NumberLinkCollectionNodes * sizeof(*coll_child_order));
{
BOOLEAN *coll_parsed_flag;
coll_parsed_flag = malloc(pp_data->NumberLinkCollectionNodes * sizeof(coll_parsed_flag[0]));
for (USHORT collection_node_idx = 0; collection_node_idx < pp_data->NumberLinkCollectionNodes; collection_node_idx++) {
coll_parsed_flag[collection_node_idx] = FALSE;
}
int actual_coll_level = 0;
USHORT collection_node_idx = 0;
while (actual_coll_level >= 0) {
if ((coll_number_of_direct_childs[collection_node_idx] != 0) &&
(coll_parsed_flag[link_collection_nodes[collection_node_idx].FirstChild] == FALSE)) {
coll_parsed_flag[link_collection_nodes[collection_node_idx].FirstChild] = TRUE;
coll_child_order[collection_node_idx] = malloc((coll_number_of_direct_childs[collection_node_idx]) * sizeof(*coll_child_order[0]));
{
// Create list of child collection indices
// sorted reverse to the order returned to HidP_GetLinkCollectionNodeschild
// which seems to match teh original order, as long as no bit position needs to be considered
USHORT child_idx = link_collection_nodes[collection_node_idx].FirstChild;
int child_count = coll_number_of_direct_childs[collection_node_idx] - 1;
coll_child_order[collection_node_idx][child_count] = child_idx;
while (link_collection_nodes[child_idx].NextSibling) {
child_count--;
child_idx = link_collection_nodes[child_idx].NextSibling;
coll_child_order[collection_node_idx][child_count] = child_idx;
}
}
if (coll_number_of_direct_childs[collection_node_idx] > 1) {
// Sort child collections indices by bit positions
for (HIDP_REPORT_TYPE rt_idx = 0; rt_idx < NUM_OF_HIDP_REPORT_TYPES; rt_idx++) {
for (int reportid_idx = 0; reportid_idx < 256; reportid_idx++) {
for (int child_idx = 1; child_idx < coll_number_of_direct_childs[collection_node_idx]; child_idx++) {
// since the coll_bit_range array is not sorted, we need to reference the collection index in
// our sorted coll_child_order array, and look up the corresponding bit ranges for comparing values to sort
int prev_coll_idx = coll_child_order[collection_node_idx][child_idx - 1];
int cur_coll_idx = coll_child_order[collection_node_idx][child_idx];
if ((coll_bit_range[prev_coll_idx][reportid_idx][rt_idx]->FirstBit != -1) &&
(coll_bit_range[cur_coll_idx][reportid_idx][rt_idx]->FirstBit != -1) &&
(coll_bit_range[prev_coll_idx][reportid_idx][rt_idx]->FirstBit > coll_bit_range[cur_coll_idx][reportid_idx][rt_idx]->FirstBit)) {
// Swap position indices of the two compared child collections
USHORT idx_latch = coll_child_order[collection_node_idx][child_idx - 1];
coll_child_order[collection_node_idx][child_idx - 1] = coll_child_order[collection_node_idx][child_idx];
coll_child_order[collection_node_idx][child_idx] = idx_latch;
}
}
}
}
}
actual_coll_level++;
collection_node_idx = link_collection_nodes[collection_node_idx].FirstChild;
}
else if (link_collection_nodes[collection_node_idx].NextSibling != 0) {
collection_node_idx = link_collection_nodes[collection_node_idx].NextSibling;
}
else {
actual_coll_level--;
if (actual_coll_level >= 0) {
collection_node_idx = link_collection_nodes[collection_node_idx].Parent;
}
}
}
free(coll_parsed_flag);
}
// ***************************************************************************************
// Create sorted main_item_list containing all the Collection and CollectionEnd main items
// ***************************************************************************************
struct rd_main_item_node *main_item_list = NULL; // List root
// Lookup table to find the Collection items in the list by index
struct rd_main_item_node **coll_begin_lookup = malloc(pp_data->NumberLinkCollectionNodes * sizeof(*coll_begin_lookup));
struct rd_main_item_node **coll_end_lookup = malloc(pp_data->NumberLinkCollectionNodes * sizeof(*coll_end_lookup));
{
int *coll_last_written_child = malloc(pp_data->NumberLinkCollectionNodes * sizeof(coll_last_written_child[0]));
for (USHORT collection_node_idx = 0; collection_node_idx < pp_data->NumberLinkCollectionNodes; collection_node_idx++) {
coll_last_written_child[collection_node_idx] = -1;
}
int actual_coll_level = 0;
USHORT collection_node_idx = 0;
struct rd_main_item_node *firstDelimiterNode = NULL;
struct rd_main_item_node *delimiterCloseNode = NULL;
coll_begin_lookup[0] = rd_append_main_item_node(0, 0, rd_item_node_collection, 0, collection_node_idx, rd_collection, 0, &main_item_list);
while (actual_coll_level >= 0) {
if ((coll_number_of_direct_childs[collection_node_idx] != 0) &&
(coll_last_written_child[collection_node_idx] == -1)) {
// Collection has child collections, but none is written to the list yet
coll_last_written_child[collection_node_idx] = coll_child_order[collection_node_idx][0];
collection_node_idx = coll_child_order[collection_node_idx][0];
// In a HID Report Descriptor, the first usage declared is the most preferred usage for the control.
