File: base.py

package info (click to toggle)
python-hmmlearn 0.3.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 588 kB
  • sloc: python: 4,797; cpp: 321; makefile: 13
file content (1271 lines) | stat: -rw-r--r-- 49,587 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
import logging
import string
import sys
from collections import deque

import numpy as np
from scipy import linalg, special
from sklearn.base import BaseEstimator
from sklearn.utils.validation import (
    check_array, check_is_fitted, check_random_state)

from . import _hmmc, _kl_divergence as _kl, _utils
from .utils import normalize, log_normalize


_log = logging.getLogger(__name__)
#: Supported decoder algorithms.
DECODER_ALGORITHMS = frozenset(("viterbi", "map"))


class ConvergenceMonitor:
    """
    Monitor and report convergence to :data:`sys.stderr`.

    Attributes
    ----------
    history : deque
        The log probability of the data for the last two training
        iterations. If the values are not strictly increasing, the
        model did not converge.
    iter : int
        Number of iterations performed while training the model.

    Examples
    --------
    Use custom convergence criteria by subclassing ``ConvergenceMonitor``
    and redefining the ``converged`` method. The resulting subclass can
    be used by creating an instance and pointing a model's ``monitor_``
    attribute to it prior to fitting.

    >>> from hmmlearn.base import ConvergenceMonitor
    >>> from hmmlearn import hmm
    >>>
    >>> class ThresholdMonitor(ConvergenceMonitor):
    ...     @property
    ...     def converged(self):
    ...         return (self.iter == self.n_iter or
    ...                 self.history[-1] >= self.tol)
    >>>
    >>> model = hmm.GaussianHMM(n_components=2, tol=5, verbose=True)
    >>> model.monitor_ = ThresholdMonitor(model.monitor_.tol,
    ...                                   model.monitor_.n_iter,
    ...                                   model.monitor_.verbose)
    """

    _template = "{iter:>10d} {log_prob:>16.8f} {delta:>+16.8f}"

    def __init__(self, tol, n_iter, verbose):
        """
        Parameters
        ----------
        tol : double
            Convergence threshold.  EM has converged either if the maximum
            number of iterations is reached or the log probability improvement
            between the two consecutive iterations is less than threshold.
        n_iter : int
            Maximum number of iterations to perform.
        verbose : bool
            Whether per-iteration convergence reports are printed.
        """
        self.tol = tol
        self.n_iter = n_iter
        self.verbose = verbose
        self.history = deque()
        self.iter = 0

    def __repr__(self):
        class_name = self.__class__.__name__
        params = sorted(dict(vars(self), history=list(self.history)).items())
        return ("{}(\n".format(class_name)
                + "".join(map("    {}={},\n".format, *zip(*params)))
                + ")")

    def _reset(self):
        """Reset the monitor's state."""
        self.iter = 0
        self.history.clear()

    def report(self, log_prob):
        """
        Report convergence to :data:`sys.stderr`.

        The output consists of three columns: iteration number, log
        probability of the data at the current iteration and convergence
        rate.  At the first iteration convergence rate is unknown and
        is thus denoted by NaN.

        Parameters
        ----------
        log_prob : float
            The log probability of the data as computed by EM algorithm
            in the current iteration.
        """
        if self.verbose:
            delta = log_prob - self.history[-1] if self.history else np.nan
            message = self._template.format(
                iter=self.iter + 1, log_prob=log_prob, delta=delta)
            print(message, file=sys.stderr)

        # Allow for some wiggleroom based on precision.
        precision = np.finfo(float).eps ** (1/2)
        if self.history and (log_prob - self.history[-1]) < -precision:
            delta = log_prob - self.history[-1]
            _log.warning(f"Model is not converging.  Current: {log_prob}"
                         f" is not greater than {self.history[-1]}."
                         f" Delta is {delta}")
        self.history.append(log_prob)
        self.iter += 1

    @property
    def converged(self):
        """Whether the EM algorithm converged."""
        # XXX we might want to check that ``log_prob`` is non-decreasing.
        return (self.iter == self.n_iter or
                (len(self.history) >= 2 and
                 self.history[-1] - self.history[-2] < self.tol))


class _AbstractHMM(BaseEstimator):
    """
    Base class for Hidden Markov Models learned via Expectation-Maximization
    and Variational Bayes.
    """

    def __init__(self, n_components, algorithm, random_state, n_iter,
                 tol, verbose, params, init_params, implementation):
        """
        Parameters
        ----------
        n_components : int
            Number of states in the model.
        algorithm : {"viterbi", "map"}, optional
            Decoder algorithm.

