1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
import numpy as np
from numpy.testing import assert_allclose, assert_array_less
import pytest
from sklearn.utils import check_random_state
from ..hmm import GMMHMM
from .test_gmm_hmm import create_random_gmm
from . import assert_log_likelihood_increasing, normalized
def sample_from_parallelepiped(low, high, n_samples, random_state):
(n_features,) = low.shape
X = np.zeros((n_samples, n_features))
for i in range(n_features):
X[:, i] = random_state.uniform(low[i], high[i], n_samples)
return X
def prep_params(n_comps, n_mix, n_features, covar_type,
low, high, random_state):
# the idea is to generate ``n_comps`` bounding boxes and then
# generate ``n_mix`` mixture means in each of them
dim_lims = np.zeros((n_comps + 1, n_features))
# this generates a sequence of coordinates, which are then used as
# vertices of bounding boxes for mixtures
dim_lims[1:] = np.cumsum(
random_state.uniform(low, high, (n_comps, n_features)), axis=0
)
means = np.zeros((n_comps, n_mix, n_features))
for i, (left, right) in enumerate(zip(dim_lims, dim_lims[1:])):
means[i] = sample_from_parallelepiped(left, right, n_mix,
random_state)
startprob = np.zeros(n_comps)
startprob[0] = 1
transmat = normalized(random_state.uniform(size=(n_comps, n_comps)),
axis=1)
if covar_type == "spherical":
covs = random_state.uniform(0.1, 5, size=(n_comps, n_mix))
elif covar_type == "diag":
covs = random_state.uniform(0.1, 5, size=(n_comps, n_mix, n_features))
elif covar_type == "tied":
covs = np.zeros((n_comps, n_features, n_features))
for i in range(n_comps):
low = random_state.uniform(-2, 2, (n_features, n_features))
covs[i] = low.T @ low
elif covar_type == "full":
covs = np.zeros((n_comps, n_mix, n_features, n_features))
for i in range(n_comps):
for j in range(n_mix):
low = random_state.uniform(-2, 2,
size=(n_features, n_features))
covs[i, j] = low.T @ low
weights = normalized(random_state.uniform(size=(n_comps, n_mix)), axis=1)
return covs, means, startprob, transmat, weights
class GMMHMMTestMixin:
n_components = 3
n_mix = 2
n_features = 2
low, high = 10, 15
def new_hmm(self, implementation):
prng = np.random.RandomState(14)
covars, means, startprob, transmat, weights = prep_params(
self.n_components, self.n_mix, self.n_features,
self.covariance_type, self.low, self.high, prng)
h = GMMHMM(n_components=self.n_components, n_mix=self.n_mix,
covariance_type=self.covariance_type,
random_state=prng,
implementation=implementation)
h.startprob_ = startprob
h.transmat_ = transmat
h.weights_ = weights
h.means_ = means
h.covars_ = covars
return h
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_check_bad_covariance_type(self, implementation):
h = self.new_hmm(implementation)
with pytest.raises(ValueError):
h.covariance_type = "bad_covariance_type"
h._check()
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_check_good_covariance_type(self, implementation):
h = self.new_hmm(implementation)
h._check() # should not raise any errors
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_sample(self, implementation):
n_samples = 1000
h = self.new_hmm(implementation)
X, states = h.sample(n_samples)
assert X.shape == (n_samples, self.n_features)
assert len(states) == n_samples
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_init(self, implementation):
n_samples = 1000
h = self.new_hmm(implementation)
X, _states = h.sample(n_samples)
h._init(X, [n_samples])
h._check() # should not raise any errors
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_score_samples_and_decode(self, implementation):
n_samples = 1000
h = self.new_hmm(implementation)
X, states = h.sample(n_samples)
_ll, posteriors = h.score_samples(X)
assert_allclose(np.sum(posteriors, axis=1), np.ones(n_samples))
_viterbi_ll, decoded_states = h.decode(X)
assert_allclose(states, decoded_states)
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit(self, implementation):
n_iter = 5
n_samples = 1000
lengths = None
h = self.new_hmm(implementation)
X, _state_sequence = h.sample(n_samples)
# Mess up the parameters and see if we can re-learn them.
covs0, means0, priors0, trans0, weights0 = prep_params(
self.n_components, self.n_mix, self.n_features,
self.covariance_type, self.low, self.high,
np.random.RandomState(15)
)
h.covars_ = covs0 * 100
h.means_ = means0
h.startprob_ = priors0
h.transmat_ = trans0
h.weights_ = weights0
assert_log_likelihood_increasing(h, X, lengths, n_iter)
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit_sparse_data(self, implementation):
n_samples = 1000
h = self.new_hmm(implementation)
h.means_ *= 1000 # this will put gaussians very far apart
X, _states = h.sample(n_samples)
# this should not raise
# "ValueError: array must not contain infs or NaNs"
h._init(X, [1000])
h.fit(X)
@pytest.mark.xfail
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_fit_zero_variance(self, implementation):
