File: test_choice.py

package info (click to toggle)
python-hypothesis 6.138.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,272 kB
  • sloc: python: 62,853; ruby: 1,107; sh: 253; makefile: 41; javascript: 6
file content (961 lines) | stat: -rw-r--r-- 30,464 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.

import math
import sys
from copy import deepcopy

import pytest

from hypothesis import (
    HealthCheck,
    assume,
    example,
    given,
    note,
    settings,
    strategies as st,
)
from hypothesis.errors import StopTest
from hypothesis.internal.conjecture.choice import (
    ChoiceNode,
    ChoiceTemplate,
    choice_equal,
    choice_from_index,
    choice_permitted,
    choice_to_index,
    choices_key,
)
from hypothesis.internal.conjecture.data import (
    COLLECTION_DEFAULT_MAX_SIZE,
    ConjectureData,
    Status,
    choices_size,
)
from hypothesis.internal.conjecture.datatree import (
    MAX_CHILDREN_EFFECTIVELY_INFINITE,
    all_children,
    compute_max_children,
)
from hypothesis.internal.conjecture.engine import choice_count
from hypothesis.internal.conjecture.provider_conformance import integer_constraints
from hypothesis.internal.floats import SMALLEST_SUBNORMAL, next_down, next_up
from hypothesis.internal.intervalsets import IntervalSet

from tests.common.debug import minimal
from tests.conjecture.common import (
    choice_types_constraints,
    clamped_shrink_towards,
    draw_value,
    float_constr,
    fresh_data,
    integer_constr,
    nodes,
)


# we max out at 128 bit integers in the *unbounded* case, but someone may
# specify a bound with a larger magnitude. Ensure we calculate max children for
# those cases correctly.
@example(("integer", integer_constr(max_value=-(2**200))))
@example(("integer", integer_constr(min_value=2**200)))
@example(("integer", integer_constr(-(2**200), 2**200)))
@given(choice_types_constraints())
def test_compute_max_children_is_positive(choice_type_and_constraints):
    (choice_type, constraints) = choice_type_and_constraints
    assert compute_max_children(choice_type, constraints) >= 0


@pytest.mark.parametrize(
    "choice_type, constraints, count_children",
    [
        ("integer", {"min_value": 1, "max_value": 2, "weights": {1: 0.1, 2: 0.1}}, 2),
        # only possibility is the empty string
        (
            "string",
            {"min_size": 0, "max_size": 100, "intervals": IntervalSet.from_string("")},
            1,
        ),
        (
            "string",
            {"min_size": 0, "max_size": 0, "intervals": IntervalSet.from_string("abc")},
            1,
        ),
        # 3 possibilities for each character, 8 characters, 3 ** 8 possibilities.
        (
            "string",
            {"min_size": 8, "max_size": 8, "intervals": IntervalSet.from_string("abc")},
            3**8,
        ),
        (
            "string",
            {
                "min_size": 2,
                "max_size": 8,
                "intervals": IntervalSet.from_string("abcd"),
            },
            sum(4**k for k in range(2, 8 + 1)),
        ),
        (
            "string",
            {
                "min_size": 0,
                "max_size": COLLECTION_DEFAULT_MAX_SIZE,
                "intervals": IntervalSet.from_string("a"),
            },
            COLLECTION_DEFAULT_MAX_SIZE + 1,
        ),
        (
            "string",
            {
                "min_size": 0,
                "max_size": 10_000,
                "intervals": IntervalSet.from_string("abcdefg"),
            },
            MAX_CHILDREN_EFFECTIVELY_INFINITE,
        ),
        (
            "bytes",
            {
                "min_size": 0,
                "max_size": 2,
            },
            sum(2 ** (8 * k) for k in range(2 + 1)),
        ),
        (
            "bytes",
            {
                "min_size": 0,
                "max_size": COLLECTION_DEFAULT_MAX_SIZE,
            },
            MAX_CHILDREN_EFFECTIVELY_INFINITE,
        ),
        (
            "bytes",
            {
                "min_size": 0,
                "max_size": 10_000,
            },
            MAX_CHILDREN_EFFECTIVELY_INFINITE,
        ),
        ("boolean", {"p": 0.0}, 1),
        ("boolean", {"p": 1.0}, 1),
        ("boolean", {"p": 0.5}, 2),
        ("boolean", {"p": 0.001}, 2),
        ("boolean", {"p": 0.999}, 2),
        ("float", float_constr(0.0, 0.0), 1),
        ("float", float_constr(-0.0, -0.0), 1),
        ("float", float_constr(-0.0, 0.0), 2),
        ("float", float_constr(next_down(-0.0), next_up(0.0)), 4),
        (
            "float",
            float_constr(
                next_down(next_down(-0.0)),
                next_up(next_up(0.0)),
                smallest_nonzero_magnitude=next_up(SMALLEST_SUBNORMAL),
            ),
            4,
        ),
        ("float", float_constr(smallest_nonzero_magnitude=next_down(math.inf)), 6),
        ("float", float_constr(1, 10, smallest_nonzero_magnitude=11.0), 0),
        ("float", float_constr(-3, -2, smallest_nonzero_magnitude=4.0), 0),
    ],
)
def test_compute_max_children(choice_type, constraints, count_children):
    assert compute_max_children(choice_type, constraints) == count_children