            - "viterbi": finds the most likely sequence of states, given all
              emissions.
            - "map" (also known as smoothing or forward-backward): finds the
              sequence of the individual most-likely states, given all
              emissions.
        random_state: RandomState or an int seed, optional
            A random number generator instance.
        n_iter : int, optional
            Maximum number of iterations to perform.
        tol : float, optional
            Convergence threshold. EM will stop if the gain in log-likelihood
            is below this value.
        verbose : bool, optional
            Whether per-iteration convergence reports are printed to
            :data:`sys.stderr`.  Convergence can also be diagnosed using the
            :attr:`monitor_` attribute.
        params, init_params : string, optional
            The parameters that get updated during (``params``) or initialized
            before (``init_params``) the training.  Can contain any combination
            of 's' for startprob, 't' for transmat, and other characters for
            subclass-specific emission parameters.  Defaults to all parameters.
        implementation: string, optional
            Determines if the forward-backward algorithm is implemented with
            logarithms ("log"), or using scaling ("scaling").  The default is
            to use logarithms for backwards compatability.  However, the
            scaling implementation is generally faster.
        """

        self.n_components = n_components
        self.params = params
        self.init_params = init_params
        self.algorithm = algorithm
        self.n_iter = n_iter
        self.tol = tol
        self.verbose = verbose
        self.implementation = implementation
        self.random_state = random_state

    def score_samples(self, X, lengths=None):
        """
        Compute the log probability under the model and compute posteriors.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Feature matrix of individual samples.
        lengths : array-like of integers, shape (n_sequences, ), optional
            Lengths of the individual sequences in ``X``. The sum of
            these should be ``n_samples``.

        Returns
        -------
        log_prob : float
            Log likelihood of ``X``.
        posteriors : array, shape (n_samples, n_components)
            State-membership probabilities for each sample in ``X``.

        See Also
        --------
        score : Compute the log probability under the model.
        decode : Find most likely state sequence corresponding to ``X``.
        """
        return self._score(X, lengths, compute_posteriors=True)

    def score(self, X, lengths=None):
        """
        Compute the log probability under the model.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Feature matrix of individual samples.
        lengths : array-like of integers, shape (n_sequences, ), optional
            Lengths of the individual sequences in ``X``. The sum of
            these should be ``n_samples``.

        Returns
        -------
        log_prob : float
            Log likelihood of ``X``.

        See Also
        --------
        score_samples : Compute the log probability under the model and
            posteriors.
        decode : Find most likely state sequence corresponding to ``X``.
        """
        return self._score(X, lengths, compute_posteriors=False)[0]

    def _score(self, X, lengths=None, *, compute_posteriors):
        """
        Helper for `score` and `score_samples`.

        Compute the log probability under the model, as well as posteriors if
        *compute_posteriors* is True (otherwise, an empty array is returned
        for the latter).
        """
        check_is_fitted(self, "startprob_")
        self._check()

        X = check_array(X)
        impl = {
            "scaling": self._score_scaling,
            "log": self._score_log,
        }[self.implementation]
        return impl(
            X=X, lengths=lengths, compute_posteriors=compute_posteriors)

    def _score_log(self, X, lengths=None, *, compute_posteriors):
        """
        Compute the log probability under the model, as well as posteriors if
        *compute_posteriors* is True (otherwise, an empty array is returned
        for the latter).
        """
        log_prob = 0
        sub_posteriors = [np.empty((0, self.n_components))]
        for sub_X in _utils.split_X_lengths(X, lengths):
            log_frameprob = self._compute_log_likelihood(sub_X)
            log_probij, fwdlattice = _hmmc.forward_log(
                self.startprob_, self.transmat_, log_frameprob)
            log_prob += log_probij
            if compute_posteriors:
                bwdlattice = _hmmc.backward_log(
                    self.startprob_, self.transmat_, log_frameprob)
                sub_posteriors.append(
                    self._compute_posteriors_log(fwdlattice, bwdlattice))
        return log_prob, np.concatenate(sub_posteriors)

    def _score_scaling(self, X, lengths=None, *, compute_posteriors):
        log_prob = 0
        sub_posteriors = [np.empty((0, self.n_components))]
        for sub_X in _utils.split_X_lengths(X, lengths):
            frameprob = self._compute_likelihood(sub_X)
            log_probij, fwdlattice, scaling_factors = _hmmc.forward_scaling(
                self.startprob_, self.transmat_, frameprob)
            log_prob += log_probij
            if compute_posteriors:
                bwdlattice = _hmmc.backward_scaling(
                    self.startprob_, self.transmat_,
                    frameprob, scaling_factors)
                sub_posteriors.append(
                    self._compute_posteriors_scaling(fwdlattice, bwdlattice))

        return log_prob, np.concatenate(sub_posteriors)

    def _decode_viterbi(self, X):
        log_frameprob = self._compute_log_likelihood(X)
        return _hmmc.viterbi(self.startprob_, self.transmat_, log_frameprob)

    def _decode_map(self, X):
        _, posteriors = self.score_samples(X)
        log_prob = np.max(posteriors, axis=1).sum()
        state_sequence = np.argmax(posteriors, axis=1)
        return log_prob, state_sequence

    def decode(self, X, lengths=None, algorithm=None):
        """
        Find most likely state sequence corresponding to ``X``.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Feature matrix of individual samples.
        lengths : array-like of integers, shape (n_sequences, ), optional
            Lengths of the individual sequences in ``X``. The sum of
            these should be ``n_samples``.
        algorithm : {"viterbi", "map"}, optional
            Decoder algorithm.

            - "viterbi": finds the most likely sequence of states, given all
              emissions.
            - "map" (also known as smoothing or forward-backward): finds the
              sequence of the individual most-likely states, given all
              emissions.
            If not given, :attr:`decoder` is used.

        Returns
        -------
        log_prob : float
            Log probability of the produced state sequence.
        state_sequence : array, shape (n_samples, )
            Labels for each sample from ``X`` obtained via a given
            decoder ``algorithm``.

