File: GMMHMM.rst

package info (click to toggle)
python-hmmlearn 0.3.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 588 kB
  • sloc: python: 4,797; cpp: 321; makefile: 13
file content (296 lines) | stat: -rw-r--r-- 19,968 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
We'll use Matrix Cookbook (https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf) for some useful equations.

General form of expectation :math:`Q(\theta, \theta^{old})` of any GMM model looks like this (Bishop, (13.17)):

.. math::
  Q(\theta, \theta^{old}) = \sum_{k=1}^{K} \gamma(z_{1k})\ln \pi_k + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi (z_{n-1,j}, z_{nk}) \ln A_{jk} + \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \ln p(x_n | \phi_k)

In the case of GMMHMM PDF in the last term looks like this:

.. math::
  p(x_n | \phi_k) = \sum_{l=1}^{L} \pi_{kl} \mathcal{N}(x_n | \mu_{kl}, \Sigma_{kl})

Thus:

.. math::
  Q(\theta, \theta^{old}) = \sum_{k=1}^{K} \gamma(z_{1k})\ln \pi_k + \sum_{n=2}^{N} \sum_{j=1}^{K} \sum_{k=1}^{K} \xi (z_{n-1,j}, z_{nk}) \ln A_{jk} + \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \sum_{l=1}^{L} \pi_{kl} \mathcal{N}(x_n | \mu_{kl}, \Sigma_{kl})

Priors for parameters :math:`\pi_{p}`:

.. math::
  p(\pi_p | \alpha_p) = \frac{1}{\text{B}(\alpha_p)} \prod_{l=1}^{L} \pi_{pl}^{\alpha_{pl} - 1}

Priors for parameters :math:`\mu_{pt}`:

.. math::
  p(\mu_{pt} | \mu_{pt0}, \lambda) = \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda} \Sigma_{pt})

Priors for parameters :math:`\Sigma_{kl}` in 'full' case:

.. math::
  p(\Sigma_{pt} | \Psi_{pt}, \nu_{pt}) = \frac{\left|\Psi_{pt}\right|^{\frac{\nu_{pt}}{2}}}{2 ^ \frac{\nu_{pt} D} {2} \Gamma_D (\frac{\nu_{pt}}{2})} \left|\Sigma_{pt}\right|^{-\frac{\nu_{pt} + D + 1}{2}} e^{-\frac{1}{2} \text{tr} (\Psi_{pt} \Sigma_{pt}^{-1})} = \text{IW}(\Sigma_{pt} | \Psi_{pt}, \nu_{pt})

Priors for parameters :math:`\Sigma_{kl}` in 'tied' case:

.. math::
  p(\Sigma_p | \Psi_p, \nu_p) = \text{IW}(\Sigma_p | \Psi_p, \nu_p)

Priors for parameters :math:`\sigma_{kld} ^ 2` in 'diag' case:

.. math::
  p(\sigma_{kld} ^ 2 | \alpha_{kld}, \beta_{kld}) = \frac { \beta_{kld} ^ {\alpha_{kld}} } { \Gamma (\alpha_{kld}) } (\sigma_{kld} ^ 2) ^ {-\alpha_{kld} - 1} \exp \Big( \frac {-\beta_{kld}} {\sigma_{kld}^2} \Big) = \Gamma^{-1}(\sigma_{kld} ^ 2 | \alpha_{kld}, \beta_{kld})


Priors for parameters :math:`\sigma_{kl} ^ 2` in 'spherical' case:

.. math::
  p(\sigma_{kl} ^ 2 | \alpha_{kl}, \beta_{kl}) = \Gamma^{-1}(\sigma_{kl} ^ 2 | \alpha_{kl}, \beta_{kl})


The whole prior log-distribution:

.. math::
  \ln p(\pi, \mu, \Sigma) = \sum_{p=1}^{P} \Big(\ln \frac{1}{\text{B}(\alpha_p)} + \sum_{l=1}^{L} (\alpha_{pl} - 1) \ln \pi_{pl}\Big) + \sum_{p=1}^{P} \sum_{l=1}^{L} \ln \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda} \Sigma_{pt}) + p(\Sigma)

where :math:`p(\Sigma)` is the appropriate sum of one of four priors for covariances above. In 'full' case it is:

.. math::
  p(\Sigma) = \sum_{p=1}^{P} \sum_{l=1}^{L} \ln \text{IW}(\Sigma_{pt} | \Psi_{pt}, \nu_{pt})

In 'tied' case it is:

.. math::
  p(\Sigma) = \sum_{p=1}^{P} \ln \text{IW}(\Sigma_{p} | \Psi_p, \nu_p)

In 'diag' case it is:

.. math::
  p(\Sigma) = \sum_{p=1}^{P} \sum_{l=1}^{L} \sum_{d=1}^{D} \Gamma^{-1}(\sigma_{kld} ^ 2 | \alpha_{kld}, \beta_{kld})

In 'spherical' case it is:

.. math::
  p(\Sigma) = \sum_{p=1}^{P} \sum_{l=1}^{L} \Gamma^{-1}(\sigma_{kl} ^ 2 | \alpha_{kl}, \beta_{kl})

Thus, in order to derive M-step for MAP-EM algorithm, we should maximize :math:`Q(\theta, \theta^{\text{ old }}) + \ln p(\theta)` w. r. t. :math:`\theta`.

Let's maximize :math:`Q(\theta, \theta^{\text{ old }}) + \ln p(\theta)` w. r. t. some :math:`\pi_{pt}`. These values should satisfy :math:`\sum_{l=1}^{L} \pi_{pl} = 1` :math:`\forall p`. Taking this into account, we maximize :math:`Q(\theta, \theta^{\text{ old }}) + \ln p(\theta)` using Lagrange multiplier and maximizing the following value:

.. math::
  Q(\theta, \theta^{\text{ old }}) + \ln p(\theta) + \sum_{p=1}^{P} \lambda_p (\sum_{l=1}^{L} \pi_{pl} - 1)

Deriving :math:`Q(\theta, \theta^{\text{ old }})` by :math:`\pi_{pt}`:

.. math::
  \frac{\partial Q(\theta, \theta^{\text{ old }})}{\partial \pi_{pt}} = \sum_{n=1}^{N} \gamma(z_{np}) \frac {\mathcal{N} (x_n | \mu_{ pt }, \Sigma_{pt})} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{pl}, \Sigma_{pl})}

Deriving :math:`\ln p(\theta)` by by :math:`\pi_{pt}`:

.. math::
  \frac{\partial \ln p(\theta)}{\partial \pi_{pt}} = \frac{\alpha_{pt} - 1}{\pi_{pt}}

Deriving :math:`\sum_{p=1}^{P} \lambda_p (\sum_{l=1}^{L} \pi_{pl} - 1)` by :math:`\pi_{pt}`:

.. math::
  \frac {\partial \sum_{p=1}^{P} \lambda_p (\sum_{l=1}^{L} \pi_{pl} - 1)} {\partial \pi_{pt}} = \lambda_p

Final result;

.. math::
  \frac {\partial (Q(\theta, \theta^{\text{ old }}) + \ln p(\theta) + \sum_{p=1}^{P} \lambda_p (\sum_{l=1}^{L} \pi_{pl} - 1))} {\partial \pi_{pt}} = \sum_{n=1}^{N} \gamma(z_{np}) \frac {\mathcal{N} (x_n | \mu_{ pt }, \Sigma_{pt})} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{pl}, \Sigma_{pl})} + \frac{\alpha_{pt} - 1}{\pi_{pt}} + \lambda_p = 0

Multiplying by :math:`\pi_{pt}` and summing over *t* we get:

.. math::
  \sum_{n=1}^{N} \gamma(z_{np}) \frac {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{ pt }, \Sigma_{pt})} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{pl}, \Sigma_{pl})} + \sum_{l=1}^{L} (\alpha_{pl} - 1) + \sum_{l=1}^{L} \pi_{pl} \lambda_p = 0

From which we get:

.. math::
  \sum_{n=1}^{N} \gamma(z_{np}) + \sum_{l=1}^{L} (\alpha_{pl} - 1) + \lambda_p = 0