@given(st.text(min_size=1, max_size=1), st.integers(0, 100))
def test_draw_string_single_interval_with_equal_bounds(s, n):
    data = fresh_data()
    intervals = IntervalSet.from_string(s)
    assert data.draw_string(intervals, min_size=n, max_size=n) == s * n


@example(("boolean", {"p": 2**-65}))
@example(("boolean", {"p": 1 - 2**-65}))
@example(
    (
        "string",
        {"min_size": 0, "max_size": 0, "intervals": IntervalSet.from_string("abc")},
    )
)
@example(
    ("string", {"min_size": 0, "max_size": 3, "intervals": IntervalSet.from_string("")})
)
@example(
    (
        "string",
        {"min_size": 0, "max_size": 3, "intervals": IntervalSet.from_string("a")},
    )
)
# all combinations of float signs
@example(("float", float_constr(next_down(-0.0), -0.0)))
@example(("float", float_constr(next_down(-0.0), next_up(0.0))))
@example(("float", float_constr(0.0, next_up(0.0))))
# using a smallest_nonzero_magnitude which happens to filter out everything
@example(("float", float_constr(1.0, 2.0, smallest_nonzero_magnitude=3.0)))
@example(("integer", integer_constr(1, 2, weights={1: 0.2, 2: 0.4})))
@given(choice_types_constraints())
@settings(suppress_health_check=[HealthCheck.filter_too_much])
def test_compute_max_children_and_all_children_agree(choice_type_and_constraints):
    (choice_type, constraints) = choice_type_and_constraints
    max_children = compute_max_children(choice_type, constraints)

    # avoid slowdowns / OOM when reifying extremely large all_children generators.
    # We also hard cap at MAX_CHILDREN_EFFECTIVELY_INFINITE, because max_children
    # returns approximations after this value and so will disagree with
    # all_children.
    cap = min(100_000, MAX_CHILDREN_EFFECTIVELY_INFINITE)
    assume(max_children < cap)
    assert len(list(all_children(choice_type, constraints))) == max_children


# it's very hard to test that unbounded integer ranges agree with
# compute_max_children, because they by necessity require iterating over 2**127
# or more elements. We do the not great approximation of checking just the first
# element is what we expect.


@given(integer_constraints())
def test_compute_max_children_unbounded_integer_ranges(constraints):
    expected = clamped_shrink_towards(constraints)
    first = next(all_children("integer", constraints))
    assert expected == first, (expected, first)


@given(st.randoms())
def test_nodes(random):
    data = fresh_data(random=random)
    data.draw_float(min_value=-10.0, max_value=10.0, forced=5.0)
    data.draw_boolean(forced=True)

    data.start_span(42)
    data.draw_string(IntervalSet.from_string("abcd"), forced="abbcccdddd")
    data.draw_bytes(8, 8, forced=bytes(8))
    data.stop_span()

    data.draw_integer(0, 100, forced=50)

    data.freeze()
    expected_tree_nodes = (
        ChoiceNode(
            type="float",
            value=5.0,
            constraints=float_constr(-10.0, 10.0),
            was_forced=True,
        ),
        ChoiceNode(
            type="boolean",
            value=True,
            constraints={"p": 0.5},
            was_forced=True,
        ),
        ChoiceNode(
            type="string",
            value="abbcccdddd",
            constraints={
                "intervals": IntervalSet.from_string("abcd"),
                "min_size": 0,
                "max_size": COLLECTION_DEFAULT_MAX_SIZE,
            },
            was_forced=True,
        ),
        ChoiceNode(
            type="bytes",
            value=bytes(8),
            constraints={"min_size": 8, "max_size": 8},
            was_forced=True,
        ),
        ChoiceNode(
            type="integer",
            value=50,
            constraints=integer_constr(0, 100),
            was_forced=True,
        ),
    )
    assert data.nodes == expected_tree_nodes


