File: vhmm.py

package info (click to toggle)
python-hmmlearn 0.3.2-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 588 kB
  • sloc: python: 4,797; cpp: 321; makefile: 13
file content (844 lines) | stat: -rw-r--r-- 34,661 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
import logging
import numbers

import numpy as np
from scipy import special
from sklearn import cluster
from sklearn.utils import check_random_state

from . import _kl_divergence as _kl, _utils
from ._emissions import BaseCategoricalHMM, BaseGaussianHMM
from .base import VariationalBaseHMM
from .hmm import COVARIANCE_TYPES
from .utils import fill_covars


_log = logging.getLogger(__name__)


class VariationalCategoricalHMM(BaseCategoricalHMM, VariationalBaseHMM):
    """
    Hidden Markov Model with categorical (discrete) emissions trained
    using Variational Inference.

    References:
        * https://cse.buffalo.edu/faculty/mbeal/thesis/

    Attributes
    ----------
    n_features : int
        Number of possible symbols emitted by the model (in the samples).

    monitor_ : ConvergenceMonitor
        Monitor object used to check the convergence of EM.

    startprob_prior_ : array, shape (n_components, )
        Prior for the initial state occupation distribution.

    startprob_posterior_ : array, shape (n_components, )
        Posterior estimate of the state occupation distribution.

    transmat_prior_ : array, shape (n_components, n_components)
        Prior for the matrix of transition probabilities between states.

    transmat_posterior_ : array, shape (n_components, n_components)
        Posterior estimate of the transition probabilities between states.

    emissionprob_prior_ : array, shape (n_components, n_features)
        Prior estimatate of emitting a given symbol when in each state.

    emissionprob_posterior_ : array, shape (n_components, n_features)
        Posterior estimate of emitting a given symbol when in each state.

    Examples
    --------
    >>> from hmmlearn.hmm import VariationalCategoricalHMM
    >>> VariationalCategoricalHMM(n_components=2)  #doctest: +ELLIPSIS
    VariationalCategoricalHMM(algorithm='viterbi',...
    """

    def __init__(self, n_components=1,
                 startprob_prior=None, transmat_prior=None,
                 emissionprob_prior=None, n_features=None,
                 algorithm="viterbi", random_state=None,
                 n_iter=100, tol=1e-6, verbose=False,
                 params="ste", init_params="ste",
                 implementation="log"):
        """
        Parameters
        ----------
        n_components : int
            Number of states.

        startprob_prior : array, shape (n_components, ), optional
            Parameters of the Dirichlet prior distribution for
            :attr:`startprob_`.

        transmat_prior : array, shape (n_components, n_components), optional
            Parameters of the Dirichlet prior distribution for each row
            of the transition probabilities :attr:`transmat_`.

        emissionprob_prior : array, shape (n_components, n_features), optional
            Parameters of the Dirichlet prior distribution for
            :attr:`emissionprob_`.

        n_features: int, optional
            The number of categorical symbols in the HMM.  Will be inferred
            from the data if not set.

        algorithm : {"viterbi", "map"}, optional
            Decoder algorithm.

            - "viterbi": finds the most likely sequence of states, given all
              emissions.
            - "map" (also known as smoothing or forward-backward): finds the
              sequence of the individual most-likely states, given all
              emissions.

        random_state: RandomState or an int seed, optional
            A random number generator instance.

        n_iter : int, optional
            Maximum number of iterations to perform.

        tol : float, optional
            Convergence threshold. EM will stop if the gain in log-likelihood
            is below this value.

        verbose : bool, optional
            Whether per-iteration convergence reports are printed to
            :data:`sys.stderr`.  Convergence can also be diagnosed using the
            :attr:`monitor_` attribute.

        params, init_params : string, optional
            The parameters that get updated during (``params``) or initialized
            before (``init_params``) the training.  Can contain any
            combination of 's' for startprob, 't' for transmat, and 'e' for
            emissionprob.  Defaults to all parameters.