  \lambda_p = -\sum_{n=1}^{N} \gamma(z_{np}) - \sum_{l=1}^{L} (\alpha_{pl} - 1)

Substituting the result for :math:`\lambda_p` into the original expression:

.. math::
  \sum_{n=1}^{N} \gamma(z_{np}) \frac {\mathcal{N} (x_n | \mu_{ pt }, \Sigma_{pt})} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{pl}, \Sigma_{pl})} + \frac{\alpha_{pt} - 1}{\pi_{pt}} = \sum_{n=1}^{N} \gamma(z_{np}) + \sum_{l=1}^{L} (\alpha_{pl} - 1)

  \sum_{n=1}^{N} \gamma(z_{np}) \frac {\pi_{pt} \mathcal{N} (x_n | \mu_{ pt }, \Sigma_{pt})} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{pl}, \Sigma_{pl})} + \alpha_{pt} - 1 = \pi_{pt} \Big(\sum_{n=1}^{N} \gamma(z_{np}) + \sum_{l=1}^{L} (\alpha_{pl} - 1)\Big)

  \frac{\sum_{n=1}^{N} \gamma(z_{np}) \frac {\pi_{pt} \mathcal{N} (x_n | \mu_{ pt }, \Sigma_{pt})} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{pl}, \Sigma_{pl})} + \alpha_{pt} - 1} { \sum_{n=1}^{N} \gamma(z_{np}) + \sum_{l=1}^{L} (\alpha_{pl} - 1)} = \pi_{pt}

Let's introduce a few notations:

.. math::
  \frac {\pi_{pt} \mathcal{N} (x_n | \mu_{ pt }, \Sigma_{pt})} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_{pl}, \Sigma_{pl})} = \gamma(\tilde{z}_{npt})

  \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) = N_{pt}

  \sum_{n=1}^{N} \gamma(z_{np}) = N_p

Then the expression for maximizing the :math:`\pi_{pt}` is as follows:

.. math::
  \pi_{pt} = \frac{N_{pt} + \alpha_{pt} - 1} {N_p + \sum_{l=1}^{L} (\alpha_{pl} - 1)}

Let's do the same with :math:`\mu_{pt}`. This time, there aren't any constraints, so the task of maximizing :math:`Q(\theta, \theta^{\text{ old }}) + \ln p(\theta)` reduces to finding partial derivative of this function w. r. t. :math:`\mu_{pt}` and equating it to zero. 

First, let's derivate :math:`\ln p(\theta)` using formula (85) from Matrix Cookbook:

.. math::
  \frac {\partial \ln p(\theta)} {\mu_{pt}} = \frac {\partial (\ln \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}))} {\partial \mu_{pt}} = \frac {\frac {\partial (\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}))} {\partial \mu_{pt}}} {\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt})}

  \frac {\partial (\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}))} {\partial \mu_{pt}} = \frac {\partial \Big(\frac{1} {(2 \pi)^{D/2}} \frac {\sqrt{\lambda_{pt}}} {\left|\Sigma_{pt}\right|^{1/2}}\exp \left \{ -\frac {\lambda_{pt}} {2} (\mu_{pt} - \mu_{pt0})^T \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}) \right \}\Big)} {\partial \mu_{pt}} =
 
  \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}) \frac {\partial (-\frac {\lambda_{pt}} {2} (\mu_{pt} - \mu_{pt0})^T \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}))} {\partial \mu_{pt}} = 
  
  \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}) \Big(-\frac {\lambda_{pt}} {2}\Big) 2 \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}) = -\lambda_{pt} \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}) \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt})

  \frac {\partial \ln p(\theta)} {\mu_{pt}} = -\lambda_{pt} \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0})

Then, let's derivate :math:`Q(\theta, \theta^{\text{old}})` using formula (86):

.. math::
  \frac{\partial Q(\theta, \theta^{\text{ old }})}{\partial \mu_{pt}} = \sum_{n=1}^{N} \gamma(z_{np}) \frac {\pi_{pt} \mathcal{N} (x_n | \mu_pt, \Sigma_pt)} {\sum_l \pi_{pl} \mathcal{N} (x_n | \mu_pl, \Sigma_pl)} \Sigma_{pt}^{-1} (x_n - \mu_{pt}) = \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) \Sigma_{pt}^{-1} (x_n - \mu_{pt})
  