        See Also
        --------
        score_samples : Compute the log probability under the model and
            posteriors.
        score : Compute the log probability under the model.
        """
        check_is_fitted(self, "startprob_")
        self._check()

        algorithm = algorithm or self.algorithm
        if algorithm not in DECODER_ALGORITHMS:
            raise ValueError(f"Unknown decoder {algorithm!r}")

        decoder = {
            "viterbi": self._decode_viterbi,
            "map": self._decode_map
        }[algorithm]

        X = check_array(X)
        log_prob = 0
        sub_state_sequences = []
        for sub_X in _utils.split_X_lengths(X, lengths):
            # XXX decoder works on a single sample at a time!
            sub_log_prob, sub_state_sequence = decoder(sub_X)
            log_prob += sub_log_prob
            sub_state_sequences.append(sub_state_sequence)

        return log_prob, np.concatenate(sub_state_sequences)

    def predict(self, X, lengths=None):
        """
        Find most likely state sequence corresponding to ``X``.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Feature matrix of individual samples.
        lengths : array-like of integers, shape (n_sequences, ), optional
            Lengths of the individual sequences in ``X``. The sum of
            these should be ``n_samples``.

        Returns
        -------
        state_sequence : array, shape (n_samples, )
            Labels for each sample from ``X``.
        """
        _, state_sequence = self.decode(X, lengths)
        return state_sequence

    def predict_proba(self, X, lengths=None):
        """
        Compute the posterior probability for each state in the model.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Feature matrix of individual samples.
        lengths : array-like of integers, shape (n_sequences, ), optional
            Lengths of the individual sequences in ``X``. The sum of
            these should be ``n_samples``.

        Returns
        -------
        posteriors : array, shape (n_samples, n_components)
            State-membership probabilities for each sample from ``X``.
        """
        _, posteriors = self.score_samples(X, lengths)
        return posteriors

    def sample(self, n_samples=1, random_state=None, currstate=None):
        """
        Generate random samples from the model.

        Parameters
        ----------
        n_samples : int
            Number of samples to generate.
        random_state : RandomState or an int seed
            A random number generator instance. If ``None``, the object's
            ``random_state`` is used.
        currstate : int
            Current state, as the initial state of the samples.

        Returns
        -------
        X : array, shape (n_samples, n_features)
            Feature matrix.
        state_sequence : array, shape (n_samples, )
            State sequence produced by the model.

        Examples
        --------
        ::

            # generate samples continuously
            _, Z = model.sample(n_samples=10)
            X, Z = model.sample(n_samples=10, currstate=Z[-1])
        """
        check_is_fitted(self, "startprob_")
        self._check()

        if random_state is None:
            random_state = self.random_state
        random_state = check_random_state(random_state)

        transmat_cdf = np.cumsum(self.transmat_, axis=1)

        if currstate is None:
            startprob_cdf = np.cumsum(self.startprob_)
            currstate = (startprob_cdf > random_state.rand()).argmax()

        state_sequence = [currstate]
        X = [self._generate_sample_from_state(
            currstate, random_state=random_state)]

        for t in range(n_samples - 1):
            currstate = (
                (transmat_cdf[currstate] > random_state.rand()).argmax())
            state_sequence.append(currstate)
            X.append(self._generate_sample_from_state(
                currstate, random_state=random_state))

        return np.atleast_2d(X), np.array(state_sequence, dtype=int)

    def fit(self, X, lengths=None):
        """
        Estimate model parameters.

        An initialization step is performed before entering the
        EM algorithm. If you want to avoid this step for a subset of
        the parameters, pass proper ``init_params`` keyword argument
        to estimator's constructor.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Feature matrix of individual samples.
        lengths : array-like of integers, shape (n_sequences, )
            Lengths of the individual sequences in ``X``. The sum of
            these should be ``n_samples``.

        Returns
        -------
        self : object
            Returns self.
        """
        X = check_array(X)

        if lengths is None:
            lengths = np.asarray([X.shape[0]])

        self._init(X, lengths)
        self._check()
        self.monitor_._reset()

        for iter in range(self.n_iter):
            stats, curr_logprob = self._do_estep(X, lengths)

            # Compute lower bound before updating model parameters
            lower_bound = self._compute_lower_bound(curr_logprob)

            # XXX must be before convergence check, because otherwise
            #     there won't be any updates for the case ``n_iter=1``.
            self._do_mstep(stats)
            self.monitor_.report(lower_bound)
            if self.monitor_.converged:
                break

            if (self.transmat_.sum(axis=1) == 0).any():
                _log.warning("Some rows of transmat_ have zero sum because no "
                             "transition from the state was ever observed.")
        return self

    def _fit_scaling(self, X):
        raise NotImplementedError("Must be overridden in subclass")

    def _fit_log(self, X):
        raise NotImplementedError("Must be overridden in subclass")

    def _compute_posteriors_scaling(self, fwdlattice, bwdlattice):
        posteriors = fwdlattice * bwdlattice
        normalize(posteriors, axis=1)
        return posteriors

    def _compute_posteriors_log(self, fwdlattice, bwdlattice):
        # gamma is guaranteed to be correctly normalized by log_prob at
        # all frames, unless we do approximate inference using pruning.
        # So, we will normalize each frame explicitly in case we
        # pruned too aggressively.
        log_gamma = fwdlattice + bwdlattice
        log_normalize(log_gamma, axis=1)
        with np.errstate(under="ignore"):
            return np.exp(log_gamma)