// While the order in the WIN32 capabiliy strutures is the opposite:
// Here the preferred usage is the last aliased usage in the sequence.
if (link_collection_nodes[collection_node_idx].IsAlias && (firstDelimiterNode == NULL)) {
// Alliased Collection (First node in link_collection_nodes -> Last entry in report descriptor output)
firstDelimiterNode = main_item_list;
coll_begin_lookup[collection_node_idx] = rd_append_main_item_node(0, 0, rd_item_node_collection, 0, collection_node_idx, rd_delimiter_usage, 0, &main_item_list);
coll_begin_lookup[collection_node_idx] = rd_append_main_item_node(0, 0, rd_item_node_collection, 0, collection_node_idx, rd_delimiter_close, 0, &main_item_list);
delimiterCloseNode = main_item_list;
}
else {
// Normal not aliased collection
coll_begin_lookup[collection_node_idx] = rd_append_main_item_node(0, 0, rd_item_node_collection, 0, collection_node_idx, rd_collection, 0, &main_item_list);
actual_coll_level++;
}
}
else if ((coll_number_of_direct_childs[collection_node_idx] > 1) &&
(coll_last_written_child[collection_node_idx] != coll_child_order[collection_node_idx][coll_number_of_direct_childs[collection_node_idx] - 1])) {
// Collection has child collections, and this is not the first child
int nextChild = 1;
while (coll_last_written_child[collection_node_idx] != coll_child_order[collection_node_idx][nextChild - 1]) {
nextChild++;
}
coll_last_written_child[collection_node_idx] = coll_child_order[collection_node_idx][nextChild];
collection_node_idx = coll_child_order[collection_node_idx][nextChild];
if (link_collection_nodes[collection_node_idx].IsAlias && (firstDelimiterNode == NULL)) {
// Alliased Collection (First node in link_collection_nodes -> Last entry in report descriptor output)
firstDelimiterNode = main_item_list;
coll_begin_lookup[collection_node_idx] = rd_append_main_item_node(0, 0, rd_item_node_collection, 0, collection_node_idx, rd_delimiter_usage, 0, &main_item_list);
coll_begin_lookup[collection_node_idx] = rd_append_main_item_node(0, 0, rd_item_node_collection, 0, collection_node_idx, rd_delimiter_close, 0, &main_item_list);
delimiterCloseNode = main_item_list;
}
else if (link_collection_nodes[collection_node_idx].IsAlias && (firstDelimiterNode != NULL)) {
coll_begin_lookup[collection_node_idx] = rd_insert_main_item_node(0, 0, rd_item_node_collection, 0, collection_node_idx, rd_delimiter_usage, 0, &firstDelimiterNode);
}
else if (!link_collection_nodes[collection_node_idx].IsAlias && (firstDelimiterNode != NULL)) {
coll_begin_lookup[collection_node_idx] = rd_insert_main_item_node(0, 0, rd_item_node_collection, 0, collection_node_idx, rd_delimiter_usage, 0, &firstDelimiterNode);
coll_begin_lookup[collection_node_idx] = rd_insert_main_item_node(0, 0, rd_item_node_collection, 0, collection_node_idx, rd_delimiter_open, 0, &firstDelimiterNode);
firstDelimiterNode = NULL;
main_item_list = delimiterCloseNode;
delimiterCloseNode = NULL; // Last entry of alias has .IsAlias == FALSE
}
if (!link_collection_nodes[collection_node_idx].IsAlias) {
coll_begin_lookup[collection_node_idx] = rd_append_main_item_node(0, 0, rd_item_node_collection, 0, collection_node_idx, rd_collection, 0, &main_item_list);
actual_coll_level++;
}
}
else {
actual_coll_level--;
coll_end_lookup[collection_node_idx] = rd_append_main_item_node(0, 0, rd_item_node_collection, 0, collection_node_idx, rd_collection_end, 0, &main_item_list);
collection_node_idx = link_collection_nodes[collection_node_idx].Parent;
}
}
free(coll_last_written_child);
}
// ****************************************************************
// Inserted Input/Output/Feature main items into the main_item_list
// in order of reconstructed bit positions
// ****************************************************************
for (HIDP_REPORT_TYPE rt_idx = 0; rt_idx < NUM_OF_HIDP_REPORT_TYPES; rt_idx++) {
// Add all value caps to node list
struct rd_main_item_node *firstDelimiterNode = NULL;
struct rd_main_item_node *delimiterCloseNode = NULL;
for (USHORT caps_idx = pp_data->caps_info[rt_idx].FirstCap; caps_idx < pp_data->caps_info[rt_idx].LastCap; caps_idx++) {
struct rd_main_item_node *coll_begin = coll_begin_lookup[pp_data->caps[caps_idx].LinkCollection];
int first_bit, last_bit;
first_bit = (pp_data->caps[caps_idx].BytePosition - 1) * 8 +
pp_data->caps[caps_idx].BitPosition;
last_bit = first_bit + pp_data->caps[caps_idx].ReportSize *
pp_data->caps[caps_idx].ReportCount - 1;
for (int child_idx = 0; child_idx < coll_number_of_direct_childs[pp_data->caps[caps_idx].LinkCollection]; child_idx++) {
// Determine in which section before/between/after child collection the item should be inserted
if (first_bit < coll_bit_range[coll_child_order[pp_data->caps[caps_idx].LinkCollection][child_idx]][pp_data->caps[caps_idx].ReportID][rt_idx]->FirstBit)
{
// Note, that the default value for undefined coll_bit_range is -1, which can't be greater than the bit position
break;
}
coll_begin = coll_end_lookup[coll_child_order[pp_data->caps[caps_idx].LinkCollection][child_idx]];
}
struct rd_main_item_node *list_node;
list_node = rd_search_main_item_list_for_bit_position(first_bit, (rd_main_items) rt_idx, pp_data->caps[caps_idx].ReportID, &coll_begin);
// In a HID Report Descriptor, the first usage declared is the most preferred usage for the control.
