1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
import itertools
import numpy as np
from numpy.testing import assert_allclose
import pytest
from hmmlearn import hmm
from hmmlearn.base import ConvergenceMonitor
# Example multi-sequence data, arranged as shape
# (n_sequences, n_samples, n_features)
#
# This data is a reduced subset of data_training.npy
# from issue https://github.com/hmmlearn/hmmlearn/issues/410
# illustrating GMMHMM fit diverging during EM iterations.
#
# Transformations to reduce data volume:
# - keep only first 3 of many sequences, discard rest
# - keep only first 50 of many samples per sequence, discard rest
# - keep only first 4 of 17 features per sample, discard rest
EXAMPLE_SEQUENCES_ISSUE_410_PRUNED = np.array(
[
np.array(
[
[0.00992058, 0.44151747, 0.5395124, 0.40644765],
[0.00962487, 0.45613006, 0.52375835, 0.3899082],
[0.00915721, 0.47111648, 0.5103008, 0.3846845],
[0.00916073, 0.4749602, 0.5241155, 0.39899495],
[0.0090966, 0.47398633, 0.53792244, 0.41295874],
[0.00953476, 0.47201437, 0.5322343, 0.41661483],
[0.00916542, 0.4455471, 0.55598766, 0.40831617],
[0.00906925, 0.43173638, 0.56246823, 0.39109665],
[0.00826067, 0.4136997, 0.58712745, 0.39158684],
[0.00828806, 0.41975173, 0.60497123, 0.38206288],
[0.00788883, 0.397979, 0.63639283, 0.3627324],
[0.00765208, 0.38908702, 0.65764546, 0.3516956],
[0.00738148, 0.38130987, 0.6522844, 0.36725503],
[0.00717299, 0.37383446, 0.6722188, 0.37951013],
[0.0073711, 0.37058228, 0.6799041, 0.3860375],
[0.00728311, 0.37892842, 0.65606904, 0.39165357],
[0.00730301, 0.39218283, 0.6332023, 0.3976117],
[0.00713718, 0.38652796, 0.6423802, 0.34927416],
[0.00683423, 0.3656172, 0.68119335, 0.2912439],
[0.00663389, 0.34920084, 0.68535674, 0.28290597],
[0.00625478, 0.3525497, 0.6658849, 0.30369937],
[0.00614696, 0.35593832, 0.65440905, 0.3450122],
[0.00611069, 0.35073754, 0.6559732, 0.33597857],
[0.00635504, 0.3360095, 0.6800729, 0.32301348],
[0.00617533, 0.3444746, 0.6745925, 0.34155408],
[0.00592057, 0.35373318, 0.66947186, 0.32476413],
[0.00564618, 0.36178407, 0.6560819, 0.3297305],
[0.00572176, 0.37058342, 0.6551206, 0.2967357],
[0.00578371, 0.39031005, 0.64601576, 0.33421013],
[0.00577161, 0.41922286, 0.6089396, 0.3717376],
[0.00579954, 0.41518527, 0.60426843, 0.38774568],
[0.00578072, 0.40165138, 0.6203536, 0.34574744],
[0.00583212, 0.42201585, 0.60890085, 0.38103116],
[0.00572761, 0.40093482, 0.63888615, 0.36249077],
[0.00594841, 0.3804375, 0.6576098, 0.37927687],
[0.0059343, 0.34200934, 0.693946, 0.3007063],
[0.00591482, 0.3709248, 0.66136825, 0.32304856],
[0.0055425, 0.41159946, 0.62043166, 0.3460799],
[0.00548492, 0.40038764, 0.6440804, 0.33333993],
[0.00552325, 0.36867827, 0.6703099, 0.30612737],
[0.00553349, 0.35795027, 0.67543924, 0.27393535],
[0.00558642, 0.4015568, 0.62600005, 0.31275502],
[0.00565522, 0.40925154, 0.6178226, 0.3131643],
[0.0058172, 0.42638385, 0.6077434, 0.33476466],
[0.00585697, 0.40742254, 0.6218038, 0.37967283],
[0.00591527, 0.4296229, 0.6016123, 0.3985932],
[0.00604816, 0.43141186, 0.59317786, 0.42083132],
[0.00621391, 0.4110697, 0.6092669, 0.38827285],
[0.00656536, 0.39309287, 0.60035396, 0.41596898],
[0.00693208, 0.37821782, 0.59813255, 0.4394344],
],
dtype=np.float32,
),
np.array(
[
[0.00318667, 0.48804316, 0.52020603, 0.36232004],
[0.00322638, 0.48808283, 0.5341949, 0.37973505],
[0.00329762, 0.47688982, 0.5563834, 0.4047565],
[0.00321911, 0.48151806, 0.54239404, 0.38407174],
[0.00400121, 0.5309283, 0.49719027, 0.40301552],
[0.00461331, 0.5856188, 0.44557935, 0.40280044],
[0.0048873, 0.59214115, 0.4330637, 0.43839055],
[0.00411017, 0.53695357, 0.49013752, 0.3832056],
[0.00357234, 0.48548815, 0.54152006, 0.3475358],
