1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
import textwrap
from random import Random
import pytest
from hypothesis import HealthCheck, assume, given, settings
from hypothesis.errors import Flaky
from hypothesis.internal.conjecture.choice import ChoiceTemplate
from hypothesis.internal.conjecture.data import ConjectureData, Status, StopTest
from hypothesis.internal.conjecture.datatree import (
Branch,
DataTree,
compute_max_children,
)
from hypothesis.internal.conjecture.engine import ConjectureRunner
from hypothesis.internal.conjecture.floats import float_to_int
from hypothesis.internal.conjecture.provider_conformance import (
boolean_constraints,
integer_constraints,
)
from hypothesis.internal.floats import next_up
from hypothesis.vendor import pretty
from tests.conjecture.common import (
constraints_strategy,
fresh_data,
interesting_origin,
nodes,
run_to_nodes,
)
runner_settings = settings(
max_examples=100, database=None, suppress_health_check=list(HealthCheck)
)
def runner_for(*examples):
def accept(tf):
runner = ConjectureRunner(tf, settings=runner_settings, random=Random(0))
runner.exit_with = lambda reason: None
ran_examples = []
for choices in examples:
data = runner.cached_test_function(choices)
ran_examples.append((choices, data))
for choices, d in ran_examples:
rewritten, status = runner.tree.rewrite(choices)
assert status == d.status
assert rewritten == d.choices
return runner
return accept
def test_can_lookup_cached_examples():
@runner_for((0, 0), (0, 1))
def runner(data):
data.draw_integer()
data.draw_integer()
def test_can_lookup_cached_examples_with_forced():
@runner_for((0, 0), (0, 1))
def runner(data):
data.draw_integer(forced=1)
data.draw_integer()
def test_can_detect_when_tree_is_exhausted():
@runner_for((False,), (True,))
def runner(data):
data.draw_boolean()
assert runner.tree.is_exhausted
def test_can_detect_when_tree_is_exhausted_variable_size():
@runner_for((False,), (True, False), (True, True))
def runner(data):
if data.draw_boolean():
data.draw_boolean()
assert runner.tree.is_exhausted
def test_one_dead_branch():
@runner_for(*([(0, i) for i in range(16)] + [(i,) for i in range(1, 16)]))
def runner(data):
i = data.draw_integer(0, 15)
if i > 0:
data.mark_invalid()
data.draw_integer(0, 15)
assert runner.tree.is_exhausted
def test_non_dead_root():
@runner_for((False, False), (True, False), (True, True))
def runner(data):
data.draw_boolean()
data.draw_boolean()
def test_can_reexecute_dead_examples():
@runner_for((False, False), (False, True), (False, False))
def runner(data):
data.draw_boolean()
data.draw_boolean()
def test_novel_prefixes_are_novel():
def tf(data):
for _ in range(4):
data.draw_bytes(1, 1, forced=b"\0")
data.draw_integer(0, 3)
runner = ConjectureRunner(
tf, settings=settings(runner_settings, max_examples=1000), random=Random(0)
)
for _ in range(100):
prefix = runner.tree.generate_novel_prefix(runner.random)
extension = prefix + (ChoiceTemplate("simplest", count=100),)
assert runner.tree.rewrite(extension)[1] is None
result = runner.cached_test_function(extension)
assert runner.tree.rewrite(extension)[0] == result.choices
def test_overruns_if_prefix():
runner = ConjectureRunner(
lambda data: [data.draw_boolean() for _ in range(2)],
settings=runner_settings,
random=Random(0),
)
runner.cached_test_function([False, False])
assert runner.tree.rewrite([False])[1] is Status.OVERRUN
def test_stores_the_tree_flat_until_needed():
@runner_for((False,) * 10)
def runner(data):
for _ in range(10):
data.draw_boolean()
data.mark_interesting(interesting_origin())
root = runner.tree.root
assert len(root.constraints) == 10
assert len(root.values) == 10
assert root.transition.status == Status.INTERESTING
def test_split_in_the_middle():
@runner_for((0, 0, 2), (0, 1, 3))
def runner(data):
data.draw_integer(0, 1)
data.draw_integer(0, 1)
data.draw_integer(0, 15)
data.mark_interesting(interesting_origin())
root = runner.tree.root
assert len(root.constraints) == len(root.values) == 1
assert list(root.transition.children[0].values) == [2]