// While the order in the WIN32 capabiliy strutures is the opposite:
// Here the preferred usage is the last aliased usage in the sequence.
if (pp_data->caps[caps_idx].IsAlias && (firstDelimiterNode == NULL)) {
// Alliased Usage (First node in pp_data->caps -> Last entry in report descriptor output)
firstDelimiterNode = list_node;
rd_insert_main_item_node(first_bit, last_bit, rd_item_node_cap, caps_idx, pp_data->caps[caps_idx].LinkCollection, rd_delimiter_usage, pp_data->caps[caps_idx].ReportID, &list_node);
rd_insert_main_item_node(first_bit, last_bit, rd_item_node_cap, caps_idx, pp_data->caps[caps_idx].LinkCollection, rd_delimiter_close, pp_data->caps[caps_idx].ReportID, &list_node);
delimiterCloseNode = list_node;
} else if (pp_data->caps[caps_idx].IsAlias && (firstDelimiterNode != NULL)) {
rd_insert_main_item_node(first_bit, last_bit, rd_item_node_cap, caps_idx, pp_data->caps[caps_idx].LinkCollection, rd_delimiter_usage, pp_data->caps[caps_idx].ReportID, &list_node);
}
else if (!pp_data->caps[caps_idx].IsAlias && (firstDelimiterNode != NULL)) {
// Alliased Collection (Last node in pp_data->caps -> First entry in report descriptor output)
rd_insert_main_item_node(first_bit, last_bit, rd_item_node_cap, caps_idx, pp_data->caps[caps_idx].LinkCollection, rd_delimiter_usage, pp_data->caps[caps_idx].ReportID, &list_node);
rd_insert_main_item_node(first_bit, last_bit, rd_item_node_cap, caps_idx, pp_data->caps[caps_idx].LinkCollection, rd_delimiter_open, pp_data->caps[caps_idx].ReportID, &list_node);
firstDelimiterNode = NULL;
list_node = delimiterCloseNode;
delimiterCloseNode = NULL; // Last entry of alias has .IsAlias == FALSE
}
if (!pp_data->caps[caps_idx].IsAlias) {
rd_insert_main_item_node(first_bit, last_bit, rd_item_node_cap, caps_idx, pp_data->caps[caps_idx].LinkCollection, (rd_main_items) rt_idx, pp_data->caps[caps_idx].ReportID, &list_node);
}
}
}
// ***********************************************************
// Add const main items for padding to main_item_list
// -To fill all bit gaps
// -At each report end for 8bit padding
// Note that information about the padding at the report end,
// is not stored in the preparsed data, but in practice all
// report descriptors seem to have it, as assumed here.