        implementation : string, optional
            Determines if the forward-backward algorithm is implemented with
            logarithms ("log"), or using scaling ("scaling").  The default is
            to use logarithms for backwards compatability.
        """
        super().__init__(
            n_components=n_components, startprob_prior=startprob_prior,
            transmat_prior=transmat_prior,
            algorithm=algorithm, random_state=random_state,
            n_iter=n_iter, tol=tol, verbose=verbose,
            params=params, init_params=init_params,
            implementation=implementation
        )
        self.emissionprob_prior = emissionprob_prior
        self.n_features = n_features

    def _init(self, X, lengths):
        """
        Initialize model parameters prior to fitting.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Feature matrix of individual samples.
        lengths : array-like of integers, shape (n_sequences, )
            Lengths of the individual sequences in ``X``. The sum of
            these should be ``n_samples``.
        """
        super()._init(X, lengths)
        random_state = check_random_state(self.random_state)
        if self._needs_init("e", "emissionprob_posterior_"):
            emissionprob_init = 1 / self.n_features
            if self.emissionprob_prior is not None:
                emissionprob_init = self.emissionprob_prior
            self.emissionprob_prior_ = np.full(
                (self.n_components, self.n_features), emissionprob_init)
            self.emissionprob_posterior_ = random_state.dirichlet(
                alpha=[emissionprob_init] * self.n_features,
                size=self.n_components
            ) * sum(lengths) / self.n_components

    def _estep_begin(self):
        super()._estep_begin()
        # Stored / Computed for efficiency otherwise
        # it would be done in _compute_subnorm_log_likelihood
        self.emissionprob_log_subnorm_ = (
            special.digamma(self.emissionprob_posterior_)
            - special.digamma(
                self.emissionprob_posterior_.sum(axis=1)[:, None]))

    def _check(self):
        """
        Validate model parameters prior to fitting.

        Raises
        ------
        ValueError
            If any of the parameters are invalid, e.g. if :attr:`startprob_`
            don't sum to 1.
        """
        super()._check()

        self.emissionprob_prior_ = np.atleast_2d(self.emissionprob_prior_)
        self.emissionprob_posterior_ = \
            np.atleast_2d(self.emissionprob_posterior_)

        if (self.emissionprob_prior_.shape
                != self.emissionprob_posterior_.shape):
            raise ValueError(
                "emissionprob_prior_ and emissionprob_posterior_must"
                "have shape (n_components, n_features)")
        if self.n_features is None:
            self.n_features = self.emissionprob_posterior_.shape[1]
        if (self.emissionprob_posterior_.shape
                != (self.n_components, self.n_features)):
            raise ValueError(
                f"emissionprob_ must have shape"
                f"({self.n_components}, {self.n_features})")

    def _compute_subnorm_log_likelihood(self, X):
        return self.emissionprob_log_subnorm_[:, X.squeeze(1)].T

    def _do_mstep(self, stats):
        """
        Perform the M-step of the VB-EM algorithm.

        Parameters
        ----------
        stats : dict
            Sufficient statistics updated from all available samples.
        """
        super()._do_mstep(stats)
        # emissionprob
        if "e" in self.params:
            self.emissionprob_posterior_ = (
                self.emissionprob_prior_ + stats['obs'])
            # Provide the normalized probabilities at the posterior median
            div = self.emissionprob_posterior_.sum(axis=1)[:, None]
            self.emissionprob_ = self.emissionprob_posterior_ / div

    def _compute_lower_bound(self, log_prob):
        """Compute the lower bound of the model."""
        # First, get the contribution from the state transitions
        # and initial probabilities
        lower_bound = super()._compute_lower_bound(log_prob)

        # The compute the contributions of the emissionprob
        emissionprob_lower_bound = 0
        for i in range(self.n_components):
            emissionprob_lower_bound -= _kl.kl_dirichlet(
                self.emissionprob_posterior_[i], self.emissionprob_prior_[i])
        return lower_bound + emissionprob_lower_bound


class VariationalGaussianHMM(BaseGaussianHMM, VariationalBaseHMM):
    """
    Hidden Markov Model with Multivariate Gaussian Emissions trained
    using Variational Inference.

