1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
We'll use Matrix Cookbook (https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf) for some useful equations.
General form of expectation :math:`Q(\theta, \theta^{old})` of any GMM model looks like this (Bishop, (13.17)):
.. math::
Q(\theta, \theta^{old}) = \sum_{k=1}^{K} \gamma(z_{1k})\ln \pi_k + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi (z_{n-1,j}, z_{nk}) \ln A_{jk} + \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \ln p(x_n | \phi_k)
In the case of GMMHMM PDF in the last term looks like this:
.. math::
p(x_n | \phi_k) = \sum_{l=1}^{L} \pi_{kl} \mathcal{N}(x_n | \mu_{kl}, \Sigma_{kl})
Thus:
.. math::
Q(\theta, \theta^{old}) = \sum_{k=1}^{K} \gamma(z_{1k})\ln \pi_k + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi (z_{n-1,j}, z_{nk}) \ln A_{jk} + \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \sum_{l=1}^{L} \pi_{kl} \mathcal{N}(x_n | \mu_{kl}, \Sigma_{kl})
Priors for parameters :math:`\pi_{p}`:
.. math::
p(\pi_p | \alpha_p) = \frac{1}{\text{B}(\alpha_p)} \prod_{l=1}^{L} \pi_{pl}^{\alpha_{pl} - 1}
Priors for parameters :math:`\mu_{pt}`:
.. math::
p(\mu_{pt} | \mu_{pt0}, \lambda) = \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda} \Sigma_{pt})
Priors for parameters :math:`\Sigma_{kl}` in 'full' case:
.. math::
p(\Sigma_{pt} | \Psi_{pt}, \nu_{pt}) = \frac{\left|\Psi_{pt}\right|^{\frac{\nu_{pt}}{2}}}{2 ^ \frac{\nu_{pt} D} {2} \Gamma_D (\frac{\nu_{pt}}{2})} \left|\Sigma_{pt}\right|^{-\frac{\nu_{pt} + D + 1}{2}} e^{-\frac{1}{2} \text{tr} (\Psi_{pt} \Sigma_{pt}^{-1})} = \text{IW}(\Sigma_{pt} | \Psi_{pt}, \nu_{pt})
Priors for parameters :math:`\Sigma_{kl}` in 'tied' case:
.. math::
p(\Sigma_p | \Psi_p, \nu_p) = \text{IW}(\Sigma_p | \Psi_p, \nu_p)
Priors for parameters :math:`\sigma_{kld} ^ 2` in 'diag' case:
.. math::
p(\sigma_{kld} ^ 2 | \alpha_{kld}, \beta_{kld}) = \frac { \beta_{kld} ^ {\alpha_{kld}} } { \Gamma (\alpha_{kld}) } (\sigma_{kld} ^ 2) ^ {-\alpha_{kld} - 1} \exp \Big( \frac {-\beta_{kld}} {\sigma_{kld}^2} \Big) = \Gamma^{-1}(\sigma_{kld} ^ 2 | \alpha_{kld}, \beta_{kld})
Priors for parameters :math:`\sigma_{kl} ^ 2` in 'spherical' case:
.. math::
p(\sigma_{kl} ^ 2 | \alpha_{kl}, \beta_{kl}) = \Gamma^{-1}(\sigma_{kl} ^ 2 | \alpha_{kl}, \beta_{kl})
The whole prior log-distribution:
.. math::
\ln p(\pi, \mu, \Sigma) = \sum_{p=1}^{P} \Big(\ln \frac{1}{\text{B}(\alpha_p)} + \sum_{l=1}^{L} (\alpha_{pl} - 1) \ln \pi_{pl}\Big) + \sum_{p=1}^{P} \sum_{l=1}^{L} \ln \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda} \Sigma_{pt}) + p(\Sigma)
where :math:`p(\Sigma)` is the appropriate sum of one of four priors for covariances above. In 'full' case it is:
.. math::
p(\Sigma) = \sum_{p=1}^{P} \sum_{l=1}^{L} \ln \text{IW}(\Sigma_{pt} | \Psi_{pt}, \nu_{pt})
In 'tied' case it is:
.. math::
p(\Sigma) = \sum_{p=1}^{P} \ln \text{IW}(\Sigma_{p} | \Psi_p, \nu_p)
In 'diag' case it is:
.. math::
p(\Sigma) = \sum_{p=1}^{P} \sum_{l=1}^{L} \sum_{d=1}^{D} \Gamma^{-1}(\sigma_{kld} ^ 2 | \alpha_{kld}, \beta_{kld})
In 'spherical' case it is:
.. math::
p(\Sigma) = \sum_{p=1}^{P} \sum_{l=1}^{L} \Gamma^{-1}(\sigma_{kl} ^ 2 | \alpha_{kl}, \beta_{kl})
Thus, in order to derive M-step for MAP-EM algorithm, we should maximize :math:`Q(\theta, \theta^{\text{ old }}) + \ln p(\theta)` w. r. t. :math:`\theta`.