// ***********************************************************
{
int last_bit_position[NUM_OF_HIDP_REPORT_TYPES][256];
struct rd_main_item_node *last_report_item_lookup[NUM_OF_HIDP_REPORT_TYPES][256];
for (HIDP_REPORT_TYPE rt_idx = 0; rt_idx < NUM_OF_HIDP_REPORT_TYPES; rt_idx++) {
for (int reportid_idx = 0; reportid_idx < 256; reportid_idx++) {
last_bit_position[rt_idx][reportid_idx] = -1;
last_report_item_lookup[rt_idx][reportid_idx] = NULL;
}
}
struct rd_main_item_node *list = main_item_list; // List root;
while (list->next != NULL)
{
if ((list->MainItemType >= rd_input) &&
(list->MainItemType <= rd_feature)) {
// INPUT, OUTPUT or FEATURE
if (list->FirstBit != -1) {
if ((last_bit_position[list->MainItemType][list->ReportID] + 1 != list->FirstBit) &&
(last_report_item_lookup[list->MainItemType][list->ReportID] != NULL) &&
(last_report_item_lookup[list->MainItemType][list->ReportID]->FirstBit != list->FirstBit) // Happens in case of IsMultipleItemsForArray for multiple dedicated usages for a multi-button array
) {
struct rd_main_item_node *list_node = rd_search_main_item_list_for_bit_position(last_bit_position[list->MainItemType][list->ReportID], list->MainItemType, list->ReportID, &last_report_item_lookup[list->MainItemType][list->ReportID]);
rd_insert_main_item_node(last_bit_position[list->MainItemType][list->ReportID] + 1, list->FirstBit - 1, rd_item_node_padding, -1, 0, list->MainItemType, list->ReportID, &list_node);
}
last_bit_position[list->MainItemType][list->ReportID] = list->LastBit;
last_report_item_lookup[list->MainItemType][list->ReportID] = list;
}
}
list = list->next;
}
// Add 8 bit padding at each report end
for (HIDP_REPORT_TYPE rt_idx = 0; rt_idx < NUM_OF_HIDP_REPORT_TYPES; rt_idx++) {
for (int reportid_idx = 0; reportid_idx < 256; reportid_idx++) {
if (last_bit_position[rt_idx][reportid_idx] != -1) {
int padding = 8 - ((last_bit_position[rt_idx][reportid_idx] + 1) % 8);
if (padding < 8) {
// Insert padding item after item referenced in last_report_item_lookup
rd_insert_main_item_node(last_bit_position[rt_idx][reportid_idx] + 1, last_bit_position[rt_idx][reportid_idx] + padding, rd_item_node_padding, -1, 0, (rd_main_items) rt_idx, (unsigned char) reportid_idx, &last_report_item_lookup[rt_idx][reportid_idx]);
}
}
}
}
}
// ***********************************
// Encode the report descriptor output
// ***********************************
UCHAR last_report_id = 0;
USAGE last_usage_page = 0;
LONG last_physical_min = 0;// If both, Physical Minimum and Physical Maximum are 0, the logical limits should be taken as physical limits according USB HID spec 1.11 chapter 6.2.2.7
LONG last_physical_max = 0;
ULONG last_unit_exponent = 0; // If Unit Exponent is Undefined it should be considered as 0 according USB HID spec 1.11 chapter 6.2.2.7
ULONG last_unit = 0; // If the first nibble is 7, or second nibble of Unit is 0, the unit is None according USB HID spec 1.11 chapter 6.2.2.7
BOOLEAN inhibit_write_of_usage = FALSE; // Needed in case of delimited usage print, before the normal collection or cap
int report_count = 0;
while (main_item_list != NULL)
{
int rt_idx = main_item_list->MainItemType;
int caps_idx = main_item_list->CapsIndex;
if (main_item_list->MainItemType == rd_collection) {
if (last_usage_page != link_collection_nodes[main_item_list->CollectionIndex].LinkUsagePage) {
// Write "Usage Page" at the begin of a collection - except it refers the same table as wrote last
rd_write_short_item(rd_global_usage_page, link_collection_nodes[main_item_list->CollectionIndex].LinkUsagePage, &rpt_desc);
last_usage_page = link_collection_nodes[main_item_list->CollectionIndex].LinkUsagePage;
}
if (inhibit_write_of_usage) {
// Inhibit only once after DELIMITER statement
inhibit_write_of_usage = FALSE;
}
else {
// Write "Usage" of collection
rd_write_short_item(rd_local_usage, link_collection_nodes[main_item_list->CollectionIndex].LinkUsage, &rpt_desc);
}
// Write begin of "Collection"
rd_write_short_item(rd_main_collection, link_collection_nodes[main_item_list->CollectionIndex].CollectionType, &rpt_desc);
}
else if (main_item_list->MainItemType == rd_collection_end) {
// Write "End Collection"
rd_write_short_item(rd_main_collection_end, 0, &rpt_desc);
}
else if (main_item_list->MainItemType == rd_delimiter_open) {
if (main_item_list->CollectionIndex != -1) {
// Write "Usage Page" inside of a collection delmiter section
if (last_usage_page != link_collection_nodes[main_item_list->CollectionIndex].LinkUsagePage) {
rd_write_short_item(rd_global_usage_page, link_collection_nodes[main_item_list->CollectionIndex].LinkUsagePage, &rpt_desc);
