1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
|
# coding=utf-8
#
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis-python
#
# Most of this work is copyright (C) 2013-2016 David R. MacIver
# (david@drmaciver.com), but it contains contributions by others. See
# CONTRIBUTING.rst for a full list of people who may hold copyright, and
# consult the git log if you need to determine who owns an individual
# contribution.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at http://mozilla.org/MPL/2.0/.
#
# END HEADER
from __future__ import division, print_function, absolute_import
import sys
import math
import operator
from random import Random
from decimal import Decimal
from fractions import Fraction
import pytest
from flaky import flaky
from hypothesis import find, given, assume, example, settings
from tests.common import parametrize, ordered_pair, constant_list
from hypothesis.strategies import just, sets, text, lists, binary, \
floats, tuples, randoms, booleans, decimals, integers, fractions, \
recursive, frozensets, dictionaries, sampled_from, random_module
from hypothesis.internal.debug import minimal
from hypothesis.internal.compat import PY3, hrange, reduce, Counter, \
OrderedDict, integer_types
slightly_flaky = flaky(min_passes=1, max_runs=3)
@slightly_flaky
def test_minimize_list_on_large_structure():
def test_list_in_range(xs):
return len([
x for x in xs
if x >= 10
]) >= 60
assert minimal(
lists(integers(), min_size=60, average_size=120), test_list_in_range,
timeout_after=30,
) == [10] * 60
@flaky(min_passes=1, max_runs=4)
def test_minimize_list_of_sets_on_large_structure():
def test_list_in_range(xs):
return len(list(filter(None, xs))) >= 30
x = minimal(
lists(frozensets(integers()), min_size=30), test_list_in_range,
timeout_after=20,
)
assert x == [frozenset([0])] * 30
def test_integers_from_minimizes_leftwards():
assert minimal(integers(min_value=101)) == 101
def test_minimal_fractions_1():
assert minimal(fractions()) == Fraction(0)
def test_minimal_fractions_2():
assert minimal(fractions(), lambda x: x >= 1) == Fraction(1)
def test_minimal_fractions_3():
assert minimal(
lists(fractions()), lambda s: len(s) >= 20) == [Fraction(0)] * 20
@slightly_flaky
def test_minimal_fractions_4():
x = minimal(
lists(
fractions(max_denominator=100, max_value=100, min_value=-100),
min_size=20),
lambda s: len([t for t in s if t >= 1]) >= 20
)
assert x == [Fraction(1)] * 20
def test_minimize_list_of_floats_on_large_structure():
def test_list_in_range(xs):
return len([
x for x in xs
if x >= 3
]) >= 30
result = minimal(
lists(floats(), min_size=50, average_size=100),
test_list_in_range, timeout_after=20)
result.sort()
assert result == [0.0] * 20 + [3.0] * 30
def test_minimize_string_to_empty():
assert minimal(text()) == u''
def test_minimize_one_of():
for _ in hrange(100):
assert minimal(integers() | text() | booleans()) in (
0, u'', False
)
def test_minimize_mixed_list():
mixed = minimal(lists(integers() | text()), lambda x: len(x) >= 10)
assert set(mixed).issubset(set((0, u'')))
def test_minimize_longer_string():
assert minimal(text(), lambda x: len(x) >= 10) == u'0' * 10
def test_minimize_longer_list_of_strings():
assert minimal(lists(text()), lambda x: len(x) >= 10) == [u''] * 10
def test_minimize_3_set():
assert minimal(sets(integers()), lambda x: len(x) >= 3) in (
set((0, 1, 2)),
set((-1, 0, 1)),
)
def test_minimize_3_set_of_tuples():
assert minimal(
sets(tuples(integers())),
lambda x: len(x) >= 2) == set(((0,), (1,)))
def test_minimize_sets_of_sets():
elements = integers(1, 100)
size = 15
set_of_sets = minimal(
sets(frozensets(elements)), lambda s: len(s) >= size
)
assert frozenset() in set_of_sets
assert len(set_of_sets) == size
for s in set_of_sets:
if len(s) > 1:
assert any(
s != t and t.issubset(s)
for t in set_of_sets
)
@pytest.mark.parametrize(
('string',), [(text(),), (binary(),)],
ids=['text', 'binary()']
)
def test_minimal_unsorted_strings(string):
def dedupe(xs):
result = []
for x in xs:
if x not in result:
result.append(x)
return result
result = minimal(
lists(string).map(dedupe),
lambda xs: assume(len(xs) >= 5) and sorted(xs) != xs
)
assert len(result) == 5
for ex in result:
if len(ex) > 1:
for i in hrange(len(ex)):
assert ex[:i] in result
@slightly_flaky
def test_finds_list_with_plenty_duplicates():
def is_good(xs):
return max(Counter(xs).values()) >= 3
result = minimal(
lists(text(min_size=1), average_size=50, min_size=1), is_good,
timeout_after=20,
)
assert result == [u'0'] * 3
@slightly_flaky
def test_minimal_mixed_list_propagates_leftwards():