    References:
        * https://arxiv.org/abs/1605.08618
        * https://core.ac.uk/reader/10883750
        * https://theses.gla.ac.uk/6941/7/2005McGroryPhD.pdf

    Attributes
    ----------
    n_features : int
        Dimensionality of the Gaussian emissions.

    monitor_ : ConvergenceMonitor
        Monitor object used to check the convergence of EM.

    startprob_prior_ : array, shape (n_components, )
        Prior for the initial state occupation distribution.

    startprob_posterior_ : array, shape (n_components, )
        Posterior estimate of the state occupation distribution.

    transmat_prior_ : array, shape (n_components, n_components)
        Prior for the matrix of transition probabilities between states.

    transmat_posterior_ : array, shape (n_components, n_components)
        Posterior estimate of the transition probabilities between states.

    means_prior_: array, shape (n_components, n_features)
        Prior estimates for the mean of each state.

    means_posterior_: array, shape (n_components, n_features)
        Posterior estimates for the mean of each state.

    beta_prior_: array, shape (n_components, )
        Prior estimate on the scale of the variance over the means.

    beta_posterior_: array, shape (n_components, )
        Posterior estimate of the scale of the variance over the means.

    covars_ : array
        Covariance parameters for each state.

        The shape depends on :attr:`covariance_type`:

        * (n_components, )                        if "spherical",
        * (n_components, n_features)              if "diag",
        * (n_components, n_features, n_features)  if "full",
        * (n_features, n_features)                if "tied".

    dof_prior_: int / array
        The Degrees Of Freedom prior for each state's Wishart distribution.
        The type depends on :attr:`covariance_type`:

        * array, shape (n_components, )  if "full",
        * int                            if "tied".

    dof_prior_: int / array
        The Prior on the Degrees Of Freedom
        for each state's Wishart distribution.
        The type depends on :attr:`covariance_type`:

        * array, shape (n_components, )  if "full",
        * int                            if "tied".

    dof_posterior_: int / array
        The Degrees Of Freedom for each state's Wishart distribution.
        The type depends on :attr:`covariance_type`:

        * array, shape (n_components, )  if "full",
        * int                            if "tied".

    scale_prior_ : array
        Prior for the Inverse scale parameter for each state's
        Wishart distribution. The wishart distribution is
        the conjugate prior for the covariance.

        The shape depends on :attr:`covariance_type`:

        * (n_components, )                        if "spherical",
        * (n_components, n_features)              if "diag",
        * (n_components, n_features, n_features)  if "full",
        * (n_features, n_features)                if "tied".

    scale_posterior_ : array
        Inverse scale parameter for each state's wishart distribution.
        The wishart distribution is the conjugate prior for the covariance.

        The shape depends on :attr:`covariance_type`:

        * (n_components, )                        if "spherical",
        * (n_components, n_features)              if "diag",
        * (n_components, n_features, n_features)  if "full",
        * (n_features, n_features)                if "tied".

    Examples
    --------
    >>> from hmmlearn.hmm import VariationalGaussianHMM
    >>> VariationalGaussianHMM(n_components=2)  #doctest: +ELLIPSIS
    VariationalGaussianHMM(algorithm='viterbi',...
    """

    def __init__(self, n_components=1, covariance_type="full",
                 startprob_prior=None, transmat_prior=None,
                 means_prior=None, beta_prior=None, dof_prior=None,
                 scale_prior=None, algorithm="viterbi",
                 random_state=None, n_iter=100, tol=1e-6, verbose=False,
                 params="stmc", init_params="stmc",
                 implementation="log"):
        """
        Parameters
        ----------
        n_components : int
            Number of states.

        covariance_type : {"spherical", "diag", "full", "tied"}, optional
            The type of covariance parameters to use:

            * "spherical" --- each state uses a single variance value that
              applies to all features (default).
            * "diag" --- each state uses a diagonal covariance matrix.
            * "full" --- each state uses a full (i.e. unrestricted)
              covariance matrix.
            * "tied" --- all states use **the same** full covariance matrix.

        startprob_prior : array, shape (n_components, ), optional
            Parameters of the Dirichlet prior distribution for
            :attr:`startprob_`.

        transmat_prior : array, shape (n_components, n_components), optional
            Parameters of the Dirichlet prior distribution for each row
            of the transition probabilities :attr:`transmat_`.

        means_prior, beta_prior : array, shape (n_components, ), optional
            Mean and precision of the Normal prior distribtion for
            :attr:`means_`.

        scale_prior, dof_prior : array, optional
            Parameters of the prior distribution for the covariance matrix
            :attr:`covars_`.

            If :attr:`covariance_type` is "spherical" or "diag" the prior is
            the inverse gamma distribution, otherwise --- the inverse Wishart
            distribution.