Then, let's derivate :math:`\ln p(\theta)`:

.. math::
  \frac {\partial \ln p(\theta)} {\mu_{pt}} = \frac {\partial (\ln \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}))} {\partial \mu_{pt}} = \frac {\frac {\partial (\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}))} {\partial \mu_{pt}}} {\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt})}

  \frac {\partial (\mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}))} {\partial \mu_{pt}} = \frac {\partial \Big(\frac{1} {(2 \pi)^{D/2}} \frac {\sqrt{\lambda_{pt}}} {\left|\Sigma_{pt}\right|^{1/2}}\exp \left \{ -\frac {\lambda_{pt}} {2} (\mu_{pt} - \mu_{pt0})^T \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}) \right \}\Big)} {\partial \mu_{pt}} =
 
  \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}) \frac {\partial (-\frac {\lambda_{pt}} {2} (\mu_{pt} - \mu_{pt0})^T \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}))} {\partial \mu_{pt}} = 
  
  \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt}) \Big(-\frac {\lambda_{pt}} {2}\Big) 2 \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}) = -\lambda_{pt} \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}) \mathcal{N} (\mu_{pt} | \mu_{pt0}, \frac{1}{\lambda_{pt}} \Sigma_{pt})

  \frac {\partial \ln p(\theta)} {\mu_{pt}} = -\lambda_{pt} \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0})

Now, the result is:

.. math::
  \frac {\partial (Q(\theta, \theta^{\text{ old }}) + \ln p(\theta))} {\partial \mu_{pt}} = \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) \Sigma_{pt}^{-1} (x_n - \mu_{pt}) - \lambda_{pt} \Sigma_{pt}^{-1} (\mu_{pt} - \mu_{pt0}) = 0

  \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) (x_n - \mu_{pt}) - \lambda_{pt} (\mu_{pt} - \mu_{pt0}) = 0

  \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) x_n - \mu_{pt}\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) - \lambda_{pt} \mu_{pt} + \lambda_{pt}\mu_{pt0} = 0

  \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) x_n - \mu_{pt} N_{pt}  - \lambda_{pt} \mu_{pt} + \lambda_{pt}\mu_{pt0} = 0

  \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) x_n + \lambda_{pt}\mu_{pt0} = \mu_{pt} (N_{pt}  + \lambda_{pt})

  \mu_{pt} = \frac {\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) x_n + \lambda_{pt}\mu_{pt0}} {N_{pt}  + \lambda_{pt}}


Basically all the same with :math:`\Sigma`, but with 4 different variants of it, for full, tied, diagonal and spherical covariance.

Let's start with 'full'. We're trying to find :math:`\Sigma_{pt}`. First, derivative of :math:`Q(\theta, \theta^{\text{ old }})`:

.. math::
  \frac {\partial Q(\theta, \theta^{\text{old}})} {\partial \Sigma_{pt}} = \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) \frac {\frac {\partial \mathcal{N} (x_n | \mu_{pt}, \Sigma_{pt})} {\partial \Sigma_{pt}}} {\mathcal{N} (x_n | \mu_{pt}, \Sigma_{pt})}

  \frac {\partial \mathcal{N} (x | \mu, \Sigma)} {\partial \Sigma} = \frac {\partial \Big(\frac{1} {(2 \pi)^{D/2}} \frac {1} {\left|\Sigma\right|^{1/2}}\exp \left \{ -\frac {1} {2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right \}\Big)} {\partial \Sigma} = 

  = \frac{1} {(2 \pi)^{D/2}} \frac {\partial \left|\Sigma\right| ^ {-\frac{1}{2}}} {\partial \Sigma} \exp \{\cdots\} + \frac{1} {(2 \pi)^{D/2}} \frac {1} {\left|\Sigma\right|^{1/2}} \frac {\partial \exp \{\cdots\}} {\partial \Sigma}