# one_of simplification can't actually simplify to the left, but it regards
# instances of the leftmost type as strictly simpler. This means that if we
# have any bools in the list we can clone them to replace the more complex
# examples to the right.
# The check that we have at least one bool is required for this to work,
# otherwise the features that ensure sometimes we can get a list of all of
# one type will occasionally give us an example which doesn't contain any
# bools to clone
def long_list_with_enough_bools(x):
if len(x) < 50:
return False
if len([t for t in x if isinstance(t, bool)]) < 10:
return False
return True
assert minimal(
lists(booleans() | tuples(integers()), min_size=50),
long_list_with_enough_bools
) == [False] * 50
def test_tuples_do_not_block_cloning():
assert minimal(
lists(tuples(booleans() | tuples(integers())), min_size=50),
lambda x: any(isinstance(t[0], bool) for t in x),
timeout_after=60,
) == [(False,)] * 50
def test_can_simplify_flatmap_with_bounded_left_hand_size():
assert minimal(
booleans().flatmap(lambda x: lists(just(x))),
lambda x: len(x) >= 10) == [False] * 10
def test_can_simplify_across_flatmap_of_just():
assert minimal(integers().flatmap(just)) == 0
def test_can_simplify_on_right_hand_strategy_of_flatmap():
assert minimal(integers().flatmap(lambda x: lists(just(x)))) == []
def test_can_ignore_left_hand_side_of_flatmap():
assert minimal(
integers().flatmap(lambda x: lists(integers())),
lambda x: len(x) >= 10
) == [0] * 10
def test_can_simplify_on_both_sides_of_flatmap():
assert minimal(
integers().flatmap(lambda x: lists(just(x))),
lambda x: len(x) >= 10
) == [0] * 10
def test_flatmap_rectangles():
lengths = integers(min_value=0, max_value=10)
def lists_of_length(n):
return lists(sampled_from('ab'), min_size=n, max_size=n)
xs = find(lengths.flatmap(
lambda w: lists(lists_of_length(w))), lambda x: ['a', 'b'] in x,
settings=settings(database=None, max_examples=2000)
)
assert xs == [['a', 'b']]
@parametrize(u'dict_class', [dict, OrderedDict])
def test_dictionary(dict_class):
assert minimal(dictionaries(
keys=integers(), values=text(),
dict_class=dict_class)) == dict_class()
x = minimal(
dictionaries(keys=integers(), values=text(), dict_class=dict_class),
lambda t: len(t) >= 3)
assert isinstance(x, dict_class)
assert set(x.values()) == set((u'',))
for k in x:
if k < 0:
assert k + 1 in x
if k > 0:
assert k - 1 in x
def test_minimize_single_element_in_silly_large_int_range():
ir = integers(-(2 ** 256), 2 ** 256)
assert minimal(ir, lambda x: x >= -(2 ** 255)) == 0
def test_minimize_multiple_elements_in_silly_large_int_range():
desired_result = [0] * 20
ir = integers(-(2 ** 256), 2 ** 256)
x = minimal(
lists(ir),
lambda x: len(x) >= 20,
timeout_after=20,
)
assert x == desired_result
def test_minimize_multiple_elements_in_silly_large_int_range_min_is_not_dupe():
ir = integers(0, 2 ** 256)
target = list(range(20))
x = minimal(
lists(ir),
lambda x: (
assume(len(x) >= 20) and all(x[i] >= target[i] for i in target))
)
assert x == target
def test_minimize_one_of_distinct_types():
y = booleans() | binary()
x = minimal(
tuples(y, y),
lambda x: type(x[0]) != type(x[1])
)
assert x in (
(False, b''),
(b'', False)
)
@pytest.mark.skipif(PY3, reason=u'Python 3 has better integers')
def test_minimize_long():
assert minimal(
integers(), lambda x: type(x).__name__ == u'long') == sys.maxint + 1
def test_non_reversible_ints_as_decimals():
def not_reversible(xs):
