File: test_gaussian_hmm.py

package info (click to toggle)
python-hmmlearn 0.3.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 588 kB
  • sloc: python: 4,797; cpp: 321; makefile: 13
file content (366 lines) | stat: -rw-r--r-- 15,586 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import numpy as np
from numpy.testing import assert_allclose
import pytest
from sklearn.utils import check_random_state

from .. import hmm
from . import assert_log_likelihood_increasing, make_covar_matrix, normalized


class GaussianHMMTestMixin:
    covariance_type = None  # set by subclasses

    @pytest.fixture(autouse=True)
    def setup(self):
        self.prng = prng = np.random.RandomState(10)
        self.n_components = n_components = 3
        self.n_features = n_features = 3
        self.startprob = normalized(prng.rand(n_components))
        self.transmat = normalized(
            prng.rand(n_components, n_components), axis=1)
        self.means = prng.randint(-20, 20, (n_components, n_features))
        self.covars = make_covar_matrix(
            self.covariance_type, n_components, n_features, random_state=prng)

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_bad_covariance_type(self, implementation):
        with pytest.raises(ValueError):
            h = hmm.GaussianHMM(20, implementation=implementation,
                                covariance_type='badcovariance_type')
            h.means_ = self.means
            h.covars_ = []
            h.startprob_ = self.startprob
            h.transmat_ = self.transmat
            h._check()

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_score_samples_and_decode(self, implementation):
        h = hmm.GaussianHMM(self.n_components, self.covariance_type,
                            init_params="st", implementation=implementation)
        h.means_ = self.means
        h.covars_ = self.covars

        # Make sure the means are far apart so posteriors.argmax()
        # picks the actual component used to generate the observations.
        h.means_ = 20 * h.means_

        gaussidx = np.repeat(np.arange(self.n_components), 5)
        n_samples = len(gaussidx)
        X = (self.prng.randn(n_samples, self.n_features)
             + h.means_[gaussidx])
        h._init(X, [n_samples])
        ll, posteriors = h.score_samples(X)
        assert posteriors.shape == (n_samples, self.n_components)
        assert_allclose(posteriors.sum(axis=1), np.ones(n_samples))

        viterbi_ll, stateseq = h.decode(X)
        assert_allclose(stateseq, gaussidx)

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_sample(self, implementation, n=1000):
        h = hmm.GaussianHMM(self.n_components, self.covariance_type,
                            implementation=implementation)
        h.startprob_ = self.startprob
        h.transmat_ = self.transmat
        # Make sure the means are far apart so posteriors.argmax()
        # picks the actual component used to generate the observations.
        h.means_ = 20 * self.means
        h.covars_ = np.maximum(self.covars, 0.1)

        X, state_sequence = h.sample(n, random_state=self.prng)
        assert X.shape == (n, self.n_features)
        assert len(state_sequence) == n

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_fit(self, implementation, params='stmc', n_iter=5, **kwargs):
        h = hmm.GaussianHMM(self.n_components, self.covariance_type,
                            implementation=implementation)
        h.startprob_ = self.startprob
        h.transmat_ = normalized(
            self.transmat + np.diag(self.prng.rand(self.n_components)), 1)
        h.means_ = 20 * self.means
        h.covars_ = self.covars

        lengths = [10] * 10
        X, _state_sequence = h.sample(sum(lengths), random_state=self.prng)

        # Mess up the parameters and see if we can re-learn them.
        # TODO: change the params and uncomment the check
        h.fit(X, lengths=lengths)
        # assert_log_likelihood_increasing(h, X, lengths, n_iter)

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_criterion(self, implementation):
        random_state = check_random_state(42)
        m1 = hmm.GaussianHMM(self.n_components, init_params="",
            covariance_type=self.covariance_type)
        m1.startprob_ = self.startprob
        m1.transmat_ = self.transmat
        m1.means_ = self.means * 10
        m1.covars_ = self.covars

        X, _ = m1.sample(2000, random_state=random_state)

        aic = []
        bic = []
        ns = [2, 3, 4]
        for n in ns:
            h = hmm.GaussianHMM(n, self.covariance_type, n_iter=500,
                random_state=random_state, implementation=implementation)
            h.fit(X)
            aic.append(h.aic(X))
            bic.append(h.bic(X))

        assert np.all(aic) > 0
        assert np.all(bic) > 0
        # AIC / BIC pick the right model occasionally
        # assert ns[np.argmin(aic)] == self.n_components
        # assert ns[np.argmin(bic)] == self.n_components

