1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
""" This module is generated by transpiling Haxe into Python and cleaning
the resulting code by hand, e.g. removing unused Haxe classes. To try it
yourself, clone https://github.com/hsluv/hsluv and run:
haxe -cp haxe/src hsluv.Hsluv -python hsluv.py
"""
__version__ = '5.0.4'
from functools import wraps as _wraps, partial as _partial # unexport, see #17
import math as _math # unexport, see #17
# XYZ-to-sRGB matrix
_m = [[3.240969941904521, -1.537383177570093, -0.498610760293],
[-0.96924363628087, 1.87596750150772, 0.041555057407175],
[0.055630079696993, -0.20397695888897, 1.056971514242878]]
# sRGB-to-XYZ matrix
_m_inv = [[0.41239079926595, 0.35758433938387, 0.18048078840183],
[0.21263900587151, 0.71516867876775, 0.072192315360733],
[0.019330818715591, 0.11919477979462, 0.95053215224966]]
_ref_y = 1.0
_ref_u = 0.19783000664283
_ref_v = 0.46831999493879
_kappa = 903.2962962 # 24389/27 == (29/3)**3
_epsilon = 0.0088564516 # 216/24389 == (6/29)**3
def _normalize_output(conversion):
# as in snapshot rev 4, the tolerance should be 1e-11
normalize = _partial(round, ndigits=11-1)
@_wraps(conversion)
def normalized(*args, **kwargs):
color = conversion(*args, **kwargs)
return tuple(normalize(c) for c in color)
return normalized
def _distance_line_from_origin(line):
v = line['slope'] ** 2 + 1
return abs(line['intercept']) / _math.sqrt(v)
def _length_of_ray_until_intersect(theta, line):
return line['intercept']\
/ (_math.sin(theta) - line['slope'] * _math.cos(theta))
def _get_bounds(l):
result = []
sub1 = ((l + 16) ** 3) / 1560896
if sub1 > _epsilon:
sub2 = sub1
else:
sub2 = l / _kappa
_g = 0
while _g < 3:
c = _g
_g += 1
m1 = _m[c][0]
m2 = _m[c][1]
m3 = _m[c][2]
_g1 = 0
while _g1 < 2:
t = _g1
_g1 += 1
top1 = (284517 * m1 - 94839 * m3) * sub2
top2 = (838422 * m3 + 769860 * m2 + 731718 * m1)\
* l * sub2 - (769860 * t) * l
bottom = (632260 * m3 - 126452 * m2) * sub2 + 126452 * t
result.append({'slope': top1 / bottom, 'intercept': top2 / bottom})
return result
def _max_safe_chroma_for_l(l):
return min(_distance_line_from_origin(bound)
for bound in _get_bounds(l))
def _max_chroma_for_lh(l, h):
hrad = _math.radians(h)
lengths = [_length_of_ray_until_intersect(hrad, bound) for bound in _get_bounds(l)]
return min(length for length in lengths if length >= 0)
def _dot_product(a, b):
return sum(i * j for i, j in zip(a, b))
def _from_linear(c):
if c <= 0.0031308:
return 12.92 * c
return 1.055 * _math.pow(c, 5 / 12) - 0.055
def _to_linear(c):
if c > 0.04045:
return _math.pow((c + 0.055) / 1.055, 2.4)
return c / 12.92
def _y_to_l(y):
if y <= _epsilon:
return y / _ref_y * _kappa
return 116 * _math.pow(y / _ref_y, 1 / 3) - 16
def _l_to_y(l):
if l <= 8:
return _ref_y * l / _kappa
return _ref_y * (((l + 16) / 116) ** 3)
def xyz_to_rgb(_hx_tuple):
return (
_from_linear(_dot_product(_m[0], _hx_tuple)),
_from_linear(_dot_product(_m[1], _hx_tuple)),
_from_linear(_dot_product(_m[2], _hx_tuple)))
def rgb_to_xyz(_hx_tuple):
rgbl = (_to_linear(_hx_tuple[0]),
_to_linear(_hx_tuple[1]),
_to_linear(_hx_tuple[2]))
return (_dot_product(_m_inv[0], rgbl),
_dot_product(_m_inv[1], rgbl),
_dot_product(_m_inv[2], rgbl))