    def _needs_init(self, code, name):
        if code in self.init_params:
            if hasattr(self, name):
                _log.warning(
                    "Even though the %r attribute is set, it will be "
                    "overwritten during initialization because 'init_params' "
                    "contains %r", name, code)
            return True
        if not hasattr(self, name):
            return True
        return False

    def _check_and_set_n_features(self, X):
        _, n_features = X.shape
        if hasattr(self, "n_features"):
            if self.n_features != n_features:
                raise ValueError(
                    f"Unexpected number of dimensions, got {n_features} but "
                    f"expected {self.n_features}")
        else:
            self.n_features = n_features

    def _get_n_fit_scalars_per_param(self):
        """
        Return a mapping of fittable parameter names (as in ``self.params``)
        to the number of corresponding scalar parameters that will actually be
        fitted.

        This is used to detect whether the user did not pass enough data points
        for a non-degenerate fit.
        """
        raise NotImplementedError("Must be overridden in subclass")

    def _check_sum_1(self, name):
        """Check that an array describes one or more distributions."""
        s = getattr(self, name).sum(axis=-1)
        if not np.allclose(s, 1):
            raise ValueError(
                f"{name} must sum to 1 (got {s:.4f})"
                if s.ndim == 0
                else f"{name} rows must sum to 1 (got row sums of {s})"
                    if s.ndim == 1
                    else "Expected 1D or 2D array")

    def _check(self):
        """
        Validate model parameters prior to fitting.

        Raises
        ------
        ValueError
            If any of the parameters are invalid, e.g. if :attr:`startprob_`
            don't sum to 1.
        """
        raise NotImplementedError("Must be overridden in subclass")

    def _compute_likelihood(self, X):
        """
        Compute per-component probability under the model.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Feature matrix of individual samples.

        Returns
        -------
        log_prob : array, shape (n_samples, n_components)
            Log probability of each sample in ``X`` for each of the
            model states.
        """
        if (self._compute_log_likelihood  # prevent recursion
                != __class__._compute_log_likelihood.__get__(self)):
            # Probabilities equal to zero do occur, and exp(-LARGE) = 0 is OK.
            with np.errstate(under="ignore"):
                return np.exp(self._compute_log_likelihood(X))
        else:
            raise NotImplementedError("Must be overridden in subclass")

    def _compute_log_likelihood(self, X):
        """
        Compute per-component emission log probability under the model.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Feature matrix of individual samples.

        Returns
        -------
        log_prob : array, shape (n_samples, n_components)
            Emission log probability of each sample in ``X`` for each of the
            model states, i.e., ``log(p(X|state))``.
        """
        if (self._compute_likelihood  # prevent recursion
                != __class__._compute_likelihood.__get__(self)):
            # Probabilities equal to zero do occur, and log(0) = -inf is OK.
            likelihood = self._compute_likelihood(X)
            with np.errstate(divide="ignore"):
                return np.log(likelihood)
        else:
            raise NotImplementedError("Must be overridden in subclass")

    def _generate_sample_from_state(self, state, random_state):
        """
        Generate a random sample from a given component.

        Parameters
        ----------
        state : int
            Index of the component to condition on.
        random_state: RandomState
            A random number generator instance.  (`sample` is the only caller
            for this method and already normalizes *random_state*.)

        Returns
        -------
        X : array, shape (n_features, )
            A random sample from the emission distribution corresponding
            to a given component.
        """
        return ()

    def _initialize_sufficient_statistics(self):
        """
        Initialize sufficient statistics required for M-step.

        The method is *pure*, meaning that it doesn't change the state of
        the instance.  For extensibility computed statistics are stored
        in a dictionary.

        Returns
        -------
        nobs : int
            Number of samples in the data.
        start : array, shape (n_components, )
            An array where the i-th element corresponds to the posterior
            probability of the first sample being generated by the i-th state.
        trans : array, shape (n_components, n_components)
            An array where the (i, j)-th element corresponds to the posterior
            probability of transitioning between the i-th to j-th states.
        """
        stats = {'nobs': 0,
                 'start': np.zeros(self.n_components),
                 'trans': np.zeros((self.n_components, self.n_components))}
        return stats

    def _accumulate_sufficient_statistics(
            self, stats, X, lattice, posteriors, fwdlattice, bwdlattice):
        """
        Update sufficient statistics from a given sample.

        Parameters
        ----------
        stats : dict
            Sufficient statistics as returned by
            :meth:`~.BaseHMM._initialize_sufficient_statistics`.