assert list(root.transition.children[1].values) == [3]
def test_stores_forced_nodes():
@runner_for((0, 0, 0))
def runner(data):
data.draw_integer(0, 1, forced=0)
data.draw_integer(0, 1)
data.draw_integer(0, 1, forced=0)
data.mark_interesting(interesting_origin())
root = runner.tree.root
assert root.forced == {0, 2}
def test_correctly_relocates_forced_nodes():
@runner_for((0, 0), (1, 0))
def runner(data):
data.draw_integer(0, 1)
data.draw_integer(0, 1, forced=0)
data.mark_interesting(interesting_origin())
root = runner.tree.root
assert root.transition.children[1].forced == {0}
assert root.transition.children[0].forced == {0}
def test_can_go_from_interesting_to_valid():
tree = DataTree()
data = ConjectureData.for_choices([], observer=tree.new_observer())
with pytest.raises(StopTest):
data.conclude_test(Status.INTERESTING)
data = ConjectureData.for_choices([], observer=tree.new_observer())
with pytest.raises(StopTest):
data.conclude_test(Status.VALID)
def test_going_from_interesting_to_invalid_is_flaky():
tree = DataTree()
data = ConjectureData.for_choices([], observer=tree.new_observer())
with pytest.raises(StopTest):
data.conclude_test(Status.INTERESTING)
data = ConjectureData.for_choices([], observer=tree.new_observer())
with pytest.raises(Flaky):
data.conclude_test(Status.INVALID)
def test_concluding_at_prefix_is_flaky():
tree = DataTree()
data = ConjectureData.for_choices((True,), observer=tree.new_observer())
data.draw_boolean()
with pytest.raises(StopTest):
data.conclude_test(Status.INTERESTING)
data = ConjectureData.for_choices([], observer=tree.new_observer())
with pytest.raises(Flaky):
data.conclude_test(Status.INVALID)
def test_concluding_with_overrun_at_prefix_is_not_flaky():
tree = DataTree()
data = ConjectureData.for_choices((True,), observer=tree.new_observer())
data.draw_boolean()
with pytest.raises(StopTest):
data.conclude_test(Status.INTERESTING)
data = ConjectureData.for_choices([], observer=tree.new_observer())
with pytest.raises(StopTest):
data.conclude_test(Status.OVERRUN)
def test_changing_n_bits_is_flaky_in_prefix():
tree = DataTree()
data = ConjectureData.for_choices((1,), observer=tree.new_observer())
data.draw_integer(0, 1)
with pytest.raises(StopTest):
data.conclude_test(Status.INTERESTING)
data = ConjectureData.for_choices((1,), observer=tree.new_observer())
with pytest.raises(Flaky):
data.draw_integer(0, 3)
def test_changing_n_bits_is_flaky_in_branch():
tree = DataTree()
for i in [0, 1]:
data = ConjectureData.for_choices((i,), observer=tree.new_observer())
data.draw_integer(0, 1)
with pytest.raises(StopTest):
data.conclude_test(Status.INTERESTING)
data = ConjectureData.for_choices((1,), observer=tree.new_observer())
with pytest.raises(Flaky):
data.draw_integer(0, 3)
def test_extending_past_conclusion_is_flaky():
tree = DataTree()
data = ConjectureData.for_choices((True,), observer=tree.new_observer())
data.draw_boolean()
with pytest.raises(StopTest):
data.conclude_test(Status.INTERESTING)
data = ConjectureData.for_choices((True, False), observer=tree.new_observer())
data.draw_boolean()
with pytest.raises(Flaky):
data.draw_boolean()
def test_changing_to_forced_is_flaky():
tree = DataTree()
data = ConjectureData.for_choices((True,), observer=tree.new_observer())
data.draw_boolean()
with pytest.raises(StopTest):
data.conclude_test(Status.INTERESTING)
data = ConjectureData.for_choices((True, False), observer=tree.new_observer())
with pytest.raises(Flaky):
data.draw_boolean(forced=True)
def test_changing_value_of_forced_is_flaky():
tree = DataTree()
data = ConjectureData.for_choices((True,), observer=tree.new_observer())
data.draw_boolean(forced=True)
with pytest.raises(StopTest):
data.conclude_test(Status.INTERESTING)
data = ConjectureData.for_choices((True, False), observer=tree.new_observer())
with pytest.raises(Flaky):
data.draw_boolean(forced=False)
def test_does_not_truncate_if_unseen():
tree = DataTree()
nodes = (1, 2, 3, 4)
assert tree.rewrite(nodes) == (nodes, None)
def test_truncates_if_seen():
tree = DataTree()