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_fit_ignored_init_warns(self, implementation, caplog):
        # This test occasionally will be flaky in learning the model.
        # What is important here, is that the expected log message is produced
        # We can test convergence properties elsewhere.
        h = hmm.GaussianHMM(self.n_components, self.covariance_type,
                            implementation=implementation)
        h.startprob_ = self.startprob
        h.fit(self.prng.randn(100, self.n_components))
        found = False
        for record in caplog.records:
            if "will be overwritten" in record.getMessage():
                found = True
        assert found, "Did not find expected warning message"

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_fit_too_little_data(self, implementation, caplog):
        h = hmm.GaussianHMM(
            self.n_components, self.covariance_type, init_params="",
            implementation=implementation)
        h.startprob_ = self.startprob
        h.transmat_ = self.transmat
        h.means_ = 20 * self.means
        h.covars_ = np.maximum(self.covars, 0.1)
        h._init(self.prng.randn(5, self.n_components), 5)
        assert len(caplog.records) == 1
        assert "degenerate solution" in caplog.records[0].getMessage()

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_fit_sequences_of_different_length(self, implementation):
        lengths = [3, 4, 5]
        X = self.prng.rand(sum(lengths), self.n_features)

        h = hmm.GaussianHMM(self.n_components, self.covariance_type,
                            implementation=implementation)
        # This shouldn't raise
        # ValueError: setting an array element with a sequence.
        h.fit(X, lengths=lengths)

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_fit_with_length_one_signal(self, implementation):
        lengths = [10, 8, 1]
        X = self.prng.rand(sum(lengths), self.n_features)

        h = hmm.GaussianHMM(self.n_components, self.covariance_type,
                            implementation=implementation)
        # This shouldn't raise
        # ValueError: zero-size array to reduction operation maximum which
        #             has no identity
        h.fit(X, lengths=lengths)

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_fit_zero_variance(self, implementation):
        # Example from issue #2 on GitHub.
        X = np.asarray([
            [7.15000000e+02, 5.85000000e+02, 0.00000000e+00, 0.00000000e+00],
            [7.15000000e+02, 5.20000000e+02, 1.04705811e+00, -6.03696289e+01],
            [7.15000000e+02, 4.55000000e+02, 7.20886230e-01, -5.27055664e+01],
            [7.15000000e+02, 3.90000000e+02, -4.57946777e-01, -7.80605469e+01],
            [7.15000000e+02, 3.25000000e+02, -6.43127441e+00, -5.59954834e+01],
            [7.15000000e+02, 2.60000000e+02, -2.90063477e+00, -7.80220947e+01],
            [7.15000000e+02, 1.95000000e+02, 8.45532227e+00, -7.03294373e+01],
            [7.15000000e+02, 1.30000000e+02, 4.09387207e+00, -5.83621216e+01],
            [7.15000000e+02, 6.50000000e+01, -1.21667480e+00, -4.48131409e+01]
        ])
        h = hmm.GaussianHMM(3, self.covariance_type,
                            implementation=implementation)
        h.fit(X)

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_fit_with_priors(self, implementation, init_params='mc',
                             params='stmc', n_iter=20):
        # We have a few options to make this a robust test, such as
        # a. increase the amount of training data to ensure convergence
        # b. Only learn some of the parameters (simplify the problem)
        # c. Increase the number of iterations
        #
        # (c) seems to not affect the ci/cd time too much.
        startprob_prior = 10 * self.startprob + 2.0
        transmat_prior = 10 * self.transmat + 2.0
        means_prior = self.means
        means_weight = 2.0
        covars_weight = 2.0
        if self.covariance_type in ('full', 'tied'):
            covars_weight += self.n_features
        covars_prior = self.covars
        h = hmm.GaussianHMM(self.n_components, self.covariance_type,
                            implementation=implementation)
        h.startprob_ = self.startprob
        h.startprob_prior = startprob_prior
        h.transmat_ = normalized(
            self.transmat + np.diag(self.prng.rand(self.n_components)), 1)
        h.transmat_prior = transmat_prior
        h.means_ = 20 * self.means
        h.means_prior = means_prior
        h.means_weight = means_weight
        h.covars_ = self.covars
        h.covars_prior = covars_prior
        h.covars_weight = covars_weight

        lengths = [200] * 10
        X, _state_sequence = h.sample(sum(lengths), random_state=self.prng)

        # Re-initialize the parameters and check that we can converge to
        # the original parameter values.
        h_learn = hmm.GaussianHMM(self.n_components, self.covariance_type,
                                  init_params=init_params, params=params,
                                  implementation=implementation,)
        # don't use random parameters for testing
        init = 1. / h_learn.n_components
        h_learn.startprob_ = np.full(h_learn.n_components, init)
        h_learn.transmat_ = \
            np.full((h_learn.n_components, h_learn.n_components), init)

        h_learn.n_iter = 0
        h_learn.fit(X, lengths=lengths)

        assert_log_likelihood_increasing(h_learn, X, lengths, n_iter)