Let's maximize :math:`Q(\theta, \theta^{\text{ old }}) + \ln p(\theta)` w. r. t. some :math:`\pi_{pt}`. These values should satisfy :math:`\sum_{l=1}^{L} \pi_{pl} = 1` :math:`\forall p`. Taking this into account, we maximize :math:`Q(\theta, \theta^{\text{ old }}) + \ln p(\theta)` using Lagrange multiplier and maximizing the following value:
.. math::
Q(\theta, \theta^{\text{ old }}) + \ln p(\theta) + \sum_{p=1}^{P} \lambda_p (\sum_{l=1}^{L} \pi_{pl} - 1)
Deriving :math:`Q(\theta, \theta^{\text{ old }})` by :math:`\pi_{pt}`:
.. math::
\frac{\partial Q(\theta, \theta^{\text{ old }})}{\partial \pi_{pt}} = \sum_{n=1}^{N} \gamma(z_{np}) \frac {\mathcal{N} (x_n | \mu_{ pt }, \Sigma_{pt})} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{pl}, \Sigma_{pl})}
Deriving :math:`\ln p(\theta)` by by :math:`\pi_{pt}`:
.. math::
\frac{\partial \ln p(\theta)}{\partial \pi_{pt}} = \frac{\alpha_{pt} - 1}{\pi_{pt}}
Deriving :math:`\sum_{p=1}^{P} \lambda_p (\sum_{l=1}^{L} \pi_{pl} - 1)` by :math:`\pi_{pt}`:
.. math::
\frac {\partial \sum_{p=1}^{P} \lambda_p (\sum_{l=1}^{L} \pi_{pl} - 1)} {\partial \pi_{pt}} = \lambda_p
Final result;
.. math::
\frac {\partial (Q(\theta, \theta^{\text{ old }}) + \ln p(\theta) + \sum_{p=1}^{P} \lambda_p (\sum_{l=1}^{L} \pi_{pl} - 1))} {\partial \pi_{pt}} = \sum_{n=1}^{N} \gamma(z_{np}) \frac {\mathcal{N} (x_n | \mu_{ pt }, \Sigma_{pt})} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{pl}, \Sigma_{pl})} + \frac{\alpha_{pt} - 1}{\pi_{pt}} + \lambda_p = 0
Multiplying by :math:`\pi_{pt}` and summing over *t* we get:
.. math::
\sum_{n=1}^{N} \gamma(z_{np}) \frac {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{ pt }, \Sigma_{pt})} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{pl}, \Sigma_{pl})} + \sum_{l=1}^{L} (\alpha_{pl} - 1) + \sum_{l=1}^{L} \pi_{pl} \lambda_p = 0
From which we get:
.. math::
\sum_{n=1}^{N} \gamma(z_{np}) + \sum_{l=1}^{L} (\alpha_{pl} - 1) + \lambda_p = 0
\lambda_p = -\sum_{n=1}^{N} \gamma(z_{np}) - \sum_{l=1}^{L} (\alpha_{pl} - 1)
Substituting the result for :math:`\lambda_p` into the original expression:
.. math::
\sum_{n=1}^{N} \gamma(z_{np}) \frac {\mathcal{N} (x_n | \mu_{ pt }, \Sigma_{pt})} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{pl}, \Sigma_{pl})} + \frac{\alpha_{pt} - 1}{\pi_{pt}} = \sum_{n=1}^{N} \gamma(z_{np}) + \sum_{l=1}^{L} (\alpha_{pl} - 1)
\sum_{n=1}^{N} \gamma(z_{np}) \frac {\pi_{pt} \mathcal{N} (x_n | \mu_{ pt }, \Sigma_{pt})} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{pl}, \Sigma_{pl})} + \alpha_{pt} - 1 = \pi_{pt} \Big(\sum_{n=1}^{N} \gamma(z_{np}) + \sum_{l=1}^{L} (\alpha_{pl} - 1)\Big)
\frac{\sum_{n=1}^{N} \gamma(z_{np}) \frac {\pi_{pt} \mathcal{N} (x_n | \mu_{ pt }, \Sigma_{pt})} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{pl}, \Sigma_{pl})} + \alpha_{pt} - 1} { \sum_{n=1}^{N} \gamma(z_{np}) + \sum_{l=1}^{L} (\alpha_{pl} - 1)} = \pi_{pt}