@given(nodes())
def test_copy_choice_node(node):
    assert node == node

    assume(not node.was_forced)
    new_value = draw_value(node.type, node.constraints)
    # if we drew the same value as before, the node should still be equal
    assert (node.copy(with_value=new_value) == node) is (
        choice_equal(new_value, node.value)
    )


@given(nodes())
def test_choice_node_equality(node):
    assert node == node
    # for coverage on our NotImplemented return, more than anything.
    assert node != 42


@given(nodes(was_forced=True))
def test_cannot_modify_forced_nodes(node):
    with pytest.raises(AssertionError):
        node.copy(with_value=42)


def test_data_with_empty_choices_is_overrun():
    data = ConjectureData.for_choices([])
    with pytest.raises(StopTest):
        data.draw_integer()

    assert data.status is Status.OVERRUN


@given(nodes(was_forced=True))
def test_data_with_changed_forced_value(node):
    # we had a forced node and then tried to draw a different forced value from it.
    # nodes:   v1 [was_forced=True]
    # drawing:    [forced=v2]
    #
    # This is actually fine; we'll just ignore the forced node (v1) and return
    # what the draw expects (v2).

    data = ConjectureData.for_choices([node.value])

    draw_func = getattr(data, f"draw_{node.type}")
    constraints = deepcopy(node.constraints)
    constraints["forced"] = draw_value(node.type, node.constraints)
    assume(not choice_equal(constraints["forced"], node.value))

    assert choice_equal(draw_func(**constraints), constraints["forced"])


# ensure we hit bare-minimum coverage for all choice sequence types.
@example(
    ChoiceNode(type="float", value=0.0, constraints=float_constr(), was_forced=True)
)
@example(
    ChoiceNode(
        type="boolean",
        value=False,
        constraints={"p": 0.5},
        was_forced=True,
    )
)
@example(
    ChoiceNode(
        type="integer", value=50, constraints=integer_constr(50, 100), was_forced=True
    )
)
@example(
    ChoiceNode(
        type="string",
        value="aaaa",
        constraints={
            "intervals": IntervalSet.from_string("bcda"),
            "min_size": 4,
            "max_size": COLLECTION_DEFAULT_MAX_SIZE,
        },
        was_forced=True,
    )
)
@example(
    ChoiceNode(
        type="bytes",
        value=bytes(8),
        constraints={"min_size": 8, "max_size": 8},
        was_forced=True,
    )
)
@given(nodes(was_forced=True))
def test_data_with_same_forced_value_is_valid(node):
    # we had a forced node and then drew the same forced value. This is totally
    # fine!
    # nodes:   v1 [was_forced=True]
    # drawing:    [forced=v1]
    data = ConjectureData.for_choices([node.value])
    draw_func = getattr(data, f"draw_{node.type}")

    constraints = deepcopy(node.constraints)
    constraints["forced"] = node.value
    assert choice_equal(draw_func(**constraints), constraints["forced"])


@given(choice_types_constraints())
@settings(suppress_health_check=[HealthCheck.filter_too_much])
def test_all_children_are_permitted_values(choice_type_and_constraints):
    (choice_type, constraints) = choice_type_and_constraints
    max_children = compute_max_children(choice_type, constraints)

    cap = min(100_000, MAX_CHILDREN_EFFECTIVELY_INFINITE)
    assume(max_children < cap)

    # test that all_children -> choice_permitted (but not necessarily the converse.)
    for value in all_children(choice_type, constraints):
        assert choice_permitted(value, constraints), value


