1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
# coding=utf-8
#
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis-python
#
# Most of this work is copyright (C) 2013-2016 David R. MacIver
# (david@drmaciver.com), but it contains contributions by others. See
# CONTRIBUTING.rst for a full list of people who may hold copyright, and
# consult the git log if you need to determine who owns an individual
# contribution.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at http://mozilla.org/MPL/2.0/.
#
# END HEADER
from __future__ import division, print_function, absolute_import
from random import Random
from flaky import flaky
import hypothesis.strategies as st
from hypothesis import find, given, example, settings
from hypothesis.internal.debug import timeout
from hypothesis.internal.compat import integer_types
def test_can_generate_with_large_branching():
def flatten(x):
if isinstance(x, list):
return sum(map(flatten, x), [])
else:
return [x]
xs = find(
st.recursive(
st.integers(), lambda x: st.lists(x, average_size=50),
max_leaves=100),
lambda x: isinstance(x, list) and len(flatten(x)) >= 50
)
assert flatten(xs) == [0] * 50
def test_can_generate_some_depth_with_large_branching():
def depth(x):
if x and isinstance(x, list):
return 1 + max(map(depth, x))
else:
return 1
xs = find(
st.recursive(st.integers(), lambda x: st.lists(x, average_size=100)),
lambda x: depth(x) > 1
)
assert xs in ([0], [[]])
def test_can_find_quite_broad_lists():
def breadth(x):
if isinstance(x, list):
return sum(map(breadth, x))
else:
return 1
broad = find(
st.recursive(st.booleans(), lambda x: st.lists(x, max_size=10)),
lambda x: breadth(x) >= 20,
settings=settings(max_examples=10000)
)
assert breadth(broad) == 20
def test_drawing_many_near_boundary():
ls = find(
st.lists(st.recursive(
st.booleans(),
lambda x: st.lists(x, min_size=8, max_size=10).map(tuple),
max_leaves=9)),
lambda x: len(set(x)) >= 5,
settings=settings(max_examples=10000, database=None, max_shrinks=2000)
)
assert len(ls) == 5
@given(st.randoms())
@settings(max_examples=50, max_shrinks=0)
@example(Random(-1363972488426139))
@example(Random(-4))
def test_can_use_recursive_data_in_sets(rnd):
nested_sets = st.recursive(
st.booleans(),
lambda js: st.frozensets(js, average_size=2.0),
max_leaves=10
)
nested_sets.example(rnd)
def flatten(x):
if isinstance(x, bool):
return frozenset((x,))
else:
result = frozenset()
for t in x:
result |= flatten(t)
if len(result) == 2:
break
return result
assert rnd is not None
x = find(
nested_sets, lambda x: len(flatten(x)) == 2, random=rnd,
settings=settings(database=None, max_shrinks=1000, max_examples=1000))
assert x in (
frozenset((False, True)),
frozenset((False, frozenset((True,)))),
frozenset((frozenset((False, True)),))
)
@flaky(max_runs=2, min_passes=1)
def test_can_form_sets_of_recursive_data():
trees = st.sets(st.recursive(
st.booleans(),
lambda x: st.lists(x, min_size=5).map(tuple),
max_leaves=20))
xs = find(trees, lambda x: len(x) >= 10, settings=settings(
database=None, timeout=20, max_shrinks=1000, max_examples=1000
))
assert len(xs) == 10
@given(st.randoms())
@settings(max_examples=2, database=None)
@timeout(60)
def test_can_flatmap_to_recursive_data(rnd):
stuff = st.lists(st.integers(), min_size=1).flatmap(
lambda elts: st.recursive(
st.sampled_from(elts), lambda x: st.lists(x, average_size=25),
max_leaves=25
))
def flatten(x):
if isinstance(x, integer_types):
return [x]
else:
return sum(map(flatten, x), [])
tree = find(
stuff, lambda x: sum(flatten(x)) >= 100,
settings=settings(
database=None, max_shrinks=2000, max_examples=1000,
timeout=20,
),
random=rnd
)
flat = flatten(tree)
assert (sum(flat) == 1000) or (len(set(flat)) == 1)
|