1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
# coding=utf-8
#
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis-python
#
# Most of this work is copyright (C) 2013-2016 David R. MacIver
# (david@drmaciver.com), but it contains contributions by others. See
# CONTRIBUTING.rst for a full list of people who may hold copyright, and
# consult the git log if you need to determine who owns an individual
# contribution.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at http://mozilla.org/MPL/2.0/.
#
# END HEADER
from __future__ import division, print_function, absolute_import
import hypothesis.strategies as st
from hypothesis import given, settings
from hypothesis.errors import InvalidArgument
from hypothesis.control import reject
from hypothesis.internal.compat import OrderedDict
def foo(x):
pass
def bar(x):
pass
def baz(x):
pass
fns = [
foo, bar, baz
]
def builds_ignoring_invalid(target, *args, **kwargs):
def splat(value):
try:
result = target(*value[0], **value[1])
result.validate()
return result
except InvalidArgument:
reject()
return st.tuples(
st.tuples(*args), st.fixed_dictionaries(kwargs)).map(splat)
size_strategies = dict(
min_size=st.integers(min_value=0, max_value=100) | st.none(),
max_size=st.integers(min_value=0, max_value=100) | st.none(),
average_size=st.floats(min_value=0.0, max_value=100.0) | st.none()
)
values = st.integers() | st.text(average_size=2.0)
Strategies = st.recursive(
st.one_of(
st.sampled_from([
st.none(), st.booleans(), st.randoms(), st.complex_numbers(),
st.randoms(), st.fractions(), st.decimals(),
]),
st.builds(st.just, values),
st.builds(st.sampled_from, st.lists(values, min_size=1)),
builds_ignoring_invalid(st.floats, st.floats(), st.floats()),
),
lambda x: st.one_of(
builds_ignoring_invalid(st.lists, x, **size_strategies),
builds_ignoring_invalid(st.sets, x, **size_strategies),
builds_ignoring_invalid(
lambda v: st.tuples(*v), st.lists(x, average_size=2.0)),
builds_ignoring_invalid(
lambda v: st.one_of(*v),
st.lists(x, average_size=2.0, min_size=1)),
builds_ignoring_invalid(
st.dictionaries, x, x,
dict_class=st.sampled_from([dict, OrderedDict]),
min_size=st.integers(min_value=0, max_value=100) | st.none(),
max_size=st.integers(min_value=0, max_value=100) | st.none(),
average_size=st.floats(min_value=0.0, max_value=100.0) | st.none()
),
st.builds(lambda s, f: s.map(f), x, st.sampled_from(fns)),
)
)
strategy_globals = dict(
(k, getattr(st, k))
for k in dir(st)
)
strategy_globals['OrderedDict'] = OrderedDict
strategy_globals['inf'] = float('inf')
strategy_globals['nan'] = float('nan')
strategy_globals['foo'] = foo
strategy_globals['bar'] = bar
strategy_globals['baz'] = baz
@given(Strategies)
@settings(max_examples=2000)
def test_repr_evals_to_thing_with_same_repr(strategy):
r = repr(strategy)
via_eval = eval(r, strategy_globals)
r2 = repr(via_eval)
assert r == r2
|