@pytest.mark.parametrize(
    "value, constraints, permitted",
    [
        (0, integer_constr(1, 2), False),
        (2, integer_constr(0, 1), False),
        (10, integer_constr(0, 20), True),
        (int(2**128 / 2) - 1, integer_constr(), True),
        (int(2**128 / 2), integer_constr(), True),
        (math.nan, float_constr(0.0, 0.0), True),
        (math.nan, float_constr(0.0, 0.0, allow_nan=False), False),
        (2.0, float_constr(1.0, 3.0, smallest_nonzero_magnitude=2.5), False),
        (
            -2.0,
            float_constr(-3.0, -1.0, smallest_nonzero_magnitude=2.5),
            False,
        ),
        (1.0, float_constr(1.0, 1.0), True),
        (
            "abcd",
            {
                "min_size": 10,
                "max_size": 20,
                "intervals": IntervalSet.from_string("abcd"),
            },
            False,
        ),
        (
            "abcd",
            {
                "min_size": 1,
                "max_size": 3,
                "intervals": IntervalSet.from_string("abcd"),
            },
            False,
        ),
        (
            "abcd",
            {"min_size": 1, "max_size": 10, "intervals": IntervalSet.from_string("e")},
            False,
        ),
        (
            "e",
            {"min_size": 1, "max_size": 10, "intervals": IntervalSet.from_string("e")},
            True,
        ),
        (b"a", {"min_size": 2, "max_size": 2}, False),
        (b"aa", {"min_size": 2, "max_size": 2}, True),
        (b"aa", {"min_size": 0, "max_size": 3}, True),
        (b"a", {"min_size": 2, "max_size": 10}, False),
        (True, {"p": 0}, False),
        (False, {"p": 0}, True),
        (True, {"p": 1}, True),
        (False, {"p": 1}, False),
        (True, {"p": 0.5}, True),
        (False, {"p": 0.5}, True),
    ],
)
def test_choice_permitted(value, constraints, permitted):
    assert choice_permitted(value, constraints) == permitted


@given(nodes(was_forced=True))
def test_forced_nodes_are_trivial(node):
    assert node.trivial


@pytest.mark.parametrize(
    "node",
    [
        ChoiceNode(
            type="float",
            value=5.0,
            constraints=float_constr(5.0, 10.0),
            was_forced=False,
        ),
        ChoiceNode(
            type="float",
            value=0.0,
            constraints=float_constr(-5.0, 5.0),
            was_forced=False,
        ),
        ChoiceNode(
            type="float", value=0.0, constraints=float_constr(), was_forced=False
        ),
        ChoiceNode(
            type="boolean", value=False, constraints={"p": 0.5}, was_forced=False
        ),
        ChoiceNode(
            type="boolean", value=True, constraints={"p": 1.0}, was_forced=False
        ),
        ChoiceNode(
            type="boolean", value=False, constraints={"p": 0.0}, was_forced=False
        ),
        ChoiceNode(
            type="string",
            value="",
            constraints={
                "intervals": IntervalSet.from_string("abcd"),
                "min_size": 0,
                "max_size": COLLECTION_DEFAULT_MAX_SIZE,
            },
            was_forced=False,
        ),
        ChoiceNode(
            type="string",
            value="aaaa",
            constraints={
                "intervals": IntervalSet.from_string("bcda"),
                "min_size": 4,
                "max_size": COLLECTION_DEFAULT_MAX_SIZE,
            },
            was_forced=False,
        ),
        ChoiceNode(
            type="bytes",
            value=bytes(8),
            constraints={"min_size": 8, "max_size": 8},
            was_forced=False,
        ),
        ChoiceNode(
            type="bytes",
            value=bytes(2),
            constraints={"min_size": 2, "max_size": COLLECTION_DEFAULT_MAX_SIZE},
            was_forced=False,
        ),
        ChoiceNode(
            type="integer",
            value=50,
            constraints=integer_constr(50, 100),
            was_forced=False,
        ),
        ChoiceNode(
            type="integer",
            value=0,
            constraints=integer_constr(-10, 10),
            was_forced=False,
        ),
        ChoiceNode(
            type="integer",
            value=2,
            constraints=integer_constr(-10, 10, shrink_towards=2),
            was_forced=False,
        ),
        ChoiceNode(
            type="integer",
            value=-10,
            constraints=integer_constr(-10, 10, shrink_towards=-12),
            was_forced=False,
        ),
        ChoiceNode(
            type="integer",
            value=10,
            constraints=integer_constr(-10, 10, shrink_towards=12),
            was_forced=False,
        ),
        ChoiceNode(
            type="integer", value=0, constraints=integer_constr(), was_forced=False
        ),
        ChoiceNode(
            type="integer",
            value=1,
            constraints=integer_constr(min_value=-10, shrink_towards=1),
            was_forced=False,
        ),
        ChoiceNode(
            type="integer",
            value=1,
            constraints=integer_constr(max_value=10, shrink_towards=1),
            was_forced=False,
        ),
        ChoiceNode(
            type="integer",
            value=1,
            constraints={
                "min_value": None,
                "max_value": None,
                "weights": None,
                "shrink_towards": 1,
            },
            was_forced=False,
        ),
    ],
)
def test_trivial_nodes(node):
    assert node.trivial

