1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
import numpy as np
from numpy.testing import assert_allclose
import pytest
from hmmlearn import hmm
from . import assert_log_likelihood_increasing, normalized
class TestCategoricalAgainstWikipedia:
"""
Examples from Wikipedia:
- http://en.wikipedia.org/wiki/Hidden_Markov_model
- http://en.wikipedia.org/wiki/Viterbi_algorithm
"""
def new_hmm(self, impl):
n_components = 2 # ['Rainy', 'Sunny']
n_features = 3 # ['walk', 'shop', 'clean']
h = hmm.CategoricalHMM(n_components, implementation=impl)
h.n_features = n_features
h.startprob_ = np.array([0.6, 0.4])
h.transmat_ = np.array([[0.7, 0.3], [0.4, 0.6]])
h.emissionprob_ = np.array([[0.1, 0.4, 0.5],
[0.6, 0.3, 0.1]])
return h
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_decode_viterbi(self, implementation):
# From http://en.wikipedia.org/wiki/Viterbi_algorithm:
# "This reveals that the observations ['walk', 'shop', 'clean']
# were most likely generated by states ['Sunny', 'Rainy', 'Rainy'],
# with probability 0.01344."
h = self.new_hmm(implementation)
X = [[0], [1], [2]]
log_prob, state_sequence = h.decode(X, algorithm="viterbi")
assert round(np.exp(log_prob), 5) == 0.01344
assert_allclose(state_sequence, [1, 0, 0])
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_decode_map(self, implementation):
X = [[0], [1], [2]]
h = self.new_hmm(implementation)
_log_prob, state_sequence = h.decode(X, algorithm="map")
assert_allclose(state_sequence, [1, 0, 0])
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_predict(self, implementation):
X = [[0], [1], [2]]
h = self.new_hmm(implementation)
state_sequence = h.predict(X)
posteriors = h.predict_proba(X)
assert_allclose(state_sequence, [1, 0, 0])
assert_allclose(posteriors, [
[0.23170303, 0.76829697],
[0.62406281, 0.37593719],
[0.86397706, 0.13602294],
], rtol=0, atol=1e-6)
class TestCategoricalHMM:
n_components = 2
n_features = 3
def new_hmm(self, impl):
h = hmm.CategoricalHMM(self.n_components, implementation=impl)
h.startprob_ = np.array([0.6, 0.4])
h.transmat_ = np.array([[0.7, 0.3], [0.4, 0.6]])
h.emissionprob_ = np.array([[0.1, 0.4, 0.5], [0.6, 0.3, 0.1]])
return h
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_n_features(self, implementation):
sequences, _ = self.new_hmm(implementation).sample(500)
# set n_features
model = hmm.CategoricalHMM(
n_components=2, implementation=implementation)
assert_log_likelihood_increasing(model, sequences, [500], 10)
assert model.n_features == 3
# Respect n_features
model = hmm.CategoricalHMM(
n_components=2,
implementation=implementation,
n_features=5)
assert_log_likelihood_increasing(model, sequences, [500], 10)
assert model.n_features == 5
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_attributes(self, implementation):
with pytest.raises(ValueError):
h = self.new_hmm(implementation)
h.emissionprob_ = []
h._check()
with pytest.raises(ValueError):
h.emissionprob_ = np.zeros((self.n_components - 2,
self.n_features))
h._check()
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_score_samples(self, implementation):
idx = np.repeat(np.arange(self.n_components), 10)
n_samples = len(idx)
X = np.random.randint(self.n_features, size=(n_samples, 1))
h = self.new_hmm(implementation)
ll, posteriors = h.score_samples(X)
assert posteriors.shape == (n_samples, self.n_components)
assert_allclose(posteriors.sum(axis=1), np.ones(n_samples))
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_sample(self, implementation, n_samples=1000):
h = self.new_hmm(implementation)
X, state_sequence = h.sample(n_samples)
assert X.ndim == 2
assert len(X) == len(state_sequence) == n_samples
assert len(np.unique(X)) == self.n_features
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit(self, implementation, params='ste', n_iter=5):
h = self.new_hmm(implementation)
h.params = params
lengths = np.array([10] * 10)
X, _state_sequence = h.sample(lengths.sum())
# Mess up the parameters and see if we can re-learn them.
h.startprob_ = normalized(np.random.random(self.n_components))
h.transmat_ = normalized(
np.random.random((self.n_components, self.n_components)),
axis=1)
h.emissionprob_ = normalized(
np.random.random((self.n_components, self.n_features)),
axis=1)
assert_log_likelihood_increasing(h, X, lengths, n_iter)
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit_emissionprob(self, implementation):
self.test_fit(implementation, 'e')
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit_with_init(self, implementation, params='ste', n_iter=5):
lengths = [10] * 10
h = self.new_hmm(implementation)
X, _state_sequence = h.sample(sum(lengths))
# use init_function to initialize paramerters
h = hmm.CategoricalHMM(self.n_components, params=params,
init_params=params)
h._init(X, lengths)
assert_log_likelihood_increasing(h, X, lengths, n_iter)
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test__check_and_set_categorical_n_features(self, implementation):
h = self.new_hmm(implementation)
h._check_and_set_n_features(np.array([[0, 0, 2, 1, 3, 1, 1]]).T)
h._check_and_set_n_features(np.array([[0, 0, 1, 3, 1]], np.uint8))
with pytest.raises(ValueError): # non-integral
h._check_and_set_n_features(np.array([[0., 2., 1., 3.]]))
with pytest.raises(ValueError): # negative integers
h._check_and_set_n_features(np.array([[0, -2, 1, 3, 1, 1]]))
|