File: test_gmm_hmm_multisequence.py

package info (click to toggle)
python-hmmlearn 0.3.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 588 kB
  • sloc: python: 4,797; cpp: 321; makefile: 13
file content (286 lines) | stat: -rw-r--r-- 14,112 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import itertools

import numpy as np
from numpy.testing import assert_allclose
import pytest

from hmmlearn import hmm
from hmmlearn.base import ConvergenceMonitor


# Example multi-sequence data, arranged as shape
# (n_sequences, n_samples, n_features)
#
# This data is a reduced subset of data_training.npy
# from issue https://github.com/hmmlearn/hmmlearn/issues/410
# illustrating GMMHMM fit diverging during EM iterations.
#
# Transformations to reduce data volume:
# - keep only first 3 of many sequences, discard rest
# - keep only first 50 of many samples per sequence, discard rest
# - keep only first 4 of 17 features per sample, discard rest
EXAMPLE_SEQUENCES_ISSUE_410_PRUNED = np.array(
    [
        np.array(
            [
                [0.00992058, 0.44151747, 0.5395124, 0.40644765],
                [0.00962487, 0.45613006, 0.52375835, 0.3899082],
                [0.00915721, 0.47111648, 0.5103008, 0.3846845],
                [0.00916073, 0.4749602, 0.5241155, 0.39899495],
                [0.0090966, 0.47398633, 0.53792244, 0.41295874],
                [0.00953476, 0.47201437, 0.5322343, 0.41661483],
                [0.00916542, 0.4455471, 0.55598766, 0.40831617],
                [0.00906925, 0.43173638, 0.56246823, 0.39109665],
                [0.00826067, 0.4136997, 0.58712745, 0.39158684],
                [0.00828806, 0.41975173, 0.60497123, 0.38206288],
                [0.00788883, 0.397979, 0.63639283, 0.3627324],
                [0.00765208, 0.38908702, 0.65764546, 0.3516956],
                [0.00738148, 0.38130987, 0.6522844, 0.36725503],
                [0.00717299, 0.37383446, 0.6722188, 0.37951013],
                [0.0073711, 0.37058228, 0.6799041, 0.3860375],
                [0.00728311, 0.37892842, 0.65606904, 0.39165357],
                [0.00730301, 0.39218283, 0.6332023, 0.3976117],
                [0.00713718, 0.38652796, 0.6423802, 0.34927416],
                [0.00683423, 0.3656172, 0.68119335, 0.2912439],
                [0.00663389, 0.34920084, 0.68535674, 0.28290597],
                [0.00625478, 0.3525497, 0.6658849, 0.30369937],
                [0.00614696, 0.35593832, 0.65440905, 0.3450122],
                [0.00611069, 0.35073754, 0.6559732, 0.33597857],
                [0.00635504, 0.3360095, 0.6800729, 0.32301348],
                [0.00617533, 0.3444746, 0.6745925, 0.34155408],
                [0.00592057, 0.35373318, 0.66947186, 0.32476413],
                [0.00564618, 0.36178407, 0.6560819, 0.3297305],
                [0.00572176, 0.37058342, 0.6551206, 0.2967357],
                [0.00578371, 0.39031005, 0.64601576, 0.33421013],
                [0.00577161, 0.41922286, 0.6089396, 0.3717376],
                [0.00579954, 0.41518527, 0.60426843, 0.38774568],
                [0.00578072, 0.40165138, 0.6203536, 0.34574744],
                [0.00583212, 0.42201585, 0.60890085, 0.38103116],
                [0.00572761, 0.40093482, 0.63888615, 0.36249077],
                [0.00594841, 0.3804375, 0.6576098, 0.37927687],
                [0.0059343, 0.34200934, 0.693946, 0.3007063],
                [0.00591482, 0.3709248, 0.66136825, 0.32304856],
                [0.0055425, 0.41159946, 0.62043166, 0.3460799],
                [0.00548492, 0.40038764, 0.6440804, 0.33333993],
                [0.00552325, 0.36867827, 0.6703099, 0.30612737],