def xyz_to_luv(_hx_tuple):
x = float(_hx_tuple[0])
y = float(_hx_tuple[1])
z = float(_hx_tuple[2])
l = _y_to_l(y)
if l == 0:
return (0, 0, 0)
divider = x + 15 * y + 3 * z
if divider == 0:
u = v = float("nan")
return (l, u, v)
var_u = 4 * x / divider
var_v = 9 * y / divider
u = 13 * l * (var_u - _ref_u)
v = 13 * l * (var_v - _ref_v)
return (l, u, v)
def luv_to_xyz(_hx_tuple):
l = float(_hx_tuple[0])
u = float(_hx_tuple[1])
v = float(_hx_tuple[2])
if l == 0:
return (0, 0, 0)
var_u = u / (13 * l) + _ref_u
var_v = v / (13 * l) + _ref_v
y = _l_to_y(l)
x = y * 9 * var_u / (4 * var_v)
z = y * (12 - 3 * var_u - 20 * var_v) / (4 * var_v)
return (x, y, z)
def luv_to_lch(_hx_tuple):
l = float(_hx_tuple[0])
u = float(_hx_tuple[1])
v = float(_hx_tuple[2])
c = _math.hypot(u, v)
if c < 1e-08:
h = 0
else:
hrad = _math.atan2(v, u)
h = _math.degrees(hrad)
if h < 0:
h += 360
return (l, c, h)
def lch_to_luv(_hx_tuple):
l = float(_hx_tuple[0])
c = float(_hx_tuple[1])
h = float(_hx_tuple[2])
hrad = _math.radians(h)
u = _math.cos(hrad) * c
v = _math.sin(hrad) * c
return (l, u, v)
def hsluv_to_lch(_hx_tuple):
h = float(_hx_tuple[0])
s = float(_hx_tuple[1])
l = float(_hx_tuple[2])
if l > 100-1e-7:
return (100, 0, h)
if l < 1e-08:
return (0, 0, h)
_hx_max = _max_chroma_for_lh(l, h)
c = _hx_max / 100 * s
return (l, c, h)
def lch_to_hsluv(_hx_tuple):
l = float(_hx_tuple[0])
c = float(_hx_tuple[1])
h = float(_hx_tuple[2])
if l > 100-1e-7:
return (h, 0, 100)
if l < 1e-08:
return (h, 0, 0)
_hx_max = _max_chroma_for_lh(l, h)
s = c / _hx_max * 100
return (h, s, l)
def hpluv_to_lch(_hx_tuple):
h = float(_hx_tuple[0])
s = float(_hx_tuple[1])
l = float(_hx_tuple[2])
if l > 100-1e-7:
return (100, 0, h)
if l < 1e-08:
return (0, 0, h)
_hx_max = _max_safe_chroma_for_l(l)
c = _hx_max / 100 * s
return (l, c, h)
def lch_to_hpluv(_hx_tuple):
l = float(_hx_tuple[0])
c = float(_hx_tuple[1])
h = float(_hx_tuple[2])
if l > 100-1e-7:
return (h, 0, 100)
if l < 1e-08:
return (h, 0, 0)
_hx_max = _max_safe_chroma_for_l(l)
s = c / _hx_max * 100
return (h, s, l)
def rgb_to_hex(_hx_tuple):
return '#{:02x}{:02x}{:02x}'.format(
int(_math.floor(_hx_tuple[0] * 255 + 0.5)),
int(_math.floor(_hx_tuple[1] * 255 + 0.5)),
int(_math.floor(_hx_tuple[2] * 255 + 0.5)))
def hex_to_rgb(_hex):
# skip leading '#'
r = int(_hex[1:3], base=16) / 255.0
g = int(_hex[3:5], base=16) / 255.0
b = int(_hex[5:7], base=16) / 255.0
return (r, g, b)
def lch_to_rgb(_hx_tuple):
return xyz_to_rgb(luv_to_xyz(lch_to_luv(_hx_tuple)))
def rgb_to_lch(_hx_tuple):
return luv_to_lch(xyz_to_luv(rgb_to_xyz(_hx_tuple)))
def _hsluv_to_rgb(_hx_tuple):
return lch_to_rgb(hsluv_to_lch(_hx_tuple))
hsluv_to_rgb = _normalize_output(_hsluv_to_rgb)
def rgb_to_hsluv(_hx_tuple):
return lch_to_hsluv(rgb_to_lch(_hx_tuple))
def _hpluv_to_rgb(_hx_tuple):
return lch_to_rgb(hpluv_to_lch(_hx_tuple))
hpluv_to_rgb = _normalize_output(_hpluv_to_rgb)
def rgb_to_hpluv(_hx_tuple):
return lch_to_hpluv(rgb_to_lch(_hx_tuple))
def hsluv_to_hex(_hx_tuple):
return rgb_to_hex(hsluv_to_rgb(_hx_tuple))
def hpluv_to_hex(_hx_tuple):
return rgb_to_hex(hpluv_to_rgb(_hx_tuple))
def hex_to_hsluv(s):
return rgb_to_hsluv(hex_to_rgb(s))
def hex_to_hpluv(s):
return rgb_to_hpluv(hex_to_rgb(s))
|