1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
import numpy as np
from numpy.testing import assert_allclose
import pytest
from sklearn.utils import check_random_state
from .. import hmm
from . import assert_log_likelihood_increasing, make_covar_matrix, normalized
class GaussianHMMTestMixin:
covariance_type = None # set by subclasses
@pytest.fixture(autouse=True)
def setup(self):
self.prng = prng = np.random.RandomState(10)
self.n_components = n_components = 3
self.n_features = n_features = 3
self.startprob = normalized(prng.rand(n_components))
self.transmat = normalized(
prng.rand(n_components, n_components), axis=1)
self.means = prng.randint(-20, 20, (n_components, n_features))
self.covars = make_covar_matrix(
self.covariance_type, n_components, n_features, random_state=prng)
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_bad_covariance_type(self, implementation):
with pytest.raises(ValueError):
h = hmm.GaussianHMM(20, implementation=implementation,
covariance_type='badcovariance_type')
h.means_ = self.means
h.covars_ = []
h.startprob_ = self.startprob
h.transmat_ = self.transmat
h._check()
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_score_samples_and_decode(self, implementation):
h = hmm.GaussianHMM(self.n_components, self.covariance_type,
init_params="st", implementation=implementation)
h.means_ = self.means
h.covars_ = self.covars
# Make sure the means are far apart so posteriors.argmax()
# picks the actual component used to generate the observations.
h.means_ = 20 * h.means_
gaussidx = np.repeat(np.arange(self.n_components), 5)
n_samples = len(gaussidx)
X = (self.prng.randn(n_samples, self.n_features)
+ h.means_[gaussidx])
h._init(X, [n_samples])
ll, posteriors = h.score_samples(X)
assert posteriors.shape == (n_samples, self.n_components)
assert_allclose(posteriors.sum(axis=1), np.ones(n_samples))
viterbi_ll, stateseq = h.decode(X)
assert_allclose(stateseq, gaussidx)
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_sample(self, implementation, n=1000):
h = hmm.GaussianHMM(self.n_components, self.covariance_type,
implementation=implementation)
h.startprob_ = self.startprob
h.transmat_ = self.transmat
# Make sure the means are far apart so posteriors.argmax()
# picks the actual component used to generate the observations.
h.means_ = 20 * self.means
h.covars_ = np.maximum(self.covars, 0.1)
X, state_sequence = h.sample(n, random_state=self.prng)
assert X.shape == (n, self.n_features)
assert len(state_sequence) == n
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit(self, implementation, params='stmc', n_iter=5, **kwargs):
h = hmm.GaussianHMM(self.n_components, self.covariance_type,
implementation=implementation)
h.startprob_ = self.startprob
h.transmat_ = normalized(
self.transmat + np.diag(self.prng.rand(self.n_components)), 1)
h.means_ = 20 * self.means
h.covars_ = self.covars
lengths = [10] * 10
X, _state_sequence = h.sample(sum(lengths), random_state=self.prng)
# Mess up the parameters and see if we can re-learn them.
# TODO: change the params and uncomment the check
h.fit(X, lengths=lengths)
# assert_log_likelihood_increasing(h, X, lengths, n_iter)
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_criterion(self, implementation):
random_state = check_random_state(42)
m1 = hmm.GaussianHMM(self.n_components, init_params="",
covariance_type=self.covariance_type)
m1.startprob_ = self.startprob
m1.transmat_ = self.transmat
m1.means_ = self.means * 10
m1.covars_ = self.covars
X, _ = m1.sample(2000, random_state=random_state)
aic = []
bic = []
ns = [2, 3, 4]
for n in ns:
h = hmm.GaussianHMM(n, self.covariance_type, n_iter=500,
random_state=random_state, implementation=implementation)
h.fit(X)
aic.append(h.aic(X))
bic.append(h.bic(X))
assert np.all(aic) > 0
assert np.all(bic) > 0
# AIC / BIC pick the right model occasionally
# assert ns[np.argmin(aic)] == self.n_components
# assert ns[np.argmin(bic)] == self.n_components
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit_ignored_init_warns(self, implementation, caplog):