    @st.composite
    def values(draw):
        data = draw(st.data()).conjecture_data
        return getattr(data, f"draw_{node.type}")(**node.constraints)

    # if we're trivial, then shrinking should produce the same value.
    assert choice_equal(minimal(values()), node.value)


@pytest.mark.parametrize(
    "node",
    [
        ChoiceNode(
            type="float",
            value=6.0,
            constraints=float_constr(5.0, 10.0),
            was_forced=False,
        ),
        ChoiceNode(
            type="float",
            value=-5.0,
            constraints=float_constr(-5.0, 5.0),
            was_forced=False,
        ),
        ChoiceNode(
            type="float", value=1.0, constraints=float_constr(), was_forced=False
        ),
        ChoiceNode(
            type="boolean", value=True, constraints={"p": 0.5}, was_forced=False
        ),
        ChoiceNode(
            type="boolean", value=True, constraints={"p": 0.99}, was_forced=False
        ),
        ChoiceNode(
            type="string",
            value="d",
            constraints={
                "intervals": IntervalSet.from_string("abcd"),
                "min_size": 1,
                "max_size": COLLECTION_DEFAULT_MAX_SIZE,
            },
            was_forced=False,
        ),
        ChoiceNode(
            type="bytes",
            value=b"\x01",
            constraints={"min_size": 1, "max_size": 1},
            was_forced=False,
        ),
        ChoiceNode(
            type="bytes",
            value=bytes(1),
            constraints={"min_size": 0, "max_size": COLLECTION_DEFAULT_MAX_SIZE},
            was_forced=False,
        ),
        ChoiceNode(
            type="bytes",
            value=bytes(2),
            constraints={"min_size": 1, "max_size": 10},
            was_forced=False,
        ),
        ChoiceNode(
            type="integer",
            value=-10,
            constraints=integer_constr(-10, 10),
            was_forced=False,
        ),
        ChoiceNode(
            type="integer", value=42, constraints=integer_constr(), was_forced=False
        ),
    ],
)
def test_nontrivial_nodes(node):
    assert not node.trivial

    @st.composite
    def values(draw):
        data = draw(st.data()).conjecture_data
        return getattr(data, f"draw_{node.type}")(**node.constraints)

    # if we're nontrivial, then shrinking should produce something different.
    assert not choice_equal(minimal(values()), node.value)


@pytest.mark.parametrize(
    "node",
    [
        ChoiceNode(
            type="float",
            value=1.5,
            constraints=float_constr(1.1, 1.6),
            was_forced=False,
        ),
        ChoiceNode(
            type="float",
            value=float(math.floor(sys.float_info.max)),
            constraints=float_constr(sys.float_info.max - 1, math.inf),
            was_forced=False,
        ),
        ChoiceNode(
            type="float",
            value=float(math.ceil(-sys.float_info.max)),
            constraints=float_constr(-math.inf, -sys.float_info.max + 1),
            was_forced=False,
        ),
        ChoiceNode(
            type="float",
            value=math.inf,
            constraints=float_constr(math.inf, math.inf),
            was_forced=False,
        ),
        ChoiceNode(
            type="float",
            value=-math.inf,
            constraints=float_constr(-math.inf, -math.inf),
            was_forced=False,
        ),
    ],
)
def test_conservative_nontrivial_nodes(node):
    # these nodes actually are trivial, but our analysis doesn't compute them
    # as such. We'd like to improve this in the future!
    assert not node.trivial

    @st.composite
    def values(draw):
        data = draw(st.data()).conjecture_data
        return getattr(data, f"draw_{node.type}")(**node.constraints)

    assert choice_equal(minimal(values()), node.value)


@given(nodes())
def test_choice_node_is_hashable(node):
    hash(node)


@given(st.lists(nodes()))
def test_choices_size_positive(nodes):
    assert choices_size([n.value for n in nodes]) >= 0