                [0.00553349, 0.35795027, 0.67543924, 0.27393535],
                [0.00558642, 0.4015568, 0.62600005, 0.31275502],
                [0.00565522, 0.40925154, 0.6178226, 0.3131643],
                [0.0058172, 0.42638385, 0.6077434, 0.33476466],
                [0.00585697, 0.40742254, 0.6218038, 0.37967283],
                [0.00591527, 0.4296229, 0.6016123, 0.3985932],
                [0.00604816, 0.43141186, 0.59317786, 0.42083132],
                [0.00621391, 0.4110697, 0.6092669, 0.38827285],
                [0.00656536, 0.39309287, 0.60035396, 0.41596898],
                [0.00693208, 0.37821782, 0.59813255, 0.4394344],
            ],
            dtype=np.float32,
        ),
        np.array(
            [
                [0.00318667, 0.48804316, 0.52020603, 0.36232004],
                [0.00322638, 0.48808283, 0.5341949, 0.37973505],
                [0.00329762, 0.47688982, 0.5563834, 0.4047565],
                [0.00321911, 0.48151806, 0.54239404, 0.38407174],
                [0.00400121, 0.5309283, 0.49719027, 0.40301552],
                [0.00461331, 0.5856188, 0.44557935, 0.40280044],
                [0.0048873, 0.59214115, 0.4330637, 0.43839055],
                [0.00411017, 0.53695357, 0.49013752, 0.3832056],
                [0.00357234, 0.48548815, 0.54152006, 0.3475358],
                [0.00341532, 0.46990934, 0.57406586, 0.33449954],
                [0.00345838, 0.50714695, 0.51190466, 0.38789546],
                [0.00341552, 0.526225, 0.48219037, 0.41689718],
                [0.0034434, 0.5293161, 0.47968563, 0.4379618],
                [0.00342251, 0.49587825, 0.53558546, 0.4021806],
                [0.00329584, 0.5082987, 0.52165693, 0.4086313],
                [0.0031443, 0.519554, 0.49245426, 0.3961157],
                [0.0030792, 0.5455676, 0.45203313, 0.423718],
                [0.00320465, 0.5504491, 0.43865028, 0.45784852],
                [0.00329045, 0.52342314, 0.48308045, 0.455756],
                [0.00342623, 0.50302553, 0.495605, 0.45614803],
                [0.00347294, 0.48462915, 0.52492356, 0.41467494],
                [0.00352737, 0.45118907, 0.53679097, 0.38664353],
                [0.00349953, 0.40440804, 0.59128445, 0.3342833],
                [0.00343233, 0.385624, 0.61139005, 0.29829293],
                [0.00333838, 0.4443106, 0.55629146, 0.3360141],
                [0.00341689, 0.47139308, 0.5338217, 0.34617022],
                [0.00349784, 0.49085665, 0.5179333, 0.38301566],
                [0.00354852, 0.45714432, 0.5581238, 0.3514836],
                [0.00336909, 0.4432368, 0.5735479, 0.37587976],
                [0.00334855, 0.42174804, 0.60338825, 0.36684743],
                [0.00340526, 0.4299499, 0.5964124, 0.38658547],
                [0.00355591, 0.44496518, 0.5775449, 0.37693518],
                [0.00368621, 0.4641773, 0.54175687, 0.38873497],
                [0.00392683, 0.48638234, 0.52129495, 0.40342456],
                [0.00444013, 0.5311254, 0.4699971, 0.41572142],
                [0.00559078, 0.5725662, 0.42817408, 0.42607802],
                [0.00651121, 0.60758656, 0.3687854, 0.45583618],
                [0.00731191, 0.60793436, 0.36194792, 0.46369436],
                [0.0075791, 0.56968933, 0.409531, 0.40896642],
                [0.00813889, 0.5602184, 0.43285215, 0.35258207],
                [0.00887025, 0.5855726, 0.40227312, 0.35542902],
                [0.00897418, 0.609533, 0.35594714, 0.3942479],
                [0.01022383, 0.6129873, 0.3352133, 0.47778368],
                [0.0095141, 0.5595026, 0.4162315, 0.45395738],
                [0.00841102, 0.49951875, 0.48765272, 0.4517436],
                [0.00826918, 0.45066664, 0.5471808, 0.3476721],