        X : array, shape (n_samples, n_features)
            Sample sequence.

        lattice : array, shape (n_samples, n_components)
            Probabilities OR Log Probabilities of each sample
            under each of the model states.  Depends on the choice
            of implementation of the Forward-Backward algorithm

        posteriors : array, shape (n_samples, n_components)
            Posterior probabilities of each sample being generated by each
            of the model states.

        fwdlattice, bwdlattice : array, shape (n_samples, n_components)
            forward and backward probabilities.
        """

        impl = {
            "scaling": self._accumulate_sufficient_statistics_scaling,
            "log": self._accumulate_sufficient_statistics_log,
        }[self.implementation]

        return impl(stats=stats, X=X, lattice=lattice, posteriors=posteriors,
                    fwdlattice=fwdlattice, bwdlattice=bwdlattice)

    def _accumulate_sufficient_statistics_scaling(
            self, stats, X, lattice, posteriors, fwdlattice, bwdlattice):
        """
        Implementation of `_accumulate_sufficient_statistics`
        for ``implementation = "log"``.
        """
        stats['nobs'] += 1
        if 's' in self.params:
            stats['start'] += posteriors[0]
        if 't' in self.params:
            n_samples, n_components = lattice.shape
            # when the sample is of length 1, it contains no transitions
            # so there is no reason to update our trans. matrix estimate
            if n_samples <= 1:
                return
            xi_sum = _hmmc.compute_scaling_xi_sum(
                fwdlattice, self.transmat_, bwdlattice, lattice)
            stats['trans'] += xi_sum

    def _accumulate_sufficient_statistics_log(
            self, stats, X, lattice, posteriors, fwdlattice, bwdlattice):
        """
        Implementation of `_accumulate_sufficient_statistics`
        for ``implementation = "log"``.
        """
        stats['nobs'] += 1
        if 's' in self.params:
            stats['start'] += posteriors[0]
        if 't' in self.params:
            n_samples, n_components = lattice.shape
            # when the sample is of length 1, it contains no transitions
            # so there is no reason to update our trans. matrix estimate
            if n_samples <= 1:
                return
            log_xi_sum = _hmmc.compute_log_xi_sum(
                fwdlattice, self.transmat_, bwdlattice, lattice)
            with np.errstate(under="ignore"):
                stats['trans'] += np.exp(log_xi_sum)

    def _do_mstep(self, stats):
        """
        Perform the M-step of EM algorithm.

        Parameters
        ----------
        stats : dict
            Sufficient statistics updated from all available samples.
        """

    def _do_estep(self, X, lengths):
        impl = {
            "scaling": self._fit_scaling,
            "log": self._fit_log,
        }[self.implementation]

        stats = self._initialize_sufficient_statistics()
        self._estep_begin()
        curr_logprob = 0
        for sub_X in _utils.split_X_lengths(X, lengths):
            lattice, logprob, posteriors, fwdlattice, bwdlattice = impl(sub_X)
            # Derived HMM classes will implement the following method to
            # update their probability distributions, so keep
            # a single call to this method for simplicity.
            self._accumulate_sufficient_statistics(
                stats, sub_X, lattice, posteriors, fwdlattice,
                bwdlattice)
            curr_logprob += logprob
        return stats, curr_logprob

    def _estep_begin(self):
        pass

    def _compute_lower_bound(self, curr_logprob):
        raise NotImplementedError("Must be overridden in subclass")


class BaseHMM(_AbstractHMM):
    """
    Base class for Hidden Markov Models learned from Expectation-Maximization.

    This class allows for easy evaluation of, sampling from, and maximum a
    posteriori estimation of the parameters of a HMM.

    Attributes
    ----------
    monitor_ : ConvergenceMonitor
        Monitor object used to check the convergence of EM.
    startprob_ : array, shape (n_components, )
        Initial state occupation distribution.
    transmat_ : array, shape (n_components, n_components)
        Matrix of transition probabilities between states.

    Notes
    -----
    Normally, one should use a subclass of `.BaseHMM`, with its specialization
    towards a given emission model.  In rare cases, the base class can also be
    useful in itself, if one simply wants to generate a sequence of states
    using `.BaseHMM.sample`.  In that case, the feature matrix will have zero
    features.
    """

    def __init__(self, n_components=1,
                 startprob_prior=1.0, transmat_prior=1.0,
                 algorithm="viterbi", random_state=None,
                 n_iter=10, tol=1e-2, verbose=False,
                 params=string.ascii_letters,
                 init_params=string.ascii_letters,
                 implementation="log"):
        """
        Parameters
        ----------
        n_components : int
            Number of states in the model.
        startprob_prior : array, shape (n_components, ), optional
            Parameters of the Dirichlet prior distribution for
            :attr:`startprob_`.
        transmat_prior : array, shape (n_components, n_components), optional
            Parameters of the Dirichlet prior distribution for each row
            of the transition probabilities :attr:`transmat_`.
        algorithm : {"viterbi", "map"}, optional
            Decoder algorithm.

            - "viterbi": finds the most likely sequence of states, given all
              emissions.
            - "map" (also known as smoothing or forward-backward): finds the
              sequence of the individual most-likely states, given all
              emissions.
        random_state: RandomState or an int seed, optional
            A random number generator instance.
        n_iter : int, optional
            Maximum number of iterations to perform.
        tol : float, optional
            Convergence threshold. EM will stop if the gain in log-likelihood
            is below this value.
        verbose : bool, optional
            Whether per-iteration convergence reports are printed to
            :data:`sys.stderr`.  Convergence can also be diagnosed using the
            :attr:`monitor_` attribute.
        params, init_params : string, optional
            The parameters that get updated during (``params``) or initialized
            before (``init_params``) the training.  Can contain any combination
            of 's' for startprob, 't' for transmat, and other characters for
            subclass-specific emission parameters.  Defaults to all parameters.
        implementation: string, optional
            Determines if the forward-backward algorithm is implemented with
            logarithms ("log"), or using scaling ("scaling").  The default is
            to use logarithms for backwards compatability.  However, the
            scaling implementation is generally faster.
        """
        super().__init__(
            n_components=n_components, algorithm=algorithm,
            random_state=random_state, n_iter=n_iter, tol=tol,
            verbose=verbose, params=params, init_params=init_params,
            implementation=implementation)
        self.startprob_prior = startprob_prior
        self.transmat_prior = transmat_prior
        self.monitor_ = ConvergenceMonitor(self.tol, self.n_iter, self.verbose)