Using the chain rule and formula (49) from Matrix Cookbook to find the derivative of determinant, for the first term we get:

.. math::
  \frac {\partial \left|\Sigma\right| ^ {-\frac{1}{2}}} {\partial \Sigma} = \frac {\partial \left|\Sigma\right| ^ {-\frac{1}{2}}} {\partial \left|\Sigma\right|} \frac {\partial \left|\Sigma\right|} {\partial \Sigma} = - \frac {1} {2} \left|\Sigma\right| ^ {-\frac{3}{2}} \left|\Sigma\right| \Sigma^{-T} = - \frac {1} {2} \frac {1} {\left|\Sigma\right| ^ {1/2}} \Sigma^{-T}

Using the chain rule and formula (61) from Matrix Cookbook to find the derivative of inverse, for the second term we get:

.. math::
  \frac {\partial \exp \{\cdots\}} {\partial \Sigma} = \frac {\partial \exp \{\cdots\}} {\{\cdots\}} \frac {\{\cdots\}} {\partial \Sigma} = \exp \{\cdots\} \Big(-\frac {1} {2} \Big) \frac {\partial \Big((x - \mu)^T \Sigma^{-1} (x - \mu) \Big)} {\partial \Sigma} = 
  
  = \exp \{\cdots\} \Big(-\frac {1} {2} \Big) (-\Sigma^{-T} (x - \mu) (x - \mu)^T \Sigma^{-T})

Combining the two:

.. math::
  \frac {\partial \mathcal{N} (x | \mu, \Sigma)} {\partial \Sigma} = \frac{1} {(2 \pi)^{D/2}} \frac {1} {\left|\Sigma\right| ^ {1/2}}  \exp \{\cdots\} \Big(-\frac {1} {2}\Big) \Sigma^{-T} + \frac{1} {(2 \pi)^{D/2}} \frac {1} {\left|\Sigma\right|^{1/2}} \exp \{\cdots\} \Big(-\frac {1} {2} \Big) (-\Sigma^{-T} (x - \mu) (x - \mu)^T \Sigma^{-T}) = 

  =  \mathcal{N} (x | \mu, \Sigma)\Big(-\frac {1} {2}\Big) \Sigma^{-T} + \mathcal{N} (x | \mu, \Sigma) \frac {1} {2} (\Sigma^{-T} (x - \mu) (x - \mu)^T \Sigma^{-T})

From which we finally get:

.. math::
  \frac {\partial Q(\theta, \theta^{\text{old}})} {\partial \Sigma_{pt}} = \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) \Big( \Big(-\frac {1} {2}\Big) \Sigma_{pt}^{-T} + \frac {1} {2} (\Sigma_{pt}^{-T} (x_n - \mu_{pt}) (x_n - \mu_{pt})^T \Sigma_{pt}^{-T}) \Big) = 
  
  = \Big(-\frac {1} {2}\Big) \Sigma_{pt}^{-T} \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) + \frac {1} {2} \Sigma_{pt}^{-T} (\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) (x_n - \mu_{pt}) (x_n - \mu_{pt})^T) \Sigma_{pt}^{-T} = 
  
  = \Big(-\frac {1} {2}\Big) \Sigma_{pt}^{-T} N_{pt} + \frac {1} {2} \Sigma_{pt}^{-T} \big(\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) (x_n - \mu_{pt}) (x_n - \mu_{pt})^T\big) \Sigma_{pt}^{-T} 


Now to :math:`\ln p(\theta)`:

.. math::
  \frac {\partial \ln p(\theta)} {\partial \Sigma_{pt}} = \frac {\frac {\partial \mathcal {N} (\mu_{pt} | \mu_{pt0}, \frac {1} {\lambda_pt} \Sigma_{pt})} {\partial \Sigma_{pt}}} {\mathcal {N} (\mu_{pt} | \mu_{pt0}, \frac {1} {\lambda_pt} \Sigma_{pt})} + \frac {\frac {\partial \text {IW} (\Sigma_{pt} | \Psi_{pt}, \nu_{pt})} {\partial \Sigma_{pt}}} {\text {IW} (\Sigma_{pt} | \Psi_{pt}, \nu_{pt})}