Let's introduce a few notations:
.. math::
\frac {\pi_{pt} \mathcal{N} (x_n | \mu_{ pt }, \Sigma_{pt})} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{pl}, \Sigma_{pl})} = \gamma(\tilde{z}_{npt})
\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) = N_{pt}
\sum_{n=1}^{N} \gamma(z_{np}) = N_p
Then the expression for maximizing the :math:`\pi_{pt}` is as follows:
.. math::
\pi_{pt} = \frac{N_{pt} + \alpha_{pt} - 1} {N_p + \sum_{l=1}^{L} (\alpha_{pl} - 1)}
Let's do the same with :math:`\mu_{pt}`. This time, there aren't any constraints, so the task of maximizing :math:`Q(\theta, \theta^{\text{ old }}) + \ln p(\theta)` reduces to finding partial derivative of this function w. r. t. :math:`\mu_{pt}` and equating it to zero.
First, let's derivate :math:`\ln p(\theta)` using formula (85) from Matrix Cookbook:
.. math::
\frac {\partial \ln p(\theta)} {\mu_{pt}} = \frac {\partial (\ln \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}))} {\partial \mu_{pt}} = \frac {\frac {\partial (\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}))} {\partial \mu_{pt}}} {\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt})}
\frac {\partial (\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}))} {\partial \mu_{pt}} = \frac {\partial \Big(\frac{1} {(2 \pi)^{D/2}} \frac {\sqrt{\lambda_{pt}}} {\left|\Sigma_{pt}\right|^{1/2}}\exp \left \{ -\frac {\lambda_{pt}} {2} (\mu_{pt} - \mu_{pt0})^T \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}) \right \}\Big)} {\partial \mu_{pt}} =
\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}) \frac {\partial (-\frac {\lambda_{pt}} {2} (\mu_{pt} - \mu_{pt0})^T \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}))} {\partial \mu_{pt}} =
\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}) \Big(-\frac {\lambda_{pt}} {2}\Big) 2 \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}) = -\lambda_{pt} \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}) \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt})
\frac {\partial \ln p(\theta)} {\mu_{pt}} = -\lambda_{pt} \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0})
Then, let's derivate :math:`Q(\theta, \theta^{\text{old}})` using formula (86):
.. math::
\frac{\partial Q(\theta, \theta^{\text{ old }})}{\partial \mu_{pt}} = \sum_{n=1}^{N} \gamma(z_{np}) \frac {\pi_{pt} \mathcal{N} (x_n | \mu_pt, \Sigma_pt)} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_pl, \Sigma_pl)} \Sigma_{pt}^{-1} (x_n - \mu_{pt}) = \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) \Sigma_{pt}^{-1} (x_n - \mu_{pt})
Then, let's derivate :math:`\ln p(\theta)`:
.. math::