            The shape of the scale_prior array depends on
            :attr:`covariance_type`:

            * (n_components, )                        if "spherical",
            * (n_components, n_features)              if "diag",
            * (n_components, n_features, n_features)  if "full",
            * (n_features, n_features)                if "tied".

        algorithm : {"viterbi", "map"}, optional
            Decoder algorithm.

            - "viterbi": finds the most likely sequence of states, given all
              emissions.
            - "map" (also known as smoothing or forward-backward): finds the
              sequence of the individual most-likely states, given all
              emissions.

        random_state: RandomState or an int seed, optional
            A random number generator instance.

        n_iter : int, optional
            Maximum number of iterations to perform.

        tol : float, optional
            Convergence threshold. EM will stop if the gain in log-likelihood
            is below this value.

        verbose : bool, optional
            Whether per-iteration convergence reports are printed to
            :data:`sys.stderr`.  Convergence can also be diagnosed using the
            :attr:`monitor_` attribute.

        params, init_params : string, optional
            The parameters that get updated during (``params``) or initialized
            before (``init_params``) the training.  Can contain any combination
            of 's' for startprob, 't' for transmat, 'm' for means, and 'c' for
            covars.  Defaults to all parameters.

        implementation : string, optional
            Determines if the forward-backward algorithm is implemented with
            logarithms ("log"), or using scaling ("scaling").  The default is
            to use logarithms for backwards compatability.
        """
        super().__init__(
            n_components=n_components, startprob_prior=startprob_prior,
            transmat_prior=transmat_prior,
            algorithm=algorithm, random_state=random_state,
            n_iter=n_iter, tol=tol, verbose=verbose,
            params=params, init_params=init_params,
            implementation=implementation
        )
        self.covariance_type = covariance_type
        self.means_prior = means_prior
        self.beta_prior = beta_prior
        self.dof_prior = dof_prior
        self.scale_prior = scale_prior

    @property
    def covars_(self):
        """Return covars as a full matrix."""
        return fill_covars(self._covars_, self.covariance_type,
                           self.n_components, self.n_features)

    @covars_.setter
    def covars_(self, covars):
        covars = np.array(covars, copy=True)
        _utils._validate_covars(covars, self.covariance_type,
                                self.n_components)
        self._covars_ = covars

    @property
    def means_(self):
        """
        Compat for _BaseGaussianHMM.  We return the mean of the
        approximating distribution, which for us is just `means_posterior_`
        """
        return self.means_posterior_

    def _init(self, X, lengths):
        """
        Initialize model parameters prior to fitting.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Feature matrix of individual samples.
        lengths : array-like of integers, shape (n_sequences, )
            Lengths of the individual sequences in ``X``. The sum of
            these should be ``n_samples``.
        """
        super()._init(X, lengths)

        X_mean = X.mean(axis=0)
        # Kmeans will be used for initializing both the means
        # and the covariances
        kmeans = cluster.KMeans(n_clusters=self.n_components,
                                random_state=self.random_state,
                                n_init=10)  # sklearn >=1.2 compat.
        kmeans.fit(X)
        cluster_counts = np.bincount(kmeans.predict(X))

        if (self._needs_init("m", "means_prior_")
                or self._needs_init("m", "means_posterior_")
                or self._needs_init("m", "beta_prior_")
                or self._needs_init("m", "beta_posterior_")):
            if self.means_prior is None:
                self.means_prior_ = np.full(
                    (self.n_components, self.n_features), X_mean)
            else:
                self.means_prior_ = self.means_prior
            # Initialize to the data means
            self.means_posterior_ = np.copy(kmeans.cluster_centers_)

            if self.beta_prior is None:
                self.beta_prior_ = np.zeros(self.n_components) + 1
            else:
                self.beta_prior_ = self.beta_prior

            # Count of items in each cluster
            self.beta_posterior_ = np.copy(cluster_counts)

        if (self._needs_init("c", "dof_prior_")
                or self._needs_init("c", "dof_posterior_")
                or self._needs_init("c", "scale_prior_")
                or self._needs_init("c", "scale_posterior_")):
            if self.covariance_type in ("full", "diag", "spherical"):
                if self.dof_prior is None:
                    self.dof_prior_ = np.full(
                        (self.n_components,), self.n_features)
                else:
                    self.dof_prior_ = self.dof_prior
                self.dof_posterior_ = np.copy(cluster_counts)

            elif self.covariance_type == "tied":
                if self.dof_prior is None:
                    self.dof_prior_ = self.n_features
                else:
                    self.dof_prior_ = self.dof_prior
                self.dof_posterior_ = cluster_counts.sum()