last_usage_page = link_collection_nodes[main_item_list->CollectionIndex].LinkUsagePage;
}
}
else if (main_item_list->CapsIndex != 0) {
// Write "Usage Page" inside of a main item delmiter section
if (pp_data->caps[caps_idx].UsagePage != last_usage_page) {
rd_write_short_item(rd_global_usage_page, pp_data->caps[caps_idx].UsagePage, &rpt_desc);
last_usage_page = pp_data->caps[caps_idx].UsagePage;
}
}
// Write "Delimiter Open"
rd_write_short_item(rd_local_delimiter, 1, &rpt_desc); // 1 = open set of aliased usages
}
else if (main_item_list->MainItemType == rd_delimiter_usage) {
if (main_item_list->CollectionIndex != -1) {
// Write aliased collection "Usage"
rd_write_short_item(rd_local_usage, link_collection_nodes[main_item_list->CollectionIndex].LinkUsage, &rpt_desc);
} if (main_item_list->CapsIndex != 0) {
// Write aliased main item range from "Usage Minimum" to "Usage Maximum"
if (pp_data->caps[caps_idx].IsRange) {
rd_write_short_item(rd_local_usage_minimum, pp_data->caps[caps_idx].Range.UsageMin, &rpt_desc);
rd_write_short_item(rd_local_usage_maximum, pp_data->caps[caps_idx].Range.UsageMax, &rpt_desc);
}
else {
// Write single aliased main item "Usage"
rd_write_short_item(rd_local_usage, pp_data->caps[caps_idx].NotRange.Usage, &rpt_desc);
}
}
}
else if (main_item_list->MainItemType == rd_delimiter_close) {
// Write "Delimiter Close"
rd_write_short_item(rd_local_delimiter, 0, &rpt_desc); // 0 = close set of aliased usages
// Inhibit next usage write
inhibit_write_of_usage = TRUE;
}
else if (main_item_list->TypeOfNode == rd_item_node_padding) {
// Padding
// The preparsed data doesn't contain any information about padding. Therefore all undefined gaps
// in the reports are filled with the same style of constant padding.
// Write "Report Size" with number of padding bits
rd_write_short_item(rd_global_report_size, (main_item_list->LastBit - main_item_list->FirstBit + 1), &rpt_desc);
// Write "Report Count" for padding always as 1
rd_write_short_item(rd_global_report_count, 1, &rpt_desc);
if (rt_idx == HidP_Input) {
// Write "Input" main item - We know it's Constant - We can only guess the other bits, but they don't matter in case of const
rd_write_short_item(rd_main_input, 0x03, &rpt_desc); // Const / Abs
}
else if (rt_idx == HidP_Output) {
// Write "Output" main item - We know it's Constant - We can only guess the other bits, but they don't matter in case of const
rd_write_short_item(rd_main_output, 0x03, &rpt_desc); // Const / Abs
}
else if (rt_idx == HidP_Feature) {
// Write "Feature" main item - We know it's Constant - We can only guess the other bits, but they don't matter in case of const
rd_write_short_item(rd_main_feature, 0x03, &rpt_desc); // Const / Abs
}
report_count = 0;
}
else if (pp_data->caps[caps_idx].IsButtonCap) {
// Button
// (The preparsed data contain different data for 1 bit Button caps, than for parametric Value caps)
if (last_report_id != pp_data->caps[caps_idx].ReportID) {
// Write "Report ID" if changed
rd_write_short_item(rd_global_report_id, pp_data->caps[caps_idx].ReportID, &rpt_desc);
last_report_id = pp_data->caps[caps_idx].ReportID;
}
// Write "Usage Page" when changed
if (pp_data->caps[caps_idx].UsagePage != last_usage_page) {
rd_write_short_item(rd_global_usage_page, pp_data->caps[caps_idx].UsagePage, &rpt_desc);
last_usage_page = pp_data->caps[caps_idx].UsagePage;
}
// Write only local report items for each cap, if ReportCount > 1
if (pp_data->caps[caps_idx].IsRange) {
report_count += (pp_data->caps[caps_idx].Range.DataIndexMax - pp_data->caps[caps_idx].Range.DataIndexMin);
}
if (inhibit_write_of_usage) {
// Inhibit only once after Delimiter - Reset flag
inhibit_write_of_usage = FALSE;
}
else {
if (pp_data->caps[caps_idx].IsRange) {
// Write range from "Usage Minimum" to "Usage Maximum"
rd_write_short_item(rd_local_usage_minimum, pp_data->caps[caps_idx].Range.UsageMin, &rpt_desc);
rd_write_short_item(rd_local_usage_maximum, pp_data->caps[caps_idx].Range.UsageMax, &rpt_desc);
}
else {
// Write single "Usage"
rd_write_short_item(rd_local_usage, pp_data->caps[caps_idx].NotRange.Usage, &rpt_desc);
}
}
if (pp_data->caps[caps_idx].IsDesignatorRange) {
// Write physical descriptor indices range from "Designator Minimum" to "Designator Maximum"
rd_write_short_item(rd_local_designator_minimum, pp_data->caps[caps_idx].Range.DesignatorMin, &rpt_desc);
rd_write_short_item(rd_local_designator_maximum, pp_data->caps[caps_idx].Range.DesignatorMax, &rpt_desc);
}
else if (pp_data->caps[caps_idx].NotRange.DesignatorIndex != 0) {
// Designator set 0 is a special descriptor set (of the HID Physical Descriptor),
// that specifies the number of additional descriptor sets.