[0.00341532, 0.46990934, 0.57406586, 0.33449954],
[0.00345838, 0.50714695, 0.51190466, 0.38789546],
[0.00341552, 0.526225, 0.48219037, 0.41689718],
[0.0034434, 0.5293161, 0.47968563, 0.4379618],
[0.00342251, 0.49587825, 0.53558546, 0.4021806],
[0.00329584, 0.5082987, 0.52165693, 0.4086313],
[0.0031443, 0.519554, 0.49245426, 0.3961157],
[0.0030792, 0.5455676, 0.45203313, 0.423718],
[0.00320465, 0.5504491, 0.43865028, 0.45784852],
[0.00329045, 0.52342314, 0.48308045, 0.455756],
[0.00342623, 0.50302553, 0.495605, 0.45614803],
[0.00347294, 0.48462915, 0.52492356, 0.41467494],
[0.00352737, 0.45118907, 0.53679097, 0.38664353],
[0.00349953, 0.40440804, 0.59128445, 0.3342833],
[0.00343233, 0.385624, 0.61139005, 0.29829293],
[0.00333838, 0.4443106, 0.55629146, 0.3360141],
[0.00341689, 0.47139308, 0.5338217, 0.34617022],
[0.00349784, 0.49085665, 0.5179333, 0.38301566],
[0.00354852, 0.45714432, 0.5581238, 0.3514836],
[0.00336909, 0.4432368, 0.5735479, 0.37587976],
[0.00334855, 0.42174804, 0.60338825, 0.36684743],
[0.00340526, 0.4299499, 0.5964124, 0.38658547],
[0.00355591, 0.44496518, 0.5775449, 0.37693518],
[0.00368621, 0.4641773, 0.54175687, 0.38873497],
[0.00392683, 0.48638234, 0.52129495, 0.40342456],
[0.00444013, 0.5311254, 0.4699971, 0.41572142],
[0.00559078, 0.5725662, 0.42817408, 0.42607802],
[0.00651121, 0.60758656, 0.3687854, 0.45583618],
[0.00731191, 0.60793436, 0.36194792, 0.46369436],
[0.0075791, 0.56968933, 0.409531, 0.40896642],
[0.00813889, 0.5602184, 0.43285215, 0.35258207],
[0.00887025, 0.5855726, 0.40227312, 0.35542902],
[0.00897418, 0.609533, 0.35594714, 0.3942479],
[0.01022383, 0.6129873, 0.3352133, 0.47778368],
[0.0095141, 0.5595026, 0.4162315, 0.45395738],
[0.00841102, 0.49951875, 0.48765272, 0.4517436],
[0.00826918, 0.45066664, 0.5471808, 0.3476721],
[0.01868482, 0.39936644, 0.55312306, 0.43391562],
[0.04211371, 0.3675188, 0.56271124, 0.53548455],
[0.07297403, 0.3576941, 0.57314515, 0.6578705],
[0.10756538, 0.413695, 0.5337025, 0.653491],
],
dtype=np.float32,
),
np.array(
[
[0.00302289, 0.47364405, 0.53537434, 0.45129624],
[0.00311589, 0.45328405, 0.5570029, 0.42494437],
[0.00315774, 0.44939527, 0.5723259, 0.4117937],
[0.00314883, 0.46795434, 0.54135257, 0.3953221],
[0.00309122, 0.49266115, 0.5156292, 0.4080569],
[0.00312682, 0.49728185, 0.51451075, 0.41902116],
[0.00323118, 0.49948877, 0.5244724, 0.45043528],
[0.00325324, 0.47703367, 0.5608516, 0.42876282],
[0.00322127, 0.4831656, 0.5520302, 0.43367508],
[0.00314415, 0.5081604, 0.5305388, 0.47354758],
[0.00307265, 0.51409185, 0.5208431, 0.46550223],
[0.00312928, 0.5049119, 0.5267695, 0.44442567],
[0.00313668, 0.47089654, 0.55917096, 0.37248307],
[0.00320294, 0.45442477, 0.57189673, 0.38878405],
[0.00317113, 0.43952465, 0.59469926, 0.3535012],
[0.00323172, 0.46230638, 0.5713085, 0.39267808],
[0.00323527, 0.50055844, 0.52773774, 0.4445253],
[0.00322912, 0.5141386, 0.501789, 0.488796],
[0.00312394, 0.53217465, 0.47047156, 0.49383518],
[0.00305265, 0.5208433, 0.50014937, 0.459741],
[0.00305853, 0.51386, 0.5120822, 0.43915167],
[0.00311382, 0.47278965, 0.57036394, 0.45423037],
[0.00318763, 0.46807718, 0.5674287, 0.43843716],
[0.00318154, 0.47042188, 0.5779207, 0.44580007],
[0.00303793, 0.46571356, 0.5818657, 0.4107192],
[0.00299003, 0.44406536, 0.60040486, 0.38005733],
[0.00296462, 0.44092676, 0.59199274, 0.3560812],
[0.00307418, 0.45244223, 0.56540257, 0.33132356],
[0.00302929, 0.47221994, 0.5470938, 0.36822143],
[0.00301338, 0.47062206, 0.54911035, 0.3680197],
[0.00291349, 0.45564204, 0.5619591, 0.3808152],
[0.00295025, 0.47307628, 0.54229873, 0.35219967],
[0.00289911, 0.4725018, 0.54288876, 0.38314143],
[0.00291358, 0.45272404, 0.5728319, 0.37214962],