            # Covariance posterior comes from the estimate of the data
            # We store and update both W_k and scale_posterior_,
            # as they each are used in the EM-like algorithm
            cv = np.cov(X.T) + 1E-3 * np.eye(X.shape[1])
            self.covars_ = \
                _utils.distribute_covar_matrix_to_match_covariance_type(
                    cv, self.covariance_type, self.n_components).copy()

            if self.covariance_type == "full":
                if self.scale_prior is None:
                    self.scale_prior_ = np.broadcast_to(
                        np.identity(self.n_features) * 1e-3,
                        (self.n_components, self.n_features, self.n_features)
                    )
                else:
                    self.scale_prior_ = self.scale_prior
                self.scale_posterior_ = (
                    self._covars_
                    * np.asarray(self.dof_posterior_)[:, None, None])

            elif self.covariance_type == "tied":
                if self.scale_prior is None:
                    self.scale_prior_ = np.identity(self.n_features) * 1e-3
                else:
                    self.scale_prior_ = self.scale_prior
                self.scale_posterior_ = self._covars_ * self.dof_posterior_

            elif self.covariance_type == "diag":
                if self.scale_prior is None:
                    self.scale_prior_ = np.full(
                        (self.n_components, self.n_features), 1e-3)
                else:
                    self.scale_prior_ = self.scale_prior
                self.scale_posterior_ = np.einsum(
                    "ij,i->ij",self._covars_, self.dof_posterior_)

            elif self.covariance_type == "spherical":
                if self.scale_prior is None:
                    self.scale_prior_ = np.full((self.n_components, ), 1e-3)
                else:
                    self.scale_prior_ = self.scale_prior
                self.scale_posterior_ = (self._covars_.mean(axis=1)
                                         * self.dof_posterior_)

    def _get_n_fit_scalars_per_param(self):
        if self.covariance_type not in COVARIANCE_TYPES:
            raise ValueError(
                f"{self.covariance_type} is invalid")
        nc = self.n_components
        nf = self.n_features
        return {
            "s": nc - 1,
            "t": nc * (nc - 1),
            "m": nc * nf + nc,
            "c": {
                "full": nc + nc * nf * (nf + 1) // 2,
                "tied": 1 + nf * (nf + 1) // 2,
                "diag": nc + nc * nf,
                "spherical": nc + nc,

            }[self.covariance_type],
        }

    def _check(self):
        """
        Validate model parameters prior to fitting.

        Raises
        ------
        ValueError
            If any of the parameters are invalid, e.g. if :attr:`startprob_`
            don't sum to 1.
        """

        if self.covariance_type not in COVARIANCE_TYPES:
            raise ValueError(
                f"{self.covariance_type} is invalid")

        means_shape = (self.n_components, self.n_features)

        self.means_prior_ = np.asarray(self.means_prior_, dtype=float)
        self.means_posterior_ = np.asarray(self.means_posterior_, dtype=float)
        if self.means_prior_.shape != means_shape:
            raise ValueError(
                "means_prior_ have shape (n_components, n_features)")
        if self.means_posterior_.shape != means_shape:
            raise ValueError(
                "means_posterior_ must have shape (n_components, n_features)")

        self.beta_prior_ = np.asarray(self.beta_prior_, dtype=float)
        self.beta_posterior_ = np.asarray(self.beta_posterior_, dtype=float)
        if self.beta_prior_.shape != (self.n_components,):
            raise ValueError(
                "beta_prior_ have shape (n_components,)")

        if self.beta_posterior_.shape != (self.n_components,):
            raise ValueError(
                "beta_posterior_ must have shape (n_components,)")

        if self.covariance_type in ("full", "diag", "spherical"):
            self.dof_prior_ = np.asarray(self.dof_prior_, dtype=float)
            self.dof_posterior_ = np.asarray(self.dof_posterior_, dtype=float)
            if self.dof_prior_.shape != (self.n_components,):
                raise ValueError(
                    "dof_prior_ have shape (n_components,)")