        # Make sure we've converged to the right parameters.
        # In general, to account for state switching,
        # compare sorted values.
        # a) means
        assert_allclose(sorted(h.means_.ravel().tolist()),
                        sorted(h_learn.means_.ravel().tolist()),
                        0.01)
        # b) covars are hard to estimate precisely from a relatively small
        #    sample, thus the large threshold

        # account for how we store the covars_compressed
        orig = np.broadcast_to(h._covars_, h_learn._covars_.shape)
        assert_allclose(
            sorted(orig.ravel().tolist()),
            sorted(h_learn._covars_.ravel().tolist()),
            10)


class TestGaussianHMMWithSphericalCovars(GaussianHMMTestMixin):
    covariance_type = 'spherical'

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_issue_385(self, implementation):
        model = hmm.GaussianHMM(n_components=2, covariance_type="spherical")
        model.startprob_ = np.array([0.6, 0.4])
        model.transmat_ = np.array([[0.4, 0.6],
                                    [0.9, 0.1]])
        model.means_ = np.array([[3.0], [5.0]])
        model.covars_ = np.array([[[[4.0]]], [[[3.0]]]])

        # If setting up an HMM to immediately sample from, the easiest thing is
        # to just set n_features.  We could infer it from self.means_ perhaps.
        model.n_features = 1
        covars = model.covars_
        # Make sure covariance is of correct format - the spherical case would
        # throw an exception here.
        model.sample(1000)

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_fit_startprob_and_transmat(self, implementation):
        self.test_fit(implementation, 'st')

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_underflow_from_scaling(self, implementation):
        # Setup an ill-conditioned dataset
        data1 = self.prng.normal(0, 1, 100).tolist()
        data2 = self.prng.normal(5, 1, 100).tolist()
        data3 = self.prng.normal(0, 1, 100).tolist()
        data4 = self.prng.normal(5, 1, 100).tolist()
        data = np.concatenate([data1, data2, data3, data4])
        # Insert an outlier
        data[40] = 10000
        data2d = data[:, None]
        lengths = [len(data2d)]
        h = hmm.GaussianHMM(2, n_iter=100, verbose=True,
                            covariance_type=self.covariance_type,
                            implementation=implementation, init_params="")
        h.startprob_ = [0.0, 1]
        h.transmat_ = [[0.4, 0.6], [0.6, 0.4]]
        h.means_ = [[0], [5]]
        h.covars_ = [[1], [1]]
        if implementation == "scaling":
            with pytest.raises(ValueError):
                h.fit(data2d, lengths)

        else:
            h.fit(data2d, lengths)


class TestGaussianHMMWithDiagonalCovars(GaussianHMMTestMixin):
    covariance_type = 'diag'

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_covar_is_writeable(self, implementation):
        h = hmm.GaussianHMM(n_components=1, covariance_type="diag",
                            init_params="c", implementation=implementation)
        X = self.prng.normal(size=(1000, 5))
        h._init(X, 1000)

        # np.diag returns a read-only view of the array in NumPy 1.9.X.
        # Make sure this doesn't prevent us from fitting an HMM with
        # diagonal covariance matrix. See PR#44 on GitHub for details
        # and discussion.
        assert h._covars_.flags["WRITEABLE"]

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_fit_left_right(self, implementation):
        transmat = np.zeros((self.n_components, self.n_components))

        # Left-to-right: each state is connected to itself and its
        # direct successor.
        for i in range(self.n_components):
            if i == self.n_components - 1:
                transmat[i, i] = 1.0
            else:
                transmat[i, i] = transmat[i, i + 1] = 0.5

        # Always start in first state
        startprob = np.zeros(self.n_components)
        startprob[0] = 1.0

        lengths = [10, 8, 1]
        X = self.prng.rand(sum(lengths), self.n_features)

        h = hmm.GaussianHMM(self.n_components, covariance_type="diag",
                            params="mct", init_params="cm",
                            implementation=implementation)
        h.startprob_ = startprob.copy()
        h.transmat_ = transmat.copy()
        h.fit(X)

        assert (h.startprob_[startprob == 0.0] == 0.0).all()
        assert (h.transmat_[transmat == 0.0] == 0.0).all()

        posteriors = h.predict_proba(X)
        assert not np.isnan(posteriors).any()
        assert_allclose(posteriors.sum(axis=1), 1.)

        score, state_sequence = h.decode(X, algorithm="viterbi")
        assert np.isfinite(score)


class TestGaussianHMMWithTiedCovars(GaussianHMMTestMixin):
    covariance_type = 'tied'


class TestGaussianHMMWithFullCovars(GaussianHMMTestMixin):
    covariance_type = 'full'