\frac {\partial \ln p(\theta)} {\mu_{pt}} = \frac {\partial (\ln \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}))} {\partial \mu_{pt}} = \frac {\frac {\partial (\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}))} {\partial \mu_{pt}}} {\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt})}
\frac {\partial (\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}))} {\partial \mu_{pt}} = \frac {\partial \Big(\frac{1} {(2 \pi)^{D/2}} \frac {\sqrt{\lambda_{pt}}} {\left|\Sigma_{pt}\right|^{1/2}}\exp \left \{ -\frac {\lambda_{pt}} {2} (\mu_{pt} - \mu_{pt0})^T \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}) \right \}\Big)} {\partial \mu_{pt}} =
\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}) \frac {\partial (-\frac {\lambda_{pt}} {2} (\mu_{pt} - \mu_{pt0})^T \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}))} {\partial \mu_{pt}} =
\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}) \Big(-\frac {\lambda_{pt}} {2}\Big) 2 \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}) = -\lambda_{pt} \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}) \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt})
\frac {\partial \ln p(\theta)} {\mu_{pt}} = -\lambda_{pt} \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0})
Now, the result is:
.. math::
\frac {\partial (Q(\theta, \theta^{\text{ old }}) + \ln p(\theta))} {\partial \mu_{pt}} = \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) \Sigma_{pt}^{-1} (x_n - \mu_{pt}) - \lambda_{pt} \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}) = 0
\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) (x_n - \mu_{pt}) - \lambda_{pt} (\mu_{pt} - \mu_{pt0}) = 0
\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) x_n - \mu_{pt}\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) - \lambda_{pt} \mu_{pt} + \lambda_{pt}\mu_{pt0} = 0
\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) x_n - \mu_{pt} N_{pt} - \lambda_{pt} \mu_{pt} + \lambda_{pt}\mu_{pt0} = 0
\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) x_n + \lambda_{pt}\mu_{pt0} = \mu_{pt} (N_{pt} + \lambda_{pt})
\mu_{pt} = \frac {\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) x_n + \lambda_{pt}\mu_{pt0}} {N_{pt} + \lambda_{pt}}
Basically all the same with :math:`\Sigma`, but with 4 different variants of it, for full, tied, diagonal and spherical covariance.
Let's start with 'full'. We're trying to find :math:`\Sigma_{pt}`. First, derivative of :math:`Q(\theta, \theta^{\text{ old }})`:
.. math::
\frac {\partial Q(\theta, \theta^{\text{old}})} {\partial \Sigma_{pt}} = \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) \frac {\frac {\partial \mathcal{N} (x_n | \mu_{pt}, \Sigma_{pt})} {\partial \Sigma_{pt}}} {\mathcal{N} (x_n | \mu_{pt}, \Sigma_{pt})}