ts = list(map(Decimal, xs))
return sum(ts) != sum(reversed(ts))
sigh = minimal(lists(integers()), not_reversible, timeout_after=30)
assert len(sigh) <= 25
def test_non_reversible_fractions_as_decimals():
def not_reversible(xs):
xs = [Decimal(x.numerator) / x.denominator for x in xs]
return sum(xs) != sum(reversed(xs))
sigh = minimal(lists(fractions()), not_reversible, timeout_after=20)
assert len(sigh) <= 25
def test_non_reversible_decimals():
def not_reversible(xs):
assume(all(x.is_finite() for x in xs))
return sum(xs) != sum(reversed(xs))
sigh = minimal(lists(decimals()), not_reversible, timeout_after=30)
assert len(sigh) <= 25
def length_of_longest_ordered_sequence(xs):
if not xs:
return 0
# FIXME: Needlessly O(n^2) algorithm, but it's a test so eh.
lengths = [-1] * len(xs)
lengths[-1] = 1
for i in hrange(len(xs) - 2, -1, -1):
assert lengths[i] == -1
for j in hrange(i + 1, len(xs)):
assert lengths[j] >= 1
if xs[j] > xs[i]:
lengths[i] = max(lengths[i], lengths[j] + 1)
if lengths[i] < 0:
lengths[i] = 1
assert all(t >= 1 for t in lengths)
return max(lengths)
def test_increasing_integer_sequence():
k = 6
xs = minimal(
lists(integers()), lambda t: (
len(t) <= 30 and length_of_longest_ordered_sequence(t) >= k),
timeout_after=60,
)
start = xs[0]
assert xs == list(range(start, start + k))
@slightly_flaky
def test_increasing_string_sequence():
n = 7
lb = u'✐'
xs = minimal(
lists(text(min_size=1), min_size=n, average_size=50), lambda t: (
t[0] >= lb and
t[-1] >= lb and
length_of_longest_ordered_sequence(t) >= n
),
timeout_after=30,
)
assert n <= len(xs) <= n + 2
for i in hrange(len(xs) - 1):
assert abs(len(xs[i + 1]) - len(xs[i])) <= 1
def test_decreasing_string_sequence():
n = 7
lb = u'✐'
xs = minimal(
lists(text(min_size=1), min_size=n, average_size=50), lambda t: (
n <= len(t) and
all(t) and
t[0] >= lb and
t[-1] >= lb and
length_of_longest_ordered_sequence(list(reversed(t))) >= n
),
timeout_after=30,
)
assert n <= len(xs) <= n + 2
for i in hrange(len(xs) - 1):
assert abs(len(xs[i + 1]) - len(xs[i])) <= 1
def test_small_sum_lists():
xs = minimal(
lists(floats(), min_size=100, average_size=200),
lambda x:
sum(t for t in x if float(u'inf') > t >= 0) >= 1,
timeout_after=60,
)
assert 1.0 <= sum(t for t in xs if t >= 0) <= 1.5
def test_increasing_float_sequence():
xs = minimal(
lists(floats()), lambda x: length_of_longest_ordered_sequence([
t for t in x if t >= 0
]) >= 7 and len([t for t in x if t >= 500.0]) >= 4
)
assert max(xs) < 1000
assert not any(math.isinf(x) for x in xs)
def test_increasing_integers_from_sequence():
n = 6
lb = 50000
xs = minimal(
lists(integers(min_value=0)), lambda t: (
n <= len(t) and
all(t) and
any(s >= lb for s in t) and
length_of_longest_ordered_sequence(t) >= n
),
timeout_after=60,
)
assert n <= len(xs) <= n + 2
def test_find_large_union_list():
def large_mostly_non_overlapping(xs):
assume(xs)
assume(all(xs))
union = reduce(operator.or_, xs)
return len(union) >= 30
result = minimal(
lists(sets(integers())),
large_mostly_non_overlapping, timeout_after=60)
union = reduce(operator.or_, result)
assert len(union) == 30
assert max(union) == min(union) + len(union) - 1
for x in result:
for y in result:
if x is not y:
assert not (x & y)
def test_anti_sorted_ordered_pair():
result = minimal(
lists(ordered_pair),
lambda x: (
len(x) >= 30 and
2 < length_of_longest_ordered_sequence(x) <= 10))
assert len(result) == 30
def test_constant_lists_of_diverse_length():
