1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
Quickstart
==========
This is a lightning introduction to the most important features of Hypothesis; enough to get you started writing tests. The :doc:`tutorial <tutorial/index>` introduces these features (and more) in greater detail.
Install Hypothesis
------------------
.. code-block:: shell
pip install hypothesis
Write your first test
---------------------
Create a new file called ``example.py``, containing a simple test:
.. code-block:: python
# contents of example.py
from hypothesis import given, strategies as st
@given(st.integers())
def test_integers(n):
print(f"called with {n}")
assert isinstance(n, int)
test_integers()
|@given| is the standard entrypoint to Hypothesis. It takes a *strategy*, which describes the type of inputs you want the decorated function to accept. When we call ``test_integers``, Hypothesis will generate random integers (because we used the |st.integers| strategy) and pass them as ``n``. Let's see that in action now by running ``python example.py``:
.. code-block:: none
called with 0
called with -18588
called with -672780074
called with 32616
...
We can just call ``test_integers()``, without passing a value for ``n``, because Hypothesis takes care of generating values of ``n`` for us.
.. note::
By default, Hypothesis generates 100 random examples. You can control this with the |max_examples| setting.
Running in a test suite
-----------------------
A Hypothesis test is still a regular python function, which means pytest or unittest will pick it up and run it in all the normal ways.
.. code-block:: python
# contents of example.py
from hypothesis import given, strategies as st
@given(st.integers(0, 200))
def test_integers(n):
assert n < 50
This test will clearly fail, which can be confirmed by running ``pytest example.py``:
.. code-block:: none
$ pytest example.py
...
@given(st.integers())
def test_integers(n):
> assert n < 50
E assert 50 < 50
E Falsifying example: test_integers(
E n=50,
E )
Arguments to |@given|
---------------------
You can pass multiple arguments to |@given|:
.. code-block:: python
@given(st.integers(), st.text())
def test_integers(n, s):
assert isinstance(n, int)
assert isinstance(s, str)
Or use keyword arguments:
.. code-block:: python
@given(n=st.integers(), s=st.text())
def test_integers(n, s):
assert isinstance(n, int)
assert isinstance(s, str)
.. note::
See |@given| for details about how |@given| handles different types of arguments.
Filtering inside a test
-----------------------
Sometimes, you need to remove invalid cases from your test. The best way to do this is with |.filter|:
.. code-block:: python
@given(st.integers().filter(lambda n: n % 2 == 0))
def test_integers(n):
assert n % 2 == 0
For more complicated conditions, you can use |assume|, which tells Hypothesis to discard any test case with a false-y argument:
.. code-block:: python
@given(st.integers(), st.integers())
def test_integers(n1, n2):
assume(n1 != n2)
# n1 and n2 are guaranteed to be different here
.. note::
You can learn more about |.filter| and |assume| in the :doc:`/tutorial/adapting-strategies` tutorial page.
Dependent generation
--------------------
You may want an input to depend on the value of another input. For instance, you might want to generate two integers ``n1`` and ``n2`` where ``n1 <= n2``.
You can do this using the |st.composite| strategy. |st.composite| lets you define a new strategy which is itself built by drawing values from other strategies, using the automatically-passed ``draw`` function.
.. code-block:: python
@st.composite
def ordered_pairs(draw):
n1 = draw(st.integers())
n2 = draw(st.integers(min_value=n1))
return (n1, n2)
@given(ordered_pairs())
def test_pairs_are_ordered(pair):
n1, n2 = pair
assert n1 <= n2
In more complex cases, you might need to interleave generation and test code. In this case, use |st.data|.
.. code-block:: python
@given(st.data(), st.text(min_size=1))
def test_string_characters_are_substrings(data, string):
assert isinstance(string, str)
index = data.draw(st.integers(0, len(string) - 1))
assert string[index] in string
Combining Hypothesis with pytest
--------------------------------
Hypothesis works with pytest features, like :ref:`pytest:pytest.mark.parametrize ref`:
.. code-block:: python
import pytest
from hypothesis import given, strategies as st
@pytest.mark.parametrize("operation", [reversed, sorted])
@given(st.lists(st.integers()))
def test_list_operation_preserves_length(operation, lst):
assert len(lst) == len(list(operation(lst)))
Hypothesis also works with pytest fixtures:
.. code-block:: python
import pytest
@pytest.fixture(scope="session")
def shared_mapping():
return {n: 0 for n in range(101)}
@given(st.integers(0, 100))
def test_shared_mapping_keys(shared_mapping, n):
assert n in shared_mapping
|