# Example from issue #2 on GitHub.
# this data has singular covariance matrix
X = np.asarray([
[7.15000000e+02, 5.8500000e+02, 0.00000000e+00, 0.00000000e+00],
[7.15000000e+02, 5.2000000e+02, 1.04705811e+00, -6.03696289e+01],
[7.15000000e+02, 4.5500000e+02, 7.20886230e-01, -5.27055664e+01],
[7.15000000e+02, 3.9000000e+02, -4.57946777e-01, -7.80605469e+01],
[7.15000000e+02, 3.2500000e+02, -6.43127441e+00, -5.59954834e+01],
[7.15000000e+02, 2.6000000e+02, -2.90063477e+00, -7.80220947e+01],
[7.15000000e+02, 1.9500000e+02, 8.45532227e+00, -7.03294373e+01],
[7.15000000e+02, 1.3000000e+02, 4.09387207e+00, -5.83621216e+01],
[7.15000000e+02, 6.5000000e+01, -1.21667480e+00, -4.48131409e+01]
])
h = self.new_hmm(implementation)
h.fit(X)
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_criterion(self, implementation):
random_state = check_random_state(2013)
m1 = self.new_hmm(implementation)
# Spread the means out to make this easier
m1.means_ *= 10
X, _ = m1.sample(4000, random_state=random_state)
aic = []
bic = []
ns = [2, 3, 4, 5]
for n in ns:
h = GMMHMM(n, n_mix=2, covariance_type=self.covariance_type,
random_state=random_state, implementation=implementation)
h.fit(X)
aic.append(h.aic(X))
bic.append(h.bic(X))
assert np.all(aic) > 0
assert np.all(bic) > 0
# AIC / BIC pick the right model occasionally
# assert ns[np.argmin(aic)] == self.n_components
# assert ns[np.argmin(bic)] == self.n_components
class TestGMMHMMWithSphericalCovars(GMMHMMTestMixin):
covariance_type = 'spherical'
class TestGMMHMMWithDiagCovars(GMMHMMTestMixin):
covariance_type = 'diag'
class TestGMMHMMWithTiedCovars(GMMHMMTestMixin):
covariance_type = 'tied'
class TestGMMHMMWithFullCovars(GMMHMMTestMixin):
covariance_type = 'full'
class TestGMMHMM_KmeansInit:
@pytest.mark.parametrize("implementation", ["scaling", "log"])
def test_kmeans(self, implementation):
# Generate two isolated cluster.
# The second cluster has no. of points less than n_mix.
np.random.seed(0)
data1 = np.random.uniform(low=0, high=1, size=(100, 2))
data2 = np.random.uniform(low=5, high=6, size=(5, 2))
data = np.r_[data1, data2]
model = GMMHMM(n_components=2, n_mix=10, n_iter=5,
implementation=implementation)
model.fit(data) # _init() should not fail here
# test whether the means are bounded by the data lower- and upperbounds
assert_array_less(0, model.means_)
assert_array_less(model.means_, 6)
class TestGMMHMM_MultiSequence:
@pytest.mark.parametrize("covtype",
["diag", "spherical", "tied", "full"])
def test_chunked(sellf, covtype, init_params='mcw'):
np.random.seed(0)
gmm = create_random_gmm(3, 2, covariance_type=covtype, prng=0)
gmm.covariances_ = gmm.covars_
data = gmm.sample(n_samples=1000)[0]
model1 = GMMHMM(n_components=3, n_mix=2, covariance_type=covtype,
random_state=1, init_params=init_params)
model2 = GMMHMM(n_components=3, n_mix=2, covariance_type=covtype,
random_state=1, init_params=init_params)
# don't use random parameters for testing
init = 1. / model1.n_components
for model in (model1, model2):
model.startprob_ = np.full(model.n_components, init)
model.transmat_ = \
np.full((model.n_components, model.n_components), init)
model1.fit(data)
model2.fit(data, lengths=[200] * 5)
assert_allclose(model1.means_, model2.means_, rtol=0, atol=1e-2)
assert_allclose(model1.covars_, model2.covars_, rtol=0, atol=1e-3)
assert_allclose(model1.weights_, model2.weights_, rtol=0, atol=1e-3)
assert_allclose(model1.transmat_, model2.transmat_, rtol=0, atol=1e-2)
|