# This does not currently work very well. We delete, but we don't actually
# get all that far with simplification of the individual elements.
result = minimal(
lists(constant_list(integers())),
lambda x: len(set(map(len, x))) >= 20,
timeout_after=30,
)
assert len(result) == 20
def test_finds_non_reversible_floats():
t = minimal(
lists(floats()), lambda xs:
not math.isnan(sum(xs)) and sum(xs) != sum(reversed(xs)),
timeout_after=40,
settings=settings(database=None)
)
assert len(repr(t)) <= 200
print(t)
@pytest.mark.parametrize('n', [0, 1, 10, 100, 1000])
def test_containment(n):
iv = minimal(
tuples(lists(integers()), integers()),
lambda x: x[1] in x[0] and x[1] >= n,
timeout_after=60
)
assert iv == ([n], n)
def test_duplicate_containment():
ls, i = minimal(
tuples(lists(integers()), integers()),
lambda s: s[0].count(s[1]) > 1, timeout_after=100)
assert ls == [0, 0]
assert i == 0
def test_unique_lists_of_single_characters():
x = minimal(
lists(text(max_size=1), unique=True, min_size=5)
)
assert sorted(x) == ['', '0', '1', '2', '3']
@given(randoms())
@settings(max_examples=10, database=None, max_shrinks=0)
@example(rnd=Random(340282366920938463462798146679426884207))
def test_can_simplify_hard_recursive_data_into_boolean_alternative(rnd):
"""This test forces us to exercise the simplification through redrawing
functionality, thus testing that we can deal with bad templates."""
def leaves(ls):
if isinstance(ls, (bool,) + integer_types):
return [ls]
else:
return sum(map(leaves, ls), [])
def hard(base):
return recursive(
base, lambda x: lists(x, max_size=5), max_leaves=20)
r = find(
hard(booleans()) |
hard(booleans()) |
hard(booleans()) |
hard(integers()) |
hard(booleans()),
lambda x:
len(leaves(x)) >= 3 and
any(isinstance(t, bool) for t in leaves(x)),
random=rnd, settings=settings(
database=None, max_examples=5000, max_shrinks=1000))
lvs = leaves(r)
assert lvs == [False] * 3
assert all(isinstance(v, bool) for v in lvs), repr(lvs)
def test_can_clone_same_length_items():
ls = find(
lists(frozensets(integers(), min_size=10, max_size=10)),
lambda x: len(x) >= 20
)
assert len(set(ls)) == 1
@given(random_module(), integers(min_value=0))
@example(None, 62677)
@settings(max_examples=100, max_shrinks=0)
def test_minimize_down_to(rnd, i):
j = find(
integers(), lambda x: x >= i,
settings=settings(max_examples=1000, database=None, max_shrinks=1000))
assert i == j
@flaky(max_runs=2, min_passes=1)
def test_can_find_quite_deep_lists():
def depth(x):
if x and isinstance(x, list):
return 1 + max(map(depth, x))
else:
return 1
deep = find(
recursive(booleans(), lambda x: lists(x, max_size=3)),
lambda x: depth(x) >= 5)
assert deep == [[[[False]]]]
|