\frac {\partial \mathcal{N} (x | \mu, \Sigma)} {\partial \Sigma} = \frac {\partial \Big(\frac{1} {(2 \pi)^{D/2}} \frac {1} {\left|\Sigma\right|^{1/2}}\exp \left \{ -\frac {1} {2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right \}\Big)} {\partial \Sigma} =
= \frac{1} {(2 \pi)^{D/2}} \frac {\partial \left|\Sigma\right| ^ {-\frac{1}{2}}} {\partial \Sigma} \exp \{\cdots\} + \frac{1} {(2 \pi)^{D/2}} \frac {1} {\left|\Sigma\right|^{1/2}} \frac {\partial \exp \{\cdots\}} {\partial \Sigma}
Using the chain rule and formula (49) from Matrix Cookbook to find the derivative of determinant, for the first term we get:
.. math::
\frac {\partial \left|\Sigma\right| ^ {-\frac{1}{2}}} {\partial \Sigma} = \frac {\partial \left|\Sigma\right| ^ {-\frac{1}{2}}} {\partial \left|\Sigma\right|} \frac {\partial \left|\Sigma\right|} {\partial \Sigma} = - \frac {1} {2} \left|\Sigma\right| ^ {-\frac{3}{2}} \left|\Sigma\right| \Sigma^{-T} = - \frac {1} {2} \frac {1} {\left|\Sigma\right| ^ {1/2}} \Sigma^{-T}
Using the chain rule and formula (61) from Matrix Cookbook to find the derivative of inverse, for the second term we get:
.. math::
\frac {\partial \exp \{\cdots\}} {\partial \Sigma} = \frac {\partial \exp \{\cdots\}} {\{\cdots\}} \frac {\{\cdots\}} {\partial \Sigma} = \exp \{\cdots\} \Big(-\frac {1} {2} \Big) \frac {\partial \Big((x - \mu)^T \Sigma^{-1} (x - \mu) \Big)} {\partial \Sigma} =
= \exp \{\cdots\} \Big(-\frac {1} {2} \Big) (-\Sigma^{-T} (x - \mu) (x - \mu)^T \Sigma^{-T})
Combining the two:
.. math::
\frac {\partial \mathcal{N} (x | \mu, \Sigma)} {\partial \Sigma} = \frac{1} {(2 \pi)^{D/2}} \frac {1} {\left|\Sigma\right| ^ {1/2}} \exp \{\cdots\} \Big(-\frac {1} {2}\Big) \Sigma^{-T} + \frac{1} {(2 \pi)^{D/2}} \frac {1} {\left|\Sigma\right|^{1/2}} \exp \{\cdots\} \Big(-\frac {1} {2} \Big) (-\Sigma^{-T} (x - \mu) (x - \mu)^T \Sigma^{-T}) =
= \mathcal{N} (x | \mu, \Sigma)\Big(-\frac {1} {2}\Big) \Sigma^{-T} + \mathcal{N} (x | \mu, \Sigma) \frac {1} {2} (\Sigma^{-T} (x - \mu) (x - \mu)^T \Sigma^{-T})
From which we finally get:
.. math::
\frac {\partial Q(\theta, \theta^{\text{old}})} {\partial \Sigma_{pt}} = \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) \Big( \Big(-\frac {1} {2}\Big) \Sigma_{pt}^{-T} + \frac {1} {2} (\Sigma_{pt}^{-T} (x_n - \mu_{pt}) (x_n - \mu_{pt})^T \Sigma_{pt}^{-T}) \Big) =
= \Big(-\frac {1} {2}\Big) \Sigma_{pt}^{-T} \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) + \frac {1} {2} \Sigma_{pt}^{-T} (\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) (x_n - \mu_{pt}) (x_n - \mu_{pt})^T) \Sigma_{pt}^{-T} =
= \Big(-\frac {1} {2}\Big) \Sigma_{pt}^{-T} N_{pt} + \frac {1} {2} \Sigma_{pt}^{-T} \big(\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) (x_n - \mu_{pt}) (x_n - \mu_{pt})^T\big) \Sigma_{pt}^{-T}