    def get_stationary_distribution(self):
        """Compute the stationary distribution of states."""
        # The stationary distribution is proportional to the left-eigenvector
        # associated with the largest eigenvalue (i.e., 1) of the transition
        # matrix.
        check_is_fitted(self, "transmat_")
        eigvals, eigvecs = linalg.eig(self.transmat_.T)
        eigvec = np.real_if_close(eigvecs[:, np.argmax(eigvals)])
        return eigvec / eigvec.sum()

    def _fit_scaling(self, X):
        frameprob = self._compute_likelihood(X)
        log_prob, fwdlattice, scaling_factors = _hmmc.forward_scaling(
            self.startprob_, self.transmat_, frameprob)
        bwdlattice = _hmmc.backward_scaling(
            self.startprob_, self.transmat_, frameprob, scaling_factors)
        posteriors = self._compute_posteriors_scaling(fwdlattice, bwdlattice)
        return frameprob, log_prob, posteriors, fwdlattice, bwdlattice

    def _fit_log(self, X):
        log_frameprob = self._compute_log_likelihood(X)
        log_prob, fwdlattice = _hmmc.forward_log(
            self.startprob_, self.transmat_, log_frameprob)
        bwdlattice = _hmmc.backward_log(
            self.startprob_, self.transmat_, log_frameprob)
        posteriors = self._compute_posteriors_log(fwdlattice, bwdlattice)
        return log_frameprob, log_prob, posteriors, fwdlattice, bwdlattice

    def _do_mstep(self, stats):
        """
        Perform the M-step of EM algorithm.

        Parameters
        ----------
        stats : dict
            Sufficient statistics updated from all available samples.
        """
        # If a prior is < 1, `prior - 1 + starts['start']` can be negative.  In
        # that case maximization of (n1+e1) log p1 + ... + (ns+es) log ps under
        # the conditions sum(p) = 1 and all(p >= 0) show that the negative
        # terms can just be set to zero.
        # The ``np.where`` calls guard against updating forbidden states
        # or transitions in e.g. a left-right HMM.
        if 's' in self.params:
            startprob_ = np.maximum(self.startprob_prior - 1 + stats['start'],
                                    0)
            self.startprob_ = np.where(self.startprob_ == 0, 0, startprob_)
            normalize(self.startprob_)
        if 't' in self.params:
            transmat_ = np.maximum(self.transmat_prior - 1 + stats['trans'], 0)
            self.transmat_ = np.where(self.transmat_ == 0, 0, transmat_)
            normalize(self.transmat_, axis=1)

    def _compute_lower_bound(self, curr_logprob):
        return curr_logprob

    def _init(self, X, lengths=None):
        """
        Initialize model parameters prior to fitting.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Feature matrix of individual samples.
        """
        self._check_and_set_n_features(X)
        init = 1. / self.n_components
        random_state = check_random_state(self.random_state)
        if self._needs_init("s", "startprob_"):
            self.startprob_ = random_state.dirichlet(
                np.full(self.n_components, init))
        if self._needs_init("t", "transmat_"):
            self.transmat_ = random_state.dirichlet(
                np.full(self.n_components, init), size=self.n_components)
        n_fit_scalars_per_param = self._get_n_fit_scalars_per_param()
        if n_fit_scalars_per_param is not None:
            n_fit_scalars = sum(
                n_fit_scalars_per_param[p] for p in self.params)
            if X.size < n_fit_scalars:
                _log.warning(
                    "Fitting a model with %d free scalar parameters with only "
                    "%d data points will result in a degenerate solution.",
                    n_fit_scalars, X.size)

    def _check_sum_1(self, name):
        """Check that an array describes one or more distributions."""
        s = getattr(self, name).sum(axis=-1)
        if not np.allclose(s, 1):
            raise ValueError(
                f"{name} must sum to 1 (got {s:.4f})"
                if s.ndim == 0
                else f"{name} rows must sum to 1 (got row sums of {s})"
                    if s.ndim == 1
                    else "Expected 1D or 2D array")

    def _check(self):
        """
        Validate model parameters prior to fitting.

        Raises
        ------
        ValueError
            If any of the parameters are invalid, e.g. if :attr:`startprob_`
            don't sum to 1.
        """
        self.startprob_ = np.asarray(self.startprob_)
        if len(self.startprob_) != self.n_components:
            raise ValueError("startprob_ must have length n_components")
        self._check_sum_1("startprob_")

        self.transmat_ = np.asarray(self.transmat_)
        if self.transmat_.shape != (self.n_components, self.n_components):
            raise ValueError(
                "transmat_ must have shape (n_components, n_components)")
        self._check_sum_1("transmat_")

    def aic(self, X, lengths=None):
        """
        Akaike information criterion for the current model on the input X.