# This test occasionally will be flaky in learning the model.
# What is important here, is that the expected log message is produced
# We can test convergence properties elsewhere.
h = hmm.GaussianHMM(self.n_components, self.covariance_type,
implementation=implementation)
h.startprob_ = self.startprob
h.fit(self.prng.randn(100, self.n_components))
found = False
for record in caplog.records:
if "will be overwritten" in record.getMessage():
found = True
assert found, "Did not find expected warning message"
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit_too_little_data(self, implementation, caplog):
h = hmm.GaussianHMM(
self.n_components, self.covariance_type, init_params="",
implementation=implementation)
h.startprob_ = self.startprob
h.transmat_ = self.transmat
h.means_ = 20 * self.means
h.covars_ = np.maximum(self.covars, 0.1)
h._init(self.prng.randn(5, self.n_components), 5)
assert len(caplog.records) == 1
assert "degenerate solution" in caplog.records[0].getMessage()
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit_sequences_of_different_length(self, implementation):
lengths = [3, 4, 5]
X = self.prng.rand(sum(lengths), self.n_features)
h = hmm.GaussianHMM(self.n_components, self.covariance_type,
implementation=implementation)
# This shouldn't raise
# ValueError: setting an array element with a sequence.
h.fit(X, lengths=lengths)
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit_with_length_one_signal(self, implementation):
lengths = [10, 8, 1]
X = self.prng.rand(sum(lengths), self.n_features)
h = hmm.GaussianHMM(self.n_components, self.covariance_type,
implementation=implementation)
# This shouldn't raise
# ValueError: zero-size array to reduction operation maximum which
# has no identity
h.fit(X, lengths=lengths)
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit_zero_variance(self, implementation):
# Example from issue #2 on GitHub.
X = np.asarray([
[7.15000000e+02, 5.85000000e+02, 0.00000000e+00, 0.00000000e+00],
[7.15000000e+02, 5.20000000e+02, 1.04705811e+00, -6.03696289e+01],
[7.15000000e+02, 4.55000000e+02, 7.20886230e-01, -5.27055664e+01],
[7.15000000e+02, 3.90000000e+02, -4.57946777e-01, -7.80605469e+01],
[7.15000000e+02, 3.25000000e+02, -6.43127441e+00, -5.59954834e+01],
[7.15000000e+02, 2.60000000e+02, -2.90063477e+00, -7.80220947e+01],
[7.15000000e+02, 1.95000000e+02, 8.45532227e+00, -7.03294373e+01],
[7.15000000e+02, 1.30000000e+02, 4.09387207e+00, -5.83621216e+01],
[7.15000000e+02, 6.50000000e+01, -1.21667480e+00, -4.48131409e+01]
])
h = hmm.GaussianHMM(3, self.covariance_type,
implementation=implementation)
h.fit(X)
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit_with_priors(self, implementation, init_params='mc',
params='stmc', n_iter=20):
# We have a few options to make this a robust test, such as
# a. increase the amount of training data to ensure convergence
# b. Only learn some of the parameters (simplify the problem)
# c. Increase the number of iterations
#
# (c) seems to not affect the ci/cd time too much.
startprob_prior = 10 * self.startprob + 2.0
transmat_prior = 10 * self.transmat + 2.0
means_prior = self.means
means_weight = 2.0
covars_weight = 2.0
if self.covariance_type in ('full', 'tied'):
covars_weight += self.n_features
covars_prior = self.covars
h = hmm.GaussianHMM(self.n_components, self.covariance_type,
implementation=implementation)
h.startprob_ = self.startprob
h.startprob_prior = startprob_prior
h.transmat_ = normalized(
self.transmat + np.diag(self.prng.rand(self.n_components)), 1)
h.transmat_prior = transmat_prior
h.means_ = 20 * self.means
h.means_prior = means_prior
h.means_weight = means_weight
h.covars_ = self.covars
h.covars_prior = covars_prior
h.covars_weight = covars_weight
lengths = [200] * 10
X, _state_sequence = h.sample(sum(lengths), random_state=self.prng)
# Re-initialize the parameters and check that we can converge to
# the original parameter values.
h_learn = hmm.GaussianHMM(self.n_components, self.covariance_type,
init_params=init_params, params=params,
implementation=implementation,)
# don't use random parameters for testing
init = 1. / h_learn.n_components
h_learn.startprob_ = np.full(h_learn.n_components, init)
h_learn.transmat_ = \
np.full((h_learn.n_components, h_learn.n_components), init)
h_learn.n_iter = 0
h_learn.fit(X, lengths=lengths)
assert_log_likelihood_increasing(h_learn, X, lengths, n_iter)