Now to :math:`\ln p(\theta)`:
.. math::
\frac {\partial \ln p(\theta)} {\partial \Sigma_{pt}} = \frac {\frac {\partial \mathcal {N} (\mu_{pt} | \mu_{pt0}, \frac {1} {\lambda_pt} \Sigma_{pt})} {\partial \Sigma_{pt}}} {\mathcal {N} (\mu_{pt} | \mu_{pt0}, \frac {1} {\lambda_pt} \Sigma_{pt})} + \frac {\frac {\partial \text {IW} (\Sigma_{pt} | \Psi_{pt}, \nu_{pt})} {\partial \Sigma_{pt}}} {\text {IW} (\Sigma_{pt} | \Psi_{pt}, \nu_{pt})}
We can calculate the derivative of normal distribution in the equation above using previous results:
.. math::
\frac {\partial \mathcal {N} (x | \mu, \frac {1} {\lambda} \Sigma)} {\partial \Sigma} = \frac {\partial \Big(\frac{1} {(2 \pi)^{D/2}} \frac {\sqrt{\lambda}} {\left|\Sigma\right|^{1/2}} \exp \left \{ -\frac {\lambda} {2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right \}\Big)} {\partial \Sigma}
= \frac{\sqrt{\lambda}} {(2 \pi)^{D/2}} \frac {\partial \left|\Sigma\right| ^ {-\frac{1}{2}}} {\partial \Sigma} \exp \{\cdots\} + \frac{1} {(2 \pi)^{D/2}} \frac {\sqrt{\lambda}} {\left|\Sigma\right|^{1/2}} \frac {\partial \exp \{\cdots\}} {\partial \Sigma}
= \mathcal{N} (x | \mu, \frac {1} {\lambda} \Sigma)\Big(-\frac {1} {2}\Big) \Sigma^{-T} + \mathcal{N} (x | \mu, \frac {1} {\lambda} \Sigma) \frac {\lambda} {2} \Sigma^{-T} (x - \mu) (x - \mu)^T \Sigma^{-T}
Now to the derivative of inverse-Wishart distribution:
.. math::
\frac {\partial \text {IW} (\Sigma | \Psi, \nu)} {\partial \Sigma} = \frac {\partial \Big( \frac{\left|\Psi\right|^{\frac{\nu}{2}}}{2 ^ \frac{\nu D} {2} \Gamma_D (\frac{\nu}{2})} \left|\Sigma\right|^{-\frac{\nu + D + 1}{2}} \exp \left \{-\frac{1}{2} \text{tr} (\Psi \Sigma^{-1}) \right \} \Big)} {\partial \Sigma}
= \frac{ \left| \Psi \right| ^ {\frac {\nu} {2} } } {2 ^ \frac{\nu D} {2} \Gamma_D (\frac{\nu}{2})} \frac {\partial \left|\Sigma\right|^{-\frac{\nu + D + 1}{2}} } {\partial \Sigma} \exp \left \{-\frac{1}{2} \text{tr} (\Psi \Sigma^{-1}) \right \} + \frac{\left|\Psi\right|^{\frac{\nu}{2}}}{2 ^ \frac{\nu D} {2} \Gamma_D (\frac{\nu}{2})} \left|\Sigma\right|^{-\frac{\nu + D + 1}{2}} \exp \left \{-\frac{1}{2} \text{tr} (\Psi \Sigma^{-1}) \right \} \Big( - \frac {1} {2} \Big) \frac {\partial \text{tr} (\Psi \Sigma^{-1})} {\partial \Sigma}
Using the same equation (49) from Matrix Cookbook, we get:
.. math::
\frac {\partial \left|\Sigma\right|^{-\frac{\nu + D + 1}{2}} } {\partial \Sigma} = \frac {\partial \left|\Sigma\right|^{-\frac{\nu + D + 1}{2}} } {\partial \left| \Sigma \right|} \frac {\partial \left| \Sigma \right|} {\partial \Sigma} = - \frac {(\nu + D + 1)} {2} \left| \Sigma \right| ^ {-\frac{\nu + D + 1}{2}} \Sigma^{-1} \frac {\partial \left| \Sigma \right|} {\partial \Sigma} = -\frac {(\nu + D + 1)} {2} \left| \Sigma \right| ^ {-\frac{\nu + D + 1}{2}} \Sigma^{-1} \left| \Sigma \right| \Sigma^{-T} =