        AIC = -2*logLike + 2 * num_free_params

        https://en.wikipedia.org/wiki/Akaike_information_criterion

        Parameters
        ----------
        X : array of shape (n_samples, n_dimensions)
            The input samples.
        lengths : array-like of integers, shape (n_sequences, )
            Lengths of the individual sequences in ``X``. The sum of
            these should be ``n_samples``.

        Returns
        -------
        aic : float
            The lower the better.
        """
        n_params = sum(self._get_n_fit_scalars_per_param().values())
        return -2 * self.score(X, lengths=lengths) + 2 * n_params

    def bic(self, X, lengths=None):
        """
        Bayesian information criterion for the current model on the input X.

        BIC = -2*logLike + num_free_params * log(num_of_data)

        https://en.wikipedia.org/wiki/Bayesian_information_criterion

        Parameters
        ----------
        X : array of shape (n_samples, n_dimensions)
            The input samples.
        lengths : array-like of integers, shape (n_sequences, )
            Lengths of the individual sequences in ``X``. The sum of
            these should be ``n_samples``.

        Returns
        -------
        bic : float
            The lower the better.
        """
        n_params = sum(self._get_n_fit_scalars_per_param().values())
        return -2 * self.score(X, lengths=lengths) + n_params * np.log(len(X))


_BaseHMM = BaseHMM  # Backcompat name, will be deprecated in the future.


class VariationalBaseHMM(_AbstractHMM):

    def __init__(self, n_components=1,
                 startprob_prior=None, transmat_prior=None,
                 algorithm="viterbi", random_state=None,
                 n_iter=100, tol=1e-6, verbose=False,
                 params="ste", init_params="ste",
                 implementation="log"):
        super().__init__(
            n_components=n_components, algorithm=algorithm,
            random_state=random_state, n_iter=n_iter, tol=tol,
            verbose=verbose, params=params, init_params=init_params,
            implementation=implementation)

        self.startprob_prior = startprob_prior
        self.transmat_prior = transmat_prior
        self.monitor_ = ConvergenceMonitor(
            self.tol, self.n_iter, self.verbose)

    def _init(self, X, lengths=None):
        """
        Initialize model parameters prior to fitting.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Feature matrix of individual samples.
        lengths : array-like of integers, shape (n_sequences, )
            Lengths of the individual sequences in ``X``. The sum of
            these should be ``n_samples``.
        """
        self._check_and_set_n_features(X)
        nc = self.n_components
        uniform_prior = 1 / nc
        random_state = check_random_state(self.random_state)
        if (self._needs_init("s", "startprob_posterior_")
                or self._needs_init("s", "startprob_prior_")):
            if self.startprob_prior is None:
                startprob_init = uniform_prior
            else:
                startprob_init = self.startprob_prior

            self.startprob_prior_ = np.full(nc, startprob_init)
            self.startprob_posterior_ = random_state.dirichlet(
                np.full(nc, uniform_prior)) * len(lengths)

        if (self._needs_init("t", "transmat_posterior_")
                or self._needs_init("t", "transmat_prior_")):
            if self.transmat_prior is None:
                transmat_init = uniform_prior
            else:
                transmat_init = self.transmat_prior
            self.transmat_prior_ = np.full(
                (nc, nc), transmat_init)
            self.transmat_posterior_ = random_state.dirichlet(
                np.full(nc, uniform_prior), size=nc)
            self.transmat_posterior_ *= sum(lengths) / nc

        n_fit_scalars_per_param = self._get_n_fit_scalars_per_param()
        if n_fit_scalars_per_param is not None:
            n_fit_scalars = sum(
                n_fit_scalars_per_param[p] for p in self.params)
            if X.size < n_fit_scalars:
                _log.warning(
                    "Fitting a model with %d free scalar parameters with only "
                    "%d data points will result in a degenerate solution.",
                    n_fit_scalars, X.size)

    # For Variational Inference, we compute the forward/backward algorithm
    # using subnormalized probabilities.
    def _fit_scaling(self, X):
        frameprob = self._compute_subnorm_likelihood(X)
        logprob, fwdlattice, scaling_factors = _hmmc.forward_scaling(
            self.startprob_subnorm_, self.transmat_subnorm_, frameprob)

        bwdlattice = _hmmc.backward_scaling(
            self.startprob_subnorm_, self.transmat_subnorm_,
            frameprob, scaling_factors)
        posteriors = self._compute_posteriors_scaling(fwdlattice, bwdlattice)
        return frameprob, logprob, posteriors, fwdlattice, bwdlattice

    def _fit_log(self, X):
        framelogprob = self._compute_subnorm_log_likelihood(X)
        logprob, fwdlattice = _hmmc.forward_log(
            self.startprob_subnorm_, self.transmat_subnorm_, framelogprob)
        bwdlattice = _hmmc.backward_log(
            self.startprob_subnorm_, self.transmat_subnorm_, framelogprob)
        posteriors = self._compute_posteriors_log(fwdlattice, bwdlattice)
        return framelogprob, logprob, posteriors, fwdlattice, bwdlattice

    def _check(self):
        """
        Validate model parameters prior to fitting.