            if self.dof_posterior_.shape != (self.n_components,):
                raise ValueError(
                    "dof_posterior_ must have shape (n_components,)")

        elif self.covariance_type == "tied":
            if not isinstance(self.dof_prior_, numbers.Number):
                raise ValueError("dof_prior_ should be numeric")
            if not isinstance(self.dof_posterior_, numbers.Number):
                raise ValueError("dof_posterior_ should be numeric")

        self.scale_prior_ = np.asarray(self.scale_prior_, dtype=float)
        self.scale_posterior_ = np.asarray(self.scale_posterior_, dtype=float)

        expected = None
        if self.covariance_type == "full":
            expected = (self.n_components, self.n_features, self.n_features)
        elif self.covariance_type == "tied":
            expected = (self.n_features, self.n_features)
        elif self.covariance_type == "diag":
            expected = (self.n_components, self.n_features)
        elif self.covariance_type == "spherical":
            expected = (self.n_components, )
        # Now check the W's
        if self.scale_prior_.shape != expected:
            raise ValueError(f"scale_prior_ must have shape {expected}, "
                             f"found {self.scale_prior_.shape}")

        if self.scale_posterior_.shape != expected:
            raise ValueError(f"scale_posterior_ must have shape {expected}, "
                             f"found {self.scale_posterior_.shape}")

    def _compute_subnorm_log_likelihood(self, X):
        # Refer to the Gruhl/Sick paper for the notation
        # In general, things are neater if we pretend the covariance is
        # full / tied.  Or, we could treat each case separately, and reduce
        # the number of operations. That's left for the future :-)
        nf = self.n_features

        term1 = special.digamma(
            .5 * (self.dof_posterior_ - np.arange(0, nf)[:, None])
        ).sum(axis=0)

        scale_posterior_ = self.scale_posterior_
        if self.covariance_type in ("diag", "spherical"):
            scale_posterior_ = fill_covars(self.scale_posterior_,
                    self.covariance_type, self.n_components, self.n_features)
        W_k = np.linalg.inv(scale_posterior_)
        term1 += nf * np.log(2) + _utils.logdet(W_k)
        term1 /= 2.

        # We ignore the constant that is typically excluded in the literature
        # term2 = self.n_features * log(2 * M_PI) / 2
        term2 = 0
        term3 = nf / self.beta_posterior_

        # (X - Means) * W_k * (X-Means)^T * self.dof_posterior_
        delta = (X - self.means_posterior_[:, None])
        # c is the HMM Component
        # i is the length of the sequence X
        # j, k are the n_features
        # output shape is length * number of components
        if self.covariance_type in ("full", "diag", "spherical"):
            dots = np.einsum("cij,cjk,cik,c->ic",
                             delta, W_k, delta, self.dof_posterior_)
        elif self.covariance_type == "tied":
            dots = np.einsum("cij,jk,cik,->ic",
                             delta, W_k, delta, self.dof_posterior_)
        last_term = .5 * (dots + term3)
        lll = term1 - term2 - last_term
        return lll

    def _do_mstep(self, stats):
        """
        Perform the M-step of VB-EM algorithm.

        Parameters
        ----------
        stats : dict
            Sufficient statistics updated from all available samples.
        """
        super()._do_mstep(stats)

        if "m" in self.params:
            self.beta_posterior_ = self.beta_prior_ + stats['post']
            self.means_posterior_ = np.einsum("i,ij->ij", self.beta_prior_,
                                              self.means_prior_)
            self.means_posterior_ += stats['obs']
            self.means_posterior_ /= self.beta_posterior_[:, None]