@given(st.integers(min_value=1))
def test_node_template_count(n):
    node = ChoiceTemplate(type="simplest", count=n)
    assert choice_count([node]) == n


def test_node_template_to_overrun():
    data = ConjectureData.for_choices([1, ChoiceTemplate("simplest", count=5)])
    data.draw_integer()
    with pytest.raises(StopTest):
        for _ in range(10):
            data.draw_integer()

    assert data.status is Status.OVERRUN


def test_node_template_single_node_overruns():
    # test for when drawing a single node takes more than BUFFER_SIZE, while in
    # the ChoiceTemplate case
    data = ConjectureData.for_choices((ChoiceTemplate("simplest", count=1),))
    with pytest.raises(StopTest):
        data.draw_bytes(10_000, 10_000)

    assert data.status is Status.OVERRUN


@given(nodes())
def test_node_template_simplest_is_actually_trivial(node):
    # TODO_IR node.trivial is sound but not complete for floats.
    assume(node.type != "float")
    data = ConjectureData.for_choices((ChoiceTemplate("simplest", count=1),))
    getattr(data, f"draw_{node.type}")(**node.constraints)
    assert len(data.nodes) == 1
    assert data.nodes[0].trivial


@given(choice_types_constraints())
@example(("boolean", {"p": 0}))
@example(("boolean", {"p": 1}))
def test_choice_indices_are_positive(choice_type_and_constraints):
    (choice_type, constraints) = choice_type_and_constraints
    v = draw_value(choice_type, constraints)
    assert choice_to_index(v, constraints) >= 0


@given(integer_constraints())
def test_shrink_towards_has_index_0(constraints):
    shrink_towards = clamped_shrink_towards(constraints)
    note({"clamped_shrink_towards": shrink_towards})
    assert choice_to_index(shrink_towards, constraints) == 0
    assert choice_from_index(0, "integer", constraints) == shrink_towards


@given(choice_types_constraints())
@settings(max_examples=20)
def test_choice_to_index_injective(choice_type_and_constraints):
    # choice sequence ordering should be injective both ways.
    (choice_type, constraints) = choice_type_and_constraints
    # ...except for floats, which are hard to order bijectively.
    assume(choice_type != "float")
    # cap to 10k so this test finishes in a reasonable amount of time
    cap = min(compute_max_children(choice_type, constraints), 10_000)

    indices = set()
    for i, choice in enumerate(all_children(choice_type, constraints)):
        if i >= cap:
            break
        index = choice_to_index(choice, constraints)
        assert index not in indices
        indices.add(index)


@given(choice_types_constraints())
@example(
    (
        "string",
        {"min_size": 0, "max_size": 10, "intervals": IntervalSet.from_string("a")},
    )
)
def test_choice_from_value_injective(choice_type_and_constraints):
    (choice_type, constraints) = choice_type_and_constraints
    assume(choice_type != "float")
    cap = min(compute_max_children(choice_type, constraints), 10_000)

    choices = set()
    for index in range(cap):
        choice = choice_from_index(index, choice_type, constraints)
        assert choice not in choices
        choices.add(choice)


@given(choice_types_constraints())
def test_choice_index_and_value_are_inverses(choice_type_and_constraints):
    (choice_type, constraints) = choice_type_and_constraints
    v = draw_value(choice_type, constraints)
    index = choice_to_index(v, constraints)
    note({"v": v, "index": index})
    choice_equal(choice_from_index(index, choice_type, constraints), v)


@pytest.mark.parametrize(
    "choice_type, constraints, choices",
    [
        ("boolean", {"p": 1}, [True]),
        ("boolean", {"p": 0}, [False]),
        ("integer", integer_constr(min_value=1, shrink_towards=4), range(1, 10)),
        ("integer", integer_constr(max_value=5, shrink_towards=2), range(-10, 5 + 1)),
        ("integer", integer_constr(max_value=5), range(-10, 5 + 1)),
        ("integer", integer_constr(min_value=0, shrink_towards=1), range(10)),
        ("integer", integer_constr(-5, 5, shrink_towards=3), range(-5, 5 + 1)),
        ("integer", integer_constr(-5, 5, shrink_towards=-3), range(-5, 5 + 1)),
        (
            "float",
            float_constr(1.0, next_up(next_up(1.0))),
            [1.0, next_up(1.0), next_up(next_up(1.0))],
        ),
        (
            "float",
            float_constr(next_down(-0.0), next_up(0.0)),
            [next_down(-0.0), -0.0, 0.0, next_up(0.0)],
        ),
    ],
)
def test_choice_index_and_value_are_inverses_explicit(
    choice_type, constraints, choices
):
    for choice in choices:
        index = choice_to_index(choice, constraints)
        assert choice_equal(choice_from_index(index, choice_type, constraints), choice)