// Therefore Designator Index 0 can never be a useful reference for a control and we can inhibit it.
// Write single "Designator Index"
rd_write_short_item(rd_local_designator_index, pp_data->caps[caps_idx].NotRange.DesignatorIndex, &rpt_desc);
}
if (pp_data->caps[caps_idx].IsStringRange) {
// Write range of indices of the USB string descriptor, from "String Minimum" to "String Maximum"
rd_write_short_item(rd_local_string_minimum, pp_data->caps[caps_idx].Range.StringMin, &rpt_desc);
rd_write_short_item(rd_local_string_maximum, pp_data->caps[caps_idx].Range.StringMax, &rpt_desc);
}
else if (pp_data->caps[caps_idx].NotRange.StringIndex != 0) {
// String Index 0 is a special entry of the USB string descriptor, that contains a list of supported languages,
// therefore Designator Index 0 can never be a useful reference for a control and we can inhibit it.
// Write single "String Index"
rd_write_short_item(rd_local_string, pp_data->caps[caps_idx].NotRange.StringIndex, &rpt_desc);
}
if ((main_item_list->next != NULL) &&
((int)main_item_list->next->MainItemType == rt_idx) &&
(main_item_list->next->TypeOfNode == rd_item_node_cap) &&
(pp_data->caps[main_item_list->next->CapsIndex].IsButtonCap) &&
(!pp_data->caps[caps_idx].IsRange) && // This node in list is no array
(!pp_data->caps[main_item_list->next->CapsIndex].IsRange) && // Next node in list is no array
(pp_data->caps[main_item_list->next->CapsIndex].UsagePage == pp_data->caps[caps_idx].UsagePage) &&
(pp_data->caps[main_item_list->next->CapsIndex].ReportID == pp_data->caps[caps_idx].ReportID) &&
(pp_data->caps[main_item_list->next->CapsIndex].BitField == pp_data->caps[caps_idx].BitField)
) {
if (main_item_list->next->FirstBit != main_item_list->FirstBit) {
// In case of IsMultipleItemsForArray for multiple dedicated usages for a multi-button array, the report count should be incremented
// Skip global items until any of them changes, than use ReportCount item to write the count of identical report fields
report_count++;
}
}
else {
if ((pp_data->caps[caps_idx].Button.LogicalMin == 0) &&
(pp_data->caps[caps_idx].Button.LogicalMax == 0)) {
// While a HID report descriptor must always contain LogicalMinimum and LogicalMaximum,
// the preparsed data contain both fields set to zero, for the case of simple buttons
// Write "Logical Minimum" set to 0 and "Logical Maximum" set to 1
rd_write_short_item(rd_global_logical_minimum, 0, &rpt_desc);
rd_write_short_item(rd_global_logical_maximum, 1, &rpt_desc);
}
else {
// Write logical range from "Logical Minimum" to "Logical Maximum"
rd_write_short_item(rd_global_logical_minimum, pp_data->caps[caps_idx].Button.LogicalMin, &rpt_desc);
rd_write_short_item(rd_global_logical_maximum, pp_data->caps[caps_idx].Button.LogicalMax, &rpt_desc);
}
// Write "Report Size"
rd_write_short_item(rd_global_report_size, pp_data->caps[caps_idx].ReportSize, &rpt_desc);
// Write "Report Count"
if (!pp_data->caps[caps_idx].IsRange) {
// Variable bit field with one bit per button
// In case of multiple usages with the same items, only "Usage" is written per cap, and "Report Count" is incremented
rd_write_short_item(rd_global_report_count, pp_data->caps[caps_idx].ReportCount + report_count, &rpt_desc);
}
else {
// Button array of "Report Size" x "Report Count
rd_write_short_item(rd_global_report_count, pp_data->caps[caps_idx].ReportCount, &rpt_desc);
}
// Buttons have only 1 bit and therefore no physical limits/units -> Set to undefined state
if (last_physical_min != 0) {
// Write "Physical Minimum", but only if changed
last_physical_min = 0;
rd_write_short_item(rd_global_physical_minimum, last_physical_min, &rpt_desc);
}
if (last_physical_max != 0) {
// Write "Physical Maximum", but only if changed
last_physical_max = 0;
rd_write_short_item(rd_global_physical_maximum, last_physical_max, &rpt_desc);
}
if (last_unit_exponent != 0) {
// Write "Unit Exponent", but only if changed
last_unit_exponent = 0;
rd_write_short_item(rd_global_unit_exponent, last_unit_exponent, &rpt_desc);
}
if (last_unit != 0) {
// Write "Unit",but only if changed
last_unit = 0;
rd_write_short_item(rd_global_unit, last_unit, &rpt_desc);