        if "c" in self.params:
            if self.covariance_type == "full":
                # Update DOF
                self.dof_posterior_ = self.dof_prior_ + stats['post']
                # Update scale
                self.scale_posterior_ = (
                    self.scale_prior_
                    + stats['obs*obs.T']
                    + np.einsum("c,ci,cj->cij",
                                self.beta_prior_,
                                self.means_prior_,
                                self.means_prior_)
                    - np.einsum("c,ci,cj->cij",
                                self.beta_posterior_,
                                self.means_posterior_,
                                self.means_posterior_))
                self._covars_ = (self.scale_posterior_
                                 / self.dof_posterior_[:, None, None])
            elif self.covariance_type == "tied":
                # Update DOF
                self.dof_posterior_ = self.dof_prior_ + stats['post'].sum()
                # Update scale
                self.scale_posterior_ = (
                    self.scale_prior_
                    + stats['obs*obs.T'].sum(axis=0)
                    + np.einsum("c,ci,cj->ij",
                                self.beta_prior_,
                                self.means_prior_,
                                self.means_prior_)
                    - np.einsum("c,ci,cj->ij",
                                self.beta_posterior_,
                                self.means_posterior_,
                                self.means_posterior_))
                self._covars_ = self.scale_posterior_ / self.dof_posterior_
            elif self.covariance_type == "diag":
                # Update DOF
                self.dof_posterior_ = self.dof_prior_ + stats['post']
                # Update scale
                self.scale_posterior_ = (
                    self.scale_prior_
                    + stats['obs**2']
                    + np.einsum("c,ci,ci->ci",
                                self.beta_prior_,
                                self.means_prior_,
                                self.means_prior_)
                    - np.einsum("c,ci,ci->ci",
                                self.beta_posterior_,
                                self.means_posterior_,
                                self.means_posterior_))
                self._covars_ = (self.scale_posterior_
                                 / self.dof_posterior_[:, None])
            elif self.covariance_type == "spherical":
                # Update DOF
                self.dof_posterior_ = self.dof_prior_ + stats['post']
                # Update scale
                term2 = (stats['obs**2']
                         + np.einsum("c,ci,ci->ci",
                                     self.beta_prior_,
                                     self.means_prior_,
                                     self.means_prior_)
                         - np.einsum("c,ci,ci->ci",
                                     self.beta_posterior_,
                                     self.means_posterior_,
                                     self.means_posterior_))
                self.scale_posterior_ = (
                    self.scale_prior_
                    + term2.mean(axis=1))
                self.scale_posterior_ = self.scale_posterior_
                self._covars_ = (self.scale_posterior_
                                 / self.dof_posterior_)

    def _compute_lower_bound(self, log_prob):

        # First, get the contribution from the state transitions
        # and initial probabilities
        lower_bound = super()._compute_lower_bound(log_prob)

        # The compute the contributions of the emissions
        emissions_lower_bound = 0

        # For ease of implementation, pretend everything is shaped like
        # full covariance.
        scale_posterior_ = self.scale_posterior_
        scale_prior_ = self.scale_prior_
        if self.covariance_type != "full":
            scale_posterior_ = fill_covars(self.scale_posterior_,
                    self.covariance_type, self.n_components, self.n_features)
            scale_prior_ = fill_covars(self.scale_prior_,
                    self.covariance_type, self.n_components, self.n_features)

        W_k = np.linalg.inv(scale_posterior_)

        if self.covariance_type != "tied":
            dof = self.dof_posterior_
        else:
            dof = np.repeat(self.dof_posterior_, self.n_components)

        for i in range(self.n_components):
            precision = W_k[i] * dof[i]
            # KL for the normal distributions
            term1 = np.linalg.inv(self.beta_posterior_[i] * precision)
            term2 = np.linalg.inv(self.beta_prior_[i] * precision)
            kln = _kl.kl_multivariate_normal_distribution(
                self.means_posterior_[i], term1,
                self.means_prior_[i], term2,
            )
            emissions_lower_bound -= kln
            # KL for the wishart distributions
            klw = 0.
            if self.covariance_type in ("full", "diag", "spherical"):
                klw = _kl.kl_wishart_distribution(
                    self.dof_posterior_[i], scale_posterior_[i],
                    self.dof_prior_[i], scale_prior_[i])
            elif self.covariance_type == "tied":
                # Just compute it for the first component
                if i == 0:
                    klw = _kl.kl_wishart_distribution(
                       self.dof_posterior_, self.scale_posterior_,
                       self.dof_prior_, self.scale_prior_)
                else:
                    klw = 0

            emissions_lower_bound -= klw
        return lower_bound + emissions_lower_bound

    def _needs_sufficient_statistics_for_mean(self):
        return 'm' in self.params or 'c' in self.params

    def _needs_sufficient_statistics_for_covars(self):
        return 'c' in self.params