= -\frac {(\nu + D + 1)} {2} \Sigma^{-T} \left| \Sigma \right| ^ {-\frac{\nu + D + 1}{2}}
Using formula (63), for the derivative of a trace we get:
.. math::
\frac {\partial \text{tr} (\Psi \Sigma^{-1})} {\partial \Sigma} = -\Sigma^{-T} \Psi^T \Sigma^{-T}
Combining the two, we get:
.. math::
\frac {\partial \text {IW} (\Sigma | \Psi, \nu)} {\partial \Sigma} = -\frac {(\nu + D + 1)} {2} \Sigma^{-T} \text {IW} (\Sigma | \Psi, \nu) + \frac {1} {2} \Sigma^{-T} \Psi^T \Sigma^{-T} \text {IW} (\Sigma | \Psi, \nu)
Now, finally, we can get the whole derivative of prior distribution w. r. t. :math:`\Sigma_{pt}`:
.. math::
\frac {\partial \ln p(\theta)} {\partial \Sigma_{pt}} = \Big(-\frac {1} {2}\Big) \Sigma_{pt}^{-T} + \frac {\lambda_{pt}} {2} \Sigma_{pt}^{-T} (\mu_{pt} - \mu_{pt0}) (\mu_{pt} - \mu_{pt0})^T \Sigma_{pt}^{-T} + \Big(-\frac {(\nu_{pt} + D + 1)} {2}\Big) \Sigma_{pt}^{-T} + \frac {1} {2} \Sigma_{pt}^{-T} \Psi_{pt}^T \Sigma_{pt}^{-T}
Then, we can equate the derivative of :math:`Q(\theta, \theta ^ {\text{old}}) + \ln (\theta)` to 0:
.. math::
\frac {\partial (Q(\theta, \theta ^ {\text{old}}) + \ln (\theta))} {\partial \Sigma_{pt}} = \Big(-\frac {1} {2}\Big) \Sigma_{pt}^{-T} N_{pt} + \frac {1} {2} \Sigma_{pt}^{-T} \big(\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) (x_n - \mu_{pt}) (x_n - \mu_{pt})^T\big) \Sigma_{pt}^{-T} +
+ \Big(-\frac {1} {2}\Big) \Sigma_{pt}^{-T} + \frac {\lambda_{pt}} {2} \Sigma_{pt}^{-T} (\mu_{pt} - \mu_{pt0}) (\mu_{pt} - \mu_{pt0})^T \Sigma_{pt}^{-T} + \Big(-\frac {(\nu_{pt} + D + 1)} {2}\Big) \Sigma_{pt}^{-T} + \frac {1} {2} \Sigma_{pt}^{-T} \Psi_{pt}^T \Sigma_{pt}^{-T} = 0
Multiplying by :math:`2 \Sigma^{T}` from both sides, we get:
.. math::
-\Sigma_{pt}^{T} N_{pt} + \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) (x_n - \mu_{pt}) (x_n - \mu_{pt})^T - \Sigma_{pt}^{T} + \lambda_{pt} (\mu_{pt} - \mu_{pt0}) (\mu_{pt} - \mu_{pt0})^T - (\nu_{pt} + D + 1) \Sigma_{pt}^{T} + \Psi_{pt}^T = 0
Let's, once again, introduce a few notations:
.. math::
C_{npt} = (x_n - \mu_{pt}) (x_n - \mu_{pt})^T
C_{\mu_{pt}} = (\mu_{pt} - \mu_{pt0}) (\mu_{pt} - \mu_{pt0})^T
Let's rewrite the expression above using these notations:
.. math::
-\Sigma_{pt}^{T} N_{pt} + \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) C_{npt} - \Sigma_{pt}^{T} + \lambda_{pt} C_{\mu_{pt}} - (\nu_{pt} + D + 1) \Sigma_{pt}^{T} + \Psi_{pt}^T = 0
\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) C_{npt} + \lambda_{pt} C_{\mu_{pt}} + \Psi_{pt}^T = \Sigma_{pt}^{T} (N_{pt} + 1 + (\nu_{pt} + D + 1))
\Sigma_{pt}^T = \Sigma_{pt} = \frac {\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) C_{npt} + \lambda_{pt} C_{\mu_{pt}} + \Psi_{pt}^T} {N_{pt} + 1 + \nu_{pt} + D + 1}
|