}
// Write "Input" main item
if (rt_idx == HidP_Input) {
rd_write_short_item(rd_main_input, pp_data->caps[caps_idx].BitField, &rpt_desc);
}
// Write "Output" main item
else if (rt_idx == HidP_Output) {
rd_write_short_item(rd_main_output, pp_data->caps[caps_idx].BitField, &rpt_desc);
}
// Write "Feature" main item
else if (rt_idx == HidP_Feature) {
rd_write_short_item(rd_main_feature, pp_data->caps[caps_idx].BitField, &rpt_desc);
}
report_count = 0;
}
}
else {
if (last_report_id != pp_data->caps[caps_idx].ReportID) {
// Write "Report ID" if changed
rd_write_short_item(rd_global_report_id, pp_data->caps[caps_idx].ReportID, &rpt_desc);
last_report_id = pp_data->caps[caps_idx].ReportID;
}
// Write "Usage Page" if changed
if (pp_data->caps[caps_idx].UsagePage != last_usage_page) {
rd_write_short_item(rd_global_usage_page, pp_data->caps[caps_idx].UsagePage, &rpt_desc);
last_usage_page = pp_data->caps[caps_idx].UsagePage;
}
if (inhibit_write_of_usage) {
// Inhibit only once after Delimiter - Reset flag
inhibit_write_of_usage = FALSE;
}
else {
if (pp_data->caps[caps_idx].IsRange) {
// Write usage range from "Usage Minimum" to "Usage Maximum"
rd_write_short_item(rd_local_usage_minimum, pp_data->caps[caps_idx].Range.UsageMin, &rpt_desc);
rd_write_short_item(rd_local_usage_maximum, pp_data->caps[caps_idx].Range.UsageMax, &rpt_desc);
}
else {
// Write single "Usage"
rd_write_short_item(rd_local_usage, pp_data->caps[caps_idx].NotRange.Usage, &rpt_desc);
}
}
if (pp_data->caps[caps_idx].IsDesignatorRange) {
// Write physical descriptor indices range from "Designator Minimum" to "Designator Maximum"
rd_write_short_item(rd_local_designator_minimum, pp_data->caps[caps_idx].Range.DesignatorMin, &rpt_desc);
rd_write_short_item(rd_local_designator_maximum, pp_data->caps[caps_idx].Range.DesignatorMax, &rpt_desc);
}
else if (pp_data->caps[caps_idx].NotRange.DesignatorIndex != 0) {
// Designator set 0 is a special descriptor set (of the HID Physical Descriptor),
// that specifies the number of additional descriptor sets.
// Therefore Designator Index 0 can never be a useful reference for a control and we can inhibit it.
// Write single "Designator Index"
rd_write_short_item(rd_local_designator_index, pp_data->caps[caps_idx].NotRange.DesignatorIndex, &rpt_desc);
}
if (pp_data->caps[caps_idx].IsStringRange) {
// Write range of indices of the USB string descriptor, from "String Minimum" to "String Maximum"
rd_write_short_item(rd_local_string_minimum, pp_data->caps[caps_idx].Range.StringMin, &rpt_desc);
rd_write_short_item(rd_local_string_maximum, pp_data->caps[caps_idx].Range.StringMax, &rpt_desc);
}
else if (pp_data->caps[caps_idx].NotRange.StringIndex != 0) {
// String Index 0 is a special entry of the USB string descriptor, that contains a list of supported languages,
// therefore Designator Index 0 can never be a useful reference for a control and we can inhibit it.
// Write single "String Index"
rd_write_short_item(rd_local_string, pp_data->caps[caps_idx].NotRange.StringIndex, &rpt_desc);
}
if ((pp_data->caps[caps_idx].BitField & 0x02) != 0x02) {
// In case of an value array overwrite "Report Count"
pp_data->caps[caps_idx].ReportCount = pp_data->caps[caps_idx].Range.DataIndexMax - pp_data->caps[caps_idx].Range.DataIndexMin + 1;
}
// Print only local report items for each cap, if ReportCount > 1
if ((main_item_list->next != NULL) &&
((int) main_item_list->next->MainItemType == rt_idx) &&
(main_item_list->next->TypeOfNode == rd_item_node_cap) &&
(!pp_data->caps[main_item_list->next->CapsIndex].IsButtonCap) &&
(!pp_data->caps[caps_idx].IsRange) && // This node in list is no array
(!pp_data->caps[main_item_list->next->CapsIndex].IsRange) && // Next node in list is no array
(pp_data->caps[main_item_list->next->CapsIndex].UsagePage == pp_data->caps[caps_idx].UsagePage) &&
(pp_data->caps[main_item_list->next->CapsIndex].NotButton.LogicalMin == pp_data->caps[caps_idx].NotButton.LogicalMin) &&
(pp_data->caps[main_item_list->next->CapsIndex].NotButton.LogicalMax == pp_data->caps[caps_idx].NotButton.LogicalMax) &&
(pp_data->caps[main_item_list->next->CapsIndex].NotButton.PhysicalMin == pp_data->caps[caps_idx].NotButton.PhysicalMin) &&