[0.00294044, 0.4570347, 0.5649049, 0.42110214],
[0.00298315, 0.4561437, 0.55468136, 0.40142712],
[0.00303691, 0.49613172, 0.52464443, 0.42899716],
[0.00300609, 0.49105296, 0.5310325, 0.41341364],
[0.00305483, 0.532239, 0.485052, 0.46893936],
[0.00298801, 0.51202387, 0.49897632, 0.45285705],
[0.0030795, 0.5070261, 0.5062058, 0.44057184],
[0.00303104, 0.47002167, 0.56080073, 0.40074068],
[0.00308184, 0.4575324, 0.56803167, 0.3928257],
[0.00291516, 0.44490653, 0.58391964, 0.40129626],
[0.00289649, 0.4531514, 0.5818511, 0.407385],
[0.00284487, 0.4488143, 0.5850243, 0.41675568],
[0.00291576, 0.4616304, 0.57469726, 0.40793785],
[0.00287342, 0.46473294, 0.54888374, 0.41002542],
[0.00303153, 0.4966541, 0.5055506, 0.4316879],
[0.00327755, 0.45762977, 0.529044, 0.4493881],
],
dtype=np.float32,
),
]
)
class StrictMonitor(ConvergenceMonitor):
@property
def converged(self):
# The default ConvergenceMonitor regards some scenarios
# as "converged" when they have not necessarily converged:
#
# 1. exhausting max iterations
# 2. decreases in log_prob between successive EM iterations
#
# This second behaviour should (ignoring numerical problems)
# never happen if the EM implementation is correct. EM is a
# local optimisation method, it may not find a global maxima,
# but log_prob should always be non-decreasing between each
# pair of successive iterations.
assert not np.isnan(self.history[-1]), "log_prob must not be nan"
if len(self.history) < 2:
return False
assert self.history[-1] >= self.history[-2] - self.tol, \
"log_prob must be non-decreasing"
return self.history[-1] - self.history[-2] < self.tol
def make_permutations(items):
sequence_indices = list(range(len(items)))
return [list(p) for p in itertools.permutations(sequence_indices)]
@pytest.mark.parametrize("covariance_type",
["diag", "spherical", "tied", "full"])
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_gmmhmm_multi_sequence_fit_invariant_to_sequence_ordering(
covariance_type, implementation, init_params='mcw', verbose=False
):
"""
Sanity check GMM-HMM fit behaviour when run on multiple sequences
aka multiple frames.
Training data consumed during GMM-HMM fit is packed into a single
array X containing one or more sequences. In the case where
there are two or more input sequences, the ordering that the
sequences are packed into X should not influence the results
of the fit. Major differences in convergence during EM
iterations by merely permuting sequence order in the input
indicates a likely defect in the fit implementation.
Note: the ordering of samples inside a given sequence
is very meaningful, permuting the order of samples would
destroy the the state transition structure in the input data.
See issue 410 on github:
https://github.com/hmmlearn/hmmlearn/issues/410
"""
sequence_data = EXAMPLE_SEQUENCES_ISSUE_410_PRUNED
scores = []
for p in make_permutations(sequence_data):
sequences = sequence_data[p]
X = np.concatenate(sequences)
lengths = [len(seq) for seq in sequences]
model = hmm.GMMHMM(
n_components=2,
n_mix=2,
n_iter=100,
covariance_type=covariance_type,
verbose=verbose,
init_params=init_params,
random_state=1234,
implementation=implementation
)
# don't use random parameters for testing
init = 1. / model.n_components
model.startprob_ = np.full(model.n_components, init)
model.transmat_ = \
np.full((model.n_components, model.n_components), init)
model.monitor_ = StrictMonitor(
model.monitor_.tol,
model.monitor_.n_iter,
model.monitor_.verbose,
)
model.fit(X, lengths)
assert model.monitor_.converged
scores.append(model.score(X, lengths))
# Choice of rtol value is ad-hoc, no theoretical motivation.
assert_allclose(scores, np.mean(scores), rtol=5e-03)
|