# Make sure we've converged to the right parameters.
# In general, to account for state switching,
# compare sorted values.
# a) means
assert_allclose(sorted(h.means_.ravel().tolist()),
sorted(h_learn.means_.ravel().tolist()),
0.01)
# b) covars are hard to estimate precisely from a relatively small
# sample, thus the large threshold
# account for how we store the covars_compressed
orig = np.broadcast_to(h._covars_, h_learn._covars_.shape)
assert_allclose(
sorted(orig.ravel().tolist()),
sorted(h_learn._covars_.ravel().tolist()),
10)
class TestGaussianHMMWithSphericalCovars(GaussianHMMTestMixin):
covariance_type = 'spherical'
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_issue_385(self, implementation):
model = hmm.GaussianHMM(n_components=2, covariance_type="spherical")
model.startprob_ = np.array([0.6, 0.4])
model.transmat_ = np.array([[0.4, 0.6],
[0.9, 0.1]])
model.means_ = np.array([[3.0], [5.0]])
model.covars_ = np.array([[[[4.0]]], [[[3.0]]]])
# If setting up an HMM to immediately sample from, the easiest thing is
# to just set n_features. We could infer it from self.means_ perhaps.
model.n_features = 1
covars = model.covars_
# Make sure covariance is of correct format - the spherical case would
# throw an exception here.
model.sample(1000)
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit_startprob_and_transmat(self, implementation):
self.test_fit(implementation, 'st')
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_underflow_from_scaling(self, implementation):
# Setup an ill-conditioned dataset
data1 = self.prng.normal(0, 1, 100).tolist()
data2 = self.prng.normal(5, 1, 100).tolist()
data3 = self.prng.normal(0, 1, 100).tolist()
data4 = self.prng.normal(5, 1, 100).tolist()
data = np.concatenate([data1, data2, data3, data4])
# Insert an outlier
data[40] = 10000
data2d = data[:, None]
lengths = [len(data2d)]
h = hmm.GaussianHMM(2, n_iter=100, verbose=True,
covariance_type=self.covariance_type,
implementation=implementation, init_params="")
h.startprob_ = [0.0, 1]
h.transmat_ = [[0.4, 0.6], [0.6, 0.4]]
h.means_ = [[0], [5]]
h.covars_ = [[1], [1]]
if implementation == "scaling":
with pytest.raises(ValueError):
h.fit(data2d, lengths)
else:
h.fit(data2d, lengths)
class TestGaussianHMMWithDiagonalCovars(GaussianHMMTestMixin):
covariance_type = 'diag'
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_covar_is_writeable(self, implementation):
h = hmm.GaussianHMM(n_components=1, covariance_type="diag",
init_params="c", implementation=implementation)
X = self.prng.normal(size=(1000, 5))
h._init(X, 1000)
# np.diag returns a read-only view of the array in NumPy 1.9.X.
# Make sure this doesn't prevent us from fitting an HMM with
# diagonal covariance matrix. See PR#44 on GitHub for details
# and discussion.
assert h._covars_.flags["WRITEABLE"]
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit_left_right(self, implementation):
transmat = np.zeros((self.n_components, self.n_components))
# Left-to-right: each state is connected to itself and its
# direct successor.
for i in range(self.n_components):
if i == self.n_components - 1:
transmat[i, i] = 1.0
else:
transmat[i, i] = transmat[i, i + 1] = 0.5
# Always start in first state
startprob = np.zeros(self.n_components)
startprob[0] = 1.0
lengths = [10, 8, 1]
X = self.prng.rand(sum(lengths), self.n_features)
h = hmm.GaussianHMM(self.n_components, covariance_type="diag",
params="mct", init_params="cm",
implementation=implementation)
h.startprob_ = startprob.copy()
h.transmat_ = transmat.copy()
h.fit(X)
assert (h.startprob_[startprob == 0.0] == 0.0).all()
assert (h.transmat_[transmat == 0.0] == 0.0).all()
posteriors = h.predict_proba(X)
assert not np.isnan(posteriors).any()
assert_allclose(posteriors.sum(axis=1), 1.)
score, state_sequence = h.decode(X, algorithm="viterbi")
assert np.isfinite(score)
class TestGaussianHMMWithTiedCovars(GaussianHMMTestMixin):
covariance_type = 'tied'
class TestGaussianHMMWithFullCovars(GaussianHMMTestMixin):
covariance_type = 'full'
|