(pp_data->caps[main_item_list->next->CapsIndex].NotButton.PhysicalMax == pp_data->caps[caps_idx].NotButton.PhysicalMax) &&
(pp_data->caps[main_item_list->next->CapsIndex].UnitsExp == pp_data->caps[caps_idx].UnitsExp) &&
(pp_data->caps[main_item_list->next->CapsIndex].Units == pp_data->caps[caps_idx].Units) &&
(pp_data->caps[main_item_list->next->CapsIndex].ReportSize == pp_data->caps[caps_idx].ReportSize) &&
(pp_data->caps[main_item_list->next->CapsIndex].ReportID == pp_data->caps[caps_idx].ReportID) &&
(pp_data->caps[main_item_list->next->CapsIndex].BitField == pp_data->caps[caps_idx].BitField) &&
(pp_data->caps[main_item_list->next->CapsIndex].ReportCount == 1) &&
(pp_data->caps[caps_idx].ReportCount == 1)
) {
// Skip global items until any of them changes, than use ReportCount item to write the count of identical report fields
report_count++;
}
else {
// Value
// Write logical range from "Logical Minimum" to "Logical Maximum"
rd_write_short_item(rd_global_logical_minimum, pp_data->caps[caps_idx].NotButton.LogicalMin, &rpt_desc);
rd_write_short_item(rd_global_logical_maximum, pp_data->caps[caps_idx].NotButton.LogicalMax, &rpt_desc);
if ((last_physical_min != pp_data->caps[caps_idx].NotButton.PhysicalMin) ||
(last_physical_max != pp_data->caps[caps_idx].NotButton.PhysicalMax)) {
// Write range from "Physical Minimum" to " Physical Maximum", but only if one of them changed
rd_write_short_item(rd_global_physical_minimum, pp_data->caps[caps_idx].NotButton.PhysicalMin, &rpt_desc);
last_physical_min = pp_data->caps[caps_idx].NotButton.PhysicalMin;
rd_write_short_item(rd_global_physical_maximum, pp_data->caps[caps_idx].NotButton.PhysicalMax, &rpt_desc);
last_physical_max = pp_data->caps[caps_idx].NotButton.PhysicalMax;
}
if (last_unit_exponent != pp_data->caps[caps_idx].UnitsExp) {
// Write "Unit Exponent", but only if changed
rd_write_short_item(rd_global_unit_exponent, pp_data->caps[caps_idx].UnitsExp, &rpt_desc);
last_unit_exponent = pp_data->caps[caps_idx].UnitsExp;
}
if (last_unit != pp_data->caps[caps_idx].Units) {
// Write physical "Unit", but only if changed
rd_write_short_item(rd_global_unit, pp_data->caps[caps_idx].Units, &rpt_desc);
last_unit = pp_data->caps[caps_idx].Units;
}
// Write "Report Size"
rd_write_short_item(rd_global_report_size, pp_data->caps[caps_idx].ReportSize, &rpt_desc);
// Write "Report Count"
rd_write_short_item(rd_global_report_count, pp_data->caps[caps_idx].ReportCount + report_count, &rpt_desc);
if (rt_idx == HidP_Input) {
// Write "Input" main item
rd_write_short_item(rd_main_input, pp_data->caps[caps_idx].BitField, &rpt_desc);
}
else if (rt_idx == HidP_Output) {
// Write "Output" main item
rd_write_short_item(rd_main_output, pp_data->caps[caps_idx].BitField, &rpt_desc);
}
else if (rt_idx == HidP_Feature) {
// Write "Feature" main item
rd_write_short_item(rd_main_feature, pp_data->caps[caps_idx].BitField, &rpt_desc);
}
report_count = 0;
}
}
// Go to next item in main_item_list and free the memory of the actual item
struct rd_main_item_node *main_item_list_prev = main_item_list;
main_item_list = main_item_list->next;
free(main_item_list_prev);
}
// Free multidimensionable array: coll_bit_range[COLLECTION_INDEX][REPORT_ID][INPUT/OUTPUT/FEATURE]
// Free multidimensionable array: coll_child_order[COLLECTION_INDEX][DIRECT_CHILD_INDEX]
for (USHORT collection_node_idx = 0; collection_node_idx < pp_data->NumberLinkCollectionNodes; collection_node_idx++) {
for (int reportid_idx = 0; reportid_idx < 256; reportid_idx++) {
for (HIDP_REPORT_TYPE rt_idx = 0; rt_idx < NUM_OF_HIDP_REPORT_TYPES; rt_idx++) {
free(coll_bit_range[collection_node_idx][reportid_idx][rt_idx]);
}
free(coll_bit_range[collection_node_idx][reportid_idx]);
}
free(coll_bit_range[collection_node_idx]);
if (coll_number_of_direct_childs[collection_node_idx] != 0) free(coll_child_order[collection_node_idx]);
}
free(coll_bit_range);
free(coll_child_order);
// Free one dimensional arrays
free(coll_begin_lookup);
free(coll_end_lookup);
free(coll_levels);
free(coll_number_of_direct_childs);
return (int) rpt_desc.byte_idx;
}
|