        Raises
        ------
        ValueError
            If any of the parameters are invalid, e.g. if :attr:`startprob_`
            don't sum to 1.
        """
        nc = self.n_components

        self.startprob_prior_ = np.asarray(self.startprob_prior_)
        if len(self.startprob_prior_) != nc:
            raise ValueError("startprob_prior_ must have length n_components")
        self.startprob_posterior_ = np.asarray(self.startprob_posterior_)
        if len(self.startprob_posterior_) != nc:
            raise ValueError("startprob_posterior_ must have length "
                             "n_components")

        self.transmat_prior_ = np.asarray(self.transmat_prior_)
        if self.transmat_prior_.shape != (nc, nc):
            raise ValueError("transmat_prior_ must have shape "
                             "(n_components, n_components)")
        self.transmat_posterior_ = np.asarray(self.transmat_posterior_)
        if self.transmat_posterior_.shape != (nc, nc):
            raise ValueError("transmat_posterior_ must have shape "
                             "(n_components, n_components)")

    def _compute_subnorm_likelihood(self, X):
        if (self._compute_subnorm_log_likelihood !=  # prevent recursion
                __class__._compute_subnorm_log_likelihood.__get__(self)):
            return np.exp(self._compute_subnorm_log_likelihood(X))
        else:
            raise NotImplementedError("Must be overridden in subclass")

    def _compute_subnorm_log_likelihood(self, X):
        if (self._compute_subnorm_likelihood !=  # prevent recursion
                __class__._compute_subnorm_likelihood.__get__(self)):
            return np.log(self._compute_subnorm_likelihood(X))
        else:
            raise NotImplementedError("Must be overridden in subclass")

    def _accumulate_sufficient_statistics_scaling(
            self, stats, X, lattice, posteriors, fwdlattice, bwdlattice):
        """
        Implementation of `_accumulate_sufficient_statistics`
        for ``implementation = "log"``.
        """
        stats['nobs'] += 1
        if 's' in self.params:
            stats['start'] += posteriors[0]
        if 't' in self.params:
            n_samples, n_components = lattice.shape
            # when the sample is of length 1, it contains no transitions
            # so there is no reason to update our trans. matrix estimate
            if n_samples <= 1:
                return

            xi_sum = _hmmc.compute_scaling_xi_sum(fwdlattice,
                                                  self.transmat_subnorm_,
                                                  bwdlattice, lattice)
            stats['trans'] += xi_sum

    def _accumulate_sufficient_statistics_log(
            self, stats, X, lattice, posteriors, fwdlattice, bwdlattice):
        """
        Implementation of `_accumulate_sufficient_statistics`
        for ``implementation = "log"``.
        """
        stats['nobs'] += 1
        if 's' in self.params:
            stats['start'] += posteriors[0]
        if 't' in self.params:
            n_samples, n_components = lattice.shape
            # when the sample is of length 1, it contains no transitions
            # so there is no reason to update our trans. matrix estimate
            if n_samples <= 1:
                return

            log_xi_sum = _hmmc.compute_log_xi_sum(
                fwdlattice, self.transmat_subnorm_, bwdlattice,
                lattice)
            with np.errstate(under="ignore"):
                stats['trans'] += np.exp(log_xi_sum)

    def _estep_begin(self):
        """
        Update the subnormalized model parameters.  Called at the beginning of
        each iteration of fit()
        """
        startprob_log_subnorm = (
            special.digamma(self.startprob_posterior_)
            - special.digamma(self.startprob_posterior_.sum()))
        self.startprob_subnorm_ = np.exp(startprob_log_subnorm)

        transmat_log_subnorm = (
            special.digamma(self.transmat_posterior_)
            - special.digamma(self.transmat_posterior_.sum(axis=1)[:, None]))
        self.transmat_subnorm_ = np.exp(transmat_log_subnorm)

    def _do_mstep(self, stats):
        """
        Perform the M-step of EM algorithm.

        Parameters
        ----------
        stats : dict
            Sufficient statistics updated from all available samples.
        """
        if 's' in self.params:
            self.startprob_posterior_ = self.startprob_prior_ + stats['start']
            # For compatability in _AbstractHMM
            self.startprob_ = (self.startprob_posterior_
                               / self.startprob_posterior_.sum())
        if 't' in self.params:
            self.transmat_posterior_ = self.transmat_prior_ + stats['trans']
            # For compatability in _AbstractHMM
            self.transmat_ = (self.transmat_posterior_
                              / self.transmat_posterior_.sum(axis=1)[:, None])

    def _compute_lower_bound(self, curr_logprob):
        """
        Compute the Variational Lower Bound of the model as currently
        configured.

        Following the pattern elsewhere, derived implementations should call
        this method to get the contribution of the current log_prob,
        transmat, and startprob towards the lower bound

        Parameters
        ----------
        curr_logprob : float
                       The current log probability of the data as computed at
                       the subnormalized model parameters.

        Returns
        -------
        lower_bound: float
                     Returns the computed lower bound contribution of the
                     log_prob, startprob, and transmat.
        """
        # Get the contribution from the state transitions,
        # initial probabilities, and the likelihood of the sequences
        startprob_lower_bound = -_kl.kl_dirichlet(
            self.startprob_posterior_, self.startprob_prior_)
        transmat_lower_bound = 0
        for i in range(self.n_components):
            transmat_lower_bound -= _kl.kl_dirichlet(
                self.transmat_posterior_[i], self.transmat_prior_[i])
        return startprob_lower_bound + transmat_lower_bound + curr_logprob