We can calculate the derivative of normal distribution in the equation above using previous results:

.. math::
  \frac {\partial \mathcal {N} (x | \mu, \frac {1} {\lambda} \Sigma)} {\partial \Sigma} = \frac {\partial \Big(\frac{1} {(2 \pi)^{D/2}} \frac {\sqrt{\lambda}} {\left|\Sigma\right|^{1/2}} \exp \left \{ -\frac {\lambda} {2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right \}\Big)} {\partial \Sigma} 

  = \frac{\sqrt{\lambda}} {(2 \pi)^{D/2}} \frac {\partial \left|\Sigma\right| ^ {-\frac{1}{2}}} {\partial \Sigma} \exp \{\cdots\} + \frac{1} {(2 \pi)^{D/2}} \frac {\sqrt{\lambda}} {\left|\Sigma\right|^{1/2}} \frac {\partial \exp \{\cdots\}} {\partial \Sigma}

  = \mathcal{N} (x | \mu, \frac {1} {\lambda} \Sigma)\Big(-\frac {1} {2}\Big) \Sigma^{-T} + \mathcal{N} (x | \mu, \frac {1} {\lambda} \Sigma) \frac {\lambda} {2} \Sigma^{-T} (x - \mu) (x - \mu)^T \Sigma^{-T}

Now to the derivative of inverse-Wishart distribution:

.. math::
  \frac {\partial \text {IW} (\Sigma | \Psi, \nu)} {\partial \Sigma} = \frac {\partial \Big( \frac{\left|\Psi\right|^{\frac{\nu}{2}}}{2 ^ \frac{\nu D} {2} \Gamma_D (\frac{\nu}{2})} \left|\Sigma\right|^{-\frac{\nu + D + 1}{2}} \exp \left \{-\frac{1}{2} \text{tr} (\Psi \Sigma^{-1}) \right \} \Big)} {\partial \Sigma} 
  
  = \frac{ \left| \Psi \right| ^ {\frac {\nu} {2} } } {2 ^ \frac{\nu D} {2} \Gamma_D (\frac{\nu}{2})} \frac {\partial  \left|\Sigma\right|^{-\frac{\nu + D + 1}{2}} } {\partial \Sigma} \exp \left  \{-\frac{1}{2} \text{tr} (\Psi \Sigma^{-1}) \right \} + \frac{\left|\Psi\right|^{\frac{\nu}{2}}}{2 ^ \frac{\nu D} {2} \Gamma_D (\frac{\nu}{2})} \left|\Sigma\right|^{-\frac{\nu + D + 1}{2}} \exp \left \{-\frac{1}{2} \text{tr} (\Psi \Sigma^{-1}) \right \} \Big( - \frac {1} {2} \Big) \frac {\partial \text{tr} (\Psi \Sigma^{-1})} {\partial \Sigma}

Using the same equation (49) from Matrix Cookbook, we get:

.. math::

  \frac {\partial  \left|\Sigma\right|^{-\frac{\nu + D + 1}{2}} } {\partial \Sigma} = \frac {\partial  \left|\Sigma\right|^{-\frac{\nu + D + 1}{2}} } {\partial \left| \Sigma \right|} \frac {\partial \left| \Sigma \right|} {\partial \Sigma} = - \frac {(\nu + D + 1)} {2} \left| \Sigma \right| ^ {-\frac{\nu + D + 1}{2}} \Sigma^{-1} \frac {\partial \left| \Sigma \right|} {\partial \Sigma} = -\frac {(\nu + D + 1)} {2} \left| \Sigma \right| ^ {-\frac{\nu + D + 1}{2}} \Sigma^{-1} \left| \Sigma \right| \Sigma^{-T} = 

   = -\frac {(\nu + D + 1)} {2} \Sigma^{-T} \left| \Sigma \right| ^ {-\frac{\nu + D + 1}{2}}

Using formula (63), for the derivative of a trace we get:

.. math::
  \frac {\partial \text{tr} (\Psi \Sigma^{-1})} {\partial \Sigma} = -\Sigma^{-T} \Psi^T \Sigma^{-T}