                [0.01868482, 0.39936644, 0.55312306, 0.43391562],
                [0.04211371, 0.3675188, 0.56271124, 0.53548455],
                [0.07297403, 0.3576941, 0.57314515, 0.6578705],
                [0.10756538, 0.413695, 0.5337025, 0.653491],
            ],
            dtype=np.float32,
        ),
        np.array(
            [
                [0.00302289, 0.47364405, 0.53537434, 0.45129624],
                [0.00311589, 0.45328405, 0.5570029, 0.42494437],
                [0.00315774, 0.44939527, 0.5723259, 0.4117937],
                [0.00314883, 0.46795434, 0.54135257, 0.3953221],
                [0.00309122, 0.49266115, 0.5156292, 0.4080569],
                [0.00312682, 0.49728185, 0.51451075, 0.41902116],
                [0.00323118, 0.49948877, 0.5244724, 0.45043528],
                [0.00325324, 0.47703367, 0.5608516, 0.42876282],
                [0.00322127, 0.4831656, 0.5520302, 0.43367508],
                [0.00314415, 0.5081604, 0.5305388, 0.47354758],
                [0.00307265, 0.51409185, 0.5208431, 0.46550223],
                [0.00312928, 0.5049119, 0.5267695, 0.44442567],
                [0.00313668, 0.47089654, 0.55917096, 0.37248307],
                [0.00320294, 0.45442477, 0.57189673, 0.38878405],
                [0.00317113, 0.43952465, 0.59469926, 0.3535012],
                [0.00323172, 0.46230638, 0.5713085, 0.39267808],
                [0.00323527, 0.50055844, 0.52773774, 0.4445253],
                [0.00322912, 0.5141386, 0.501789, 0.488796],
                [0.00312394, 0.53217465, 0.47047156, 0.49383518],
                [0.00305265, 0.5208433, 0.50014937, 0.459741],
                [0.00305853, 0.51386, 0.5120822, 0.43915167],
                [0.00311382, 0.47278965, 0.57036394, 0.45423037],
                [0.00318763, 0.46807718, 0.5674287, 0.43843716],
                [0.00318154, 0.47042188, 0.5779207, 0.44580007],
                [0.00303793, 0.46571356, 0.5818657, 0.4107192],
                [0.00299003, 0.44406536, 0.60040486, 0.38005733],
                [0.00296462, 0.44092676, 0.59199274, 0.3560812],
                [0.00307418, 0.45244223, 0.56540257, 0.33132356],
                [0.00302929, 0.47221994, 0.5470938, 0.36822143],
                [0.00301338, 0.47062206, 0.54911035, 0.3680197],
                [0.00291349, 0.45564204, 0.5619591, 0.3808152],
                [0.00295025, 0.47307628, 0.54229873, 0.35219967],
                [0.00289911, 0.4725018, 0.54288876, 0.38314143],
                [0.00291358, 0.45272404, 0.5728319, 0.37214962],
                [0.00294044, 0.4570347, 0.5649049, 0.42110214],
                [0.00298315, 0.4561437, 0.55468136, 0.40142712],
                [0.00303691, 0.49613172, 0.52464443, 0.42899716],
                [0.00300609, 0.49105296, 0.5310325, 0.41341364],
                [0.00305483, 0.532239, 0.485052, 0.46893936],
                [0.00298801, 0.51202387, 0.49897632, 0.45285705],
                [0.0030795, 0.5070261, 0.5062058, 0.44057184],
                [0.00303104, 0.47002167, 0.56080073, 0.40074068],
                [0.00308184, 0.4575324, 0.56803167, 0.3928257],
                [0.00291516, 0.44490653, 0.58391964, 0.40129626],
                [0.00289649, 0.4531514, 0.5818511, 0.407385],
                [0.00284487, 0.4488143, 0.5850243, 0.41675568],
                [0.00291576, 0.4616304, 0.57469726, 0.40793785],
                [0.00287342, 0.46473294, 0.54888374, 0.41002542],
                [0.00303153, 0.4966541, 0.5055506, 0.4316879],
                [0.00327755, 0.45762977, 0.529044, 0.4493881],
            ],
            dtype=np.float32,
        ),
    ]
)