@pytest.mark.parametrize(
    "constraints, choices",
    [
        # unbounded
        (integer_constr(), (0, 1, -1, 2, -2, 3, -3)),
        (integer_constr(shrink_towards=2), (2, 3, 1, 4, 0, 5, -1, 6, -2)),
        # semibounded (below)
        (integer_constr(min_value=3), (3, 4, 5, 6, 7)),
        (integer_constr(min_value=3, shrink_towards=5), (5, 6, 4, 7, 3, 8, 9)),
        (integer_constr(min_value=-3), (0, 1, -1, 2, -2, 3, -3, 4, 5, 6)),
        (integer_constr(min_value=-3, shrink_towards=-1), (-1, 0, -2, 1, -3, 2, 3, 4)),
        # semibounded (above)
        (integer_constr(max_value=3), (0, 1, -1, 2, -2, 3, -3, -4, -5, -6)),
        (integer_constr(max_value=3, shrink_towards=1), (1, 2, 0, 3, -1, -2, -3, -4)),
        (integer_constr(max_value=-3), (-3, -4, -5, -6, -7)),
        (integer_constr(max_value=-3, shrink_towards=-5), (-5, -4, -6, -3, -7, -8, -9)),
        # bounded
        (integer_constr(-3, 3), (0, 1, -1, 2, -2, 3, -3)),
        (integer_constr(-3, 3, shrink_towards=1), (1, 2, 0, 3, -1, -2, -3)),
        (integer_constr(-3, 3, shrink_towards=-1), (-1, 0, -2, 1, -3, 2, 3)),
    ],
    ids=repr,
)
def test_integer_choice_index(constraints, choices):
    # explicit test which checks that the order of `choices` matches the index
    # order.
    for i, choice in enumerate(choices):
        assert choice_to_index(choice, constraints) == i


@given(st.lists(nodes()))
def test_drawing_directly_matches_for_choices(nodes):
    data = ConjectureData.for_choices([n.value for n in nodes])
    for node in nodes:
        value = getattr(data, f"draw_{node.type}")(**node.constraints)
        assert choice_equal(node.value, value)


def test_draw_directly_explicit():
    # this is a much weaker and more explicit variant of the property-based test
    # directly above, but this is such an important thing to ensure that we have
    # correct that it's worth some duplication in case we ever screw up our pbt test.
    assert (
        ConjectureData.for_choices(["a"]).draw_string(
            IntervalSet([(0, 127)]), min_size=1
        )
        == "a"
    )
    assert ConjectureData.for_choices([b"a"]).draw_bytes() == b"a"
    assert (
        ConjectureData.for_choices([1.0]).draw_float(
            0.0, 2.0, allow_nan=False, smallest_nonzero_magnitude=0.5
        )
        == 1.0
    )
    assert ConjectureData.for_choices([True]).draw_boolean(0.3)
    assert ConjectureData.for_choices([42]).draw_integer() == 42
    assert (
        ConjectureData.for_choices([-42]).draw_integer(min_value=-50, max_value=0)
        == -42
    )
    assert (
        ConjectureData.for_choices([10]).draw_integer(
            min_value=10, max_value=11, weights={10: 0.1, 11: 0.3}
        )
        == 10
    )


@pytest.mark.parametrize(
    "choices1, choices2",
    [
        [(True,), (1,)],
        [(True,), (1.0,)],
        [(False,), (0,)],
        [(False,), (0.0,)],
        [(False,), (-0.0,)],
        [(0.0,), (-0.0,)],
    ],
)
def test_choices_key_distinguishes_weird_cases(choices1, choices2):
    assert choices_key(choices1) != choices_key(choices2)


def test_node_template_overrun():
    # different code path for overruning the ChoiceTemplate count, not BUFFER_SIZE.
    cd = ConjectureData(
        random=None,
        prefix=[ChoiceTemplate("simplest", count=2)],
        max_choices=100,
    )

    cd.draw_integer()
    cd.draw_integer()
    try:
        cd.draw_integer()
    except StopTest:
        pass
    assert cd.status is Status.OVERRUN