Combining the two, we get:

.. math::
  \frac {\partial \text {IW} (\Sigma | \Psi, \nu)} {\partial \Sigma} = -\frac {(\nu + D + 1)} {2} \Sigma^{-T} \text {IW} (\Sigma | \Psi, \nu) + \frac {1} {2} \Sigma^{-T} \Psi^T \Sigma^{-T} \text {IW} (\Sigma | \Psi, \nu)

Now, finally, we can get the whole derivative of prior distribution w. r. t. :math:`\Sigma_{pt}`:

.. math::
  \frac {\partial \ln p(\theta)} {\partial \Sigma_{pt}} = \Big(-\frac {1} {2}\Big) \Sigma_{pt}^{-T} + \frac {\lambda_{pt}} {2} \Sigma_{pt}^{-T} (\mu_{pt} - \mu_{pt0}) (\mu_{pt} - \mu_{pt0})^T \Sigma_{pt}^{-T} + \Big(-\frac {(\nu_{pt} + D + 1)} {2}\Big) \Sigma_{pt}^{-T} + \frac {1} {2} \Sigma_{pt}^{-T} \Psi_{pt}^T \Sigma_{pt}^{-T}  

Then, we can equate the derivative of :math:`Q(\theta, \theta ^ {\text{old}}) + \ln (\theta)` to 0:

.. math::
  \frac {\partial (Q(\theta, \theta ^ {\text{old}}) + \ln (\theta))} {\partial \Sigma_{pt}} = \Big(-\frac {1} {2}\Big) \Sigma_{pt}^{-T} N_{pt} + \frac {1} {2} \Sigma_{pt}^{-T} \big(\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) (x_n - \mu_{pt}) (x_n - \mu_{pt})^T\big) \Sigma_{pt}^{-T} +
 
  + \Big(-\frac {1} {2}\Big) \Sigma_{pt}^{-T} + \frac {\lambda_{pt}} {2} \Sigma_{pt}^{-T} (\mu_{pt} - \mu_{pt0}) (\mu_{pt} - \mu_{pt0})^T \Sigma_{pt}^{-T} + \Big(-\frac {(\nu_{pt} + D + 1)} {2}\Big) \Sigma_{pt}^{-T} + \frac {1} {2} \Sigma_{pt}^{-T} \Psi_{pt}^T \Sigma_{pt}^{-T} = 0

Multiplying by :math:`2 \Sigma^{T}` from both sides, we get:

.. math::
  -\Sigma_{pt}^{T} N_{pt} + \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) (x_n - \mu_{pt}) (x_n - \mu_{pt})^T - \Sigma_{pt}^{T} + \lambda_{pt} (\mu_{pt} - \mu_{pt0}) (\mu_{pt} - \mu_{pt0})^T - (\nu_{pt} + D + 1) \Sigma_{pt}^{T} +  \Psi_{pt}^T = 0
  
Let's, once again, introduce a few notations:

.. math::
  C_{npt} = (x_n - \mu_{pt}) (x_n - \mu_{pt})^T

  C_{\mu_{pt}} = (\mu_{pt} - \mu_{pt0}) (\mu_{pt} - \mu_{pt0})^T

Let's rewrite the expression above using these notations:

.. math::
  -\Sigma_{pt}^{T} N_{pt} + \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) C_{npt} - \Sigma_{pt}^{T} + \lambda_{pt} C_{\mu_{pt}} - (\nu_{pt} + D + 1) \Sigma_{pt}^{T} +  \Psi_{pt}^T = 0

  \sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) C_{npt} + \lambda_{pt} C_{\mu_{pt}} + \Psi_{pt}^T = \Sigma_{pt}^{T} (N_{pt} + 1 + (\nu_{pt} + D + 1))

  \Sigma_{pt}^T = \Sigma_{pt} = \frac {\sum_{n=1}^{N} \gamma(z_{np}) \gamma(\tilde{z}_{npt}) C_{npt} + \lambda_{pt} C_{\mu_{pt}} + \Psi_{pt}^T} {N_{pt} + 1 + \nu_{pt} + D + 1}