File: test_multinomial_hmm.py

package info (click to toggle)
python-hmmlearn 0.3.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 588 kB
  • sloc: python: 4,797; cpp: 321; makefile: 13
file content (181 lines) | stat: -rw-r--r-- 6,802 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numpy as np
from numpy.testing import assert_allclose
import pytest

from hmmlearn import hmm

from . import assert_log_likelihood_increasing, normalized


class TestMultinomialHMM:
    n_components = 2
    n_features = 4
    n_trials = 5

    def new_hmm(self, impl):
        h = hmm.MultinomialHMM(
            n_components=self.n_components,
            n_trials=self.n_trials,
            implementation=impl)
        h.startprob_ = np.array([.6, .4])
        h.transmat_ = np.array([[.8, .2], [.2, .8]])
        h.emissionprob_ = np.array([[.5, .3, .1, .1], [.1, .1, .4, .4]])
        return h

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_attributes(self, implementation):
        with pytest.raises(ValueError):
            h = self.new_hmm(implementation)
            h.emissionprob_ = []
            h._check()
        with pytest.raises(ValueError):
            h.emissionprob_ = np.zeros((self.n_components - 2,
                                        self.n_features))
            h._check()

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_score_samples(self, implementation):
        X = np.array([
            [1, 1, 3, 0],
            [3, 1, 1, 0],
            [3, 0, 2, 0],
            [2, 2, 0, 1],
            [2, 2, 0, 1],
            [0, 1, 1, 3],
            [1, 0, 3, 1],
            [2, 0, 1, 2],
            [0, 2, 1, 2],
            [1, 0, 1, 3],
        ])
        n_samples = X.shape[0]
        h = self.new_hmm(implementation)

        ll, posteriors = h.score_samples(X)
        assert posteriors.shape == (n_samples, self.n_components)
        assert_allclose(posteriors.sum(axis=1), np.ones(n_samples))

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_sample(self, implementation, n_samples=1000):
        h = self.new_hmm(implementation)
        X, state_sequence = h.sample(n_samples)
        assert X.ndim == 2
        assert len(X) == len(state_sequence) == n_samples
        assert len(np.unique(X)) == self.n_trials + 1
        assert (X.sum(axis=1) == self.n_trials).all()
        h.n_trials = None
        with pytest.raises(ValueError):
            h.sample(n_samples)
        h.n_trials = [1, 2, 3]
        with pytest.raises(ValueError):
            h.sample(n_samples)

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_fit(self, implementation, params='ste', n_iter=5):
        h = self.new_hmm(implementation)
        h.params = params

        lengths = np.array([10] * 10)
        X, _state_sequence = h.sample(lengths.sum())

        # Mess up the parameters and see if we can re-learn them.
        h.startprob_ = normalized(np.random.random(self.n_components))
        h.transmat_ = normalized(
            np.random.random((self.n_components, self.n_components)),
            axis=1)
        h.emissionprob_ = normalized(
            np.random.random((self.n_components, self.n_features)),
            axis=1)
        # Also mess up trial counts.
        h.n_trials = None
        X[::2] *= 2

        assert_log_likelihood_increasing(h, X, lengths, n_iter)

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_fit_emissionprob(self, implementation):
        self.test_fit(implementation, 'e')

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_fit_with_init(self, implementation, params='ste', n_iter=5):
        lengths = [10] * 10
        h = self.new_hmm(implementation)
        X, _state_sequence = h.sample(sum(lengths))

        # use init_function to initialize paramerters
        h = hmm.MultinomialHMM(
            n_components=self.n_components, n_trials=self.n_trials,
            params=params, init_params=params)
        h._init(X, lengths)

        assert_log_likelihood_increasing(h, X, lengths, n_iter)

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test__check_and_set_multinomial_n_features_n_trials(
            self, implementation):
        h = hmm.MultinomialHMM(
            n_components=2, n_trials=None, implementation=implementation)
        h._check_and_set_n_features(
            np.array([[0, 2, 3, 0], [1, 0, 2, 2]]))
        assert (h.n_trials == 5).all()
        with pytest.raises(ValueError):  # wrong dimensions
            h._check_and_set_n_features(
                np.array([[0, 0, 2, 1, 3, 1, 1]]))
        with pytest.raises(ValueError):  # not added up to n_trials
            h._check_and_set_n_features(
                np.array([[0, 0, 1, 1], [3, 1, 1, 0]]))
        with pytest.raises(ValueError):  # non-integral
            h._check_and_set_n_features(
                np.array([[0., 2., 0., 3.], [0.0, 2.5, 2.5, 0.0]]))
        with pytest.raises(ValueError):  # negative integers
            h._check_and_set_n_features(
                np.array([[0, -2, 1, 6], [5, 6, -6, 0]]))

    @pytest.mark.parametrize("implementation", ["scaling", "log"])
    def test_compare_with_categorical_hmm(self, implementation):
        n_components = 2   # ['Rainy', 'Sunny']
        n_features = 3     # ['walk', 'shop', 'clean']
        n_trials = 1
        startprob = np.array([0.6, 0.4])
        transmat = np.array([[0.7, 0.3], [0.4, 0.6]])
        emissionprob = np.array([[0.1, 0.4, 0.5],
                                 [0.6, 0.3, 0.1]])
        h1 = hmm.MultinomialHMM(
            n_components=n_components, n_trials=n_trials,
            implementation=implementation)
        h2 = hmm.CategoricalHMM(
            n_components=n_components, implementation=implementation)

        h1.startprob_ = startprob
        h2.startprob_ = startprob

        h1.transmat_ = transmat
        h2.transmat_ = transmat

        h1.emissionprob_ = emissionprob
        h2.emissionprob_ = emissionprob

        X1 = np.array([[1, 0, 0],
                       [0, 1, 0],
                       [0, 0, 1]])
        X2 = [[0], [1], [2]]  # different input format for CategoricalHMM
        log_prob1, state_sequence1 = h1.decode(X1, algorithm="viterbi")
        log_prob2, state_sequence2 = h2.decode(X2, algorithm="viterbi")
        assert round(np.exp(log_prob1), 5) == 0.01344
        assert round(np.exp(log_prob2), 5) == 0.01344

        assert_allclose(state_sequence1, [1, 0, 0])
        assert_allclose(state_sequence2, [1, 0, 0])

        posteriors1 = h1.predict_proba(X1)
        assert_allclose(posteriors1, [
            [0.23170303, 0.76829697],
            [0.62406281, 0.37593719],
            [0.86397706, 0.13602294],
        ], rtol=0, atol=1e-6)

        posteriors2 = h2.predict_proba(X2)
        assert_allclose(posteriors2, [
            [0.23170303, 0.76829697],
            [0.62406281, 0.37593719],
            [0.86397706, 0.13602294],
        ], rtol=0, atol=1e-6)