class StrictMonitor(ConvergenceMonitor):
    @property
    def converged(self):
        # The default ConvergenceMonitor regards some scenarios
        # as "converged" when they have not necessarily converged:
        #
        # 1. exhausting max iterations
        # 2. decreases in log_prob between successive EM iterations
        #
        # This second behaviour should (ignoring numerical problems)
        # never happen if the EM implementation is correct. EM is a
        # local optimisation method, it may not find a global maxima,
        # but log_prob should always be non-decreasing between each
        # pair of successive iterations.

        assert not np.isnan(self.history[-1]), "log_prob must not be nan"

        if len(self.history) < 2:
            return False

        assert self.history[-1] >= self.history[-2] - self.tol, \
            "log_prob must be non-decreasing"

        return self.history[-1] - self.history[-2] < self.tol


def make_permutations(items):
    sequence_indices = list(range(len(items)))
    return [list(p) for p in itertools.permutations(sequence_indices)]


@pytest.mark.parametrize("covariance_type",
                         ["diag", "spherical", "tied", "full"])
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_gmmhmm_multi_sequence_fit_invariant_to_sequence_ordering(
    covariance_type, implementation, init_params='mcw', verbose=False
):
    """
    Sanity check GMM-HMM fit behaviour when run on multiple sequences
    aka multiple frames.

    Training data consumed during GMM-HMM fit is packed into a single
    array X containing one or more sequences. In the case where
    there are two or more input sequences, the ordering that the
    sequences are packed into X should not influence the results
    of the fit. Major differences in convergence during EM
    iterations by merely permuting sequence order in the input
    indicates a likely defect in the fit implementation.

    Note: the ordering of samples inside a given sequence
    is very meaningful, permuting the order of samples would
    destroy the the state transition structure in the input data.

    See issue 410 on github:
    https://github.com/hmmlearn/hmmlearn/issues/410
    """
    sequence_data = EXAMPLE_SEQUENCES_ISSUE_410_PRUNED

    scores = []
    for p in make_permutations(sequence_data):
        sequences = sequence_data[p]
        X = np.concatenate(sequences)
        lengths = [len(seq) for seq in sequences]

        model = hmm.GMMHMM(
            n_components=2,
            n_mix=2,
            n_iter=100,
            covariance_type=covariance_type,
            verbose=verbose,
            init_params=init_params,
            random_state=1234,
            implementation=implementation
        )

        # don't use random parameters for testing
        init = 1. / model.n_components
        model.startprob_ = np.full(model.n_components, init)
        model.transmat_ = \
            np.full((model.n_components, model.n_components), init)

        model.monitor_ = StrictMonitor(
            model.monitor_.tol,
            model.monitor_.n_iter,
            model.monitor_.verbose,
        )

        model.fit(X, lengths)

        assert model.monitor_.converged
        scores.append(model.score(X, lengths))

    # Choice of rtol value is ad-hoc, no theoretical motivation.
    assert_allclose(scores, np.mean(scores), rtol=5e-03)