nodes = (1, 2, 3, 4)
data = ConjectureData.for_choices(nodes, observer=tree.new_observer())
data.draw_integer()
data.draw_integer()
data.freeze()
assert tree.rewrite(nodes) == (nodes[:2], Status.VALID)
def test_child_becomes_exhausted_after_split():
tree = DataTree()
data = ConjectureData.for_choices((b"\0", b"\0"), observer=tree.new_observer())
data.draw_bytes(1, 1)
data.draw_bytes(1, 1, forced=b"\0")
data.freeze()
data = ConjectureData.for_choices((b"\1", b"\0"), observer=tree.new_observer())
data.draw_bytes(1, 1)
data.draw_bytes(1, 1)
data.freeze()
assert not tree.is_exhausted
assert tree.root.transition.children[b"\0"].is_exhausted
def test_will_generate_novel_prefix_to_avoid_exhausted_branches():
tree = DataTree()
data = ConjectureData.for_choices((1,), observer=tree.new_observer())
data.draw_integer(0, 1)
data.freeze()
data = ConjectureData.for_choices((0, b"\1"), observer=tree.new_observer())
data.draw_integer(0, 1)
data.draw_bytes(1, 1)
data.freeze()
prefix = tree.generate_novel_prefix(Random(0))
assert len(prefix) == 2
assert prefix[0] == 0
def test_will_mark_changes_in_discard_as_flaky():
tree = DataTree()
data = ConjectureData.for_choices((1, 1), observer=tree.new_observer())
data.start_span(10)
data.draw_integer(0, 1)
data.stop_span()
data.draw_integer(0, 1)
data.freeze()
data = ConjectureData.for_choices((1, 1), observer=tree.new_observer())
data.start_span(10)
data.draw_integer(0, 1)
with pytest.raises(Flaky):
data.stop_span(discard=True)
def test_is_not_flaky_on_positive_zero_and_negative_zero():
# if we store floats in a naive way, the 0.0 and -0.0 draws will be treated
# equivalently and will lead to flaky errors when they diverge on the boolean
# draw.
tree = DataTree()
data = ConjectureData.for_choices((0.0, False), observer=tree.new_observer())
f = data.draw_float()
assert float_to_int(f) == float_to_int(0.0)
data.draw_boolean()
data.freeze()
data = ConjectureData.for_choices((-0.0, True), observer=tree.new_observer())
f = data.draw_float()
assert float_to_int(f) == float_to_int(-0.0)
data.draw_boolean()
data.freeze()
assert isinstance(tree.root.transition, Branch)
children = tree.root.transition.children
assert children[float_to_int(0.0)].values == [False]
assert children[float_to_int(-0.0)].values == [True]
def test_low_probabilities_are_still_explored():
tree = DataTree()
data = ConjectureData.for_choices([False], observer=tree.new_observer())
data.draw_boolean(p=1e-10) # False
prefix = tree.generate_novel_prefix(Random())
assert prefix[0]
def _test_observed_draws_are_recorded_in_tree(choice_type):
@given(constraints_strategy(choice_type))
def test(constraints):
# we currently split pseudo-choices with a single child into their
# own transition, which clashes with our asserts below. If we ever
# change this (say, by not writing pseudo choices to the ir at all),
# this restriction can be relaxed.
assume(compute_max_children(choice_type, constraints) > 1)
tree = DataTree()
data = fresh_data(observer=tree.new_observer())
draw_func = getattr(data, f"draw_{choice_type}")
draw_func(**constraints)
assert tree.root.transition is None
assert tree.root.choice_types == [choice_type]
test()
def _test_non_observed_draws_are_not_recorded_in_tree(choice_type):
@given(constraints_strategy(choice_type))
def test(constraints):
assume(compute_max_children(choice_type, constraints) > 1)
tree = DataTree()
data = fresh_data(observer=tree.new_observer())
draw_func = getattr(data, f"draw_{choice_type}")
draw_func(**constraints, observe=False)
root = tree.root
assert root.transition is None
assert root.constraints == root.values == root.choice_types == []
test()
@pytest.mark.parametrize(
"choice_type", ["integer", "float", "boolean", "string", "bytes"]
)
def test_observed_choice_type_draw(choice_type):
_test_observed_draws_are_recorded_in_tree(choice_type)
@pytest.mark.parametrize(
"choice_type", ["integer", "float", "boolean", "string", "bytes"]
)
def test_non_observed_choice_type_draw(choice_type):
_test_non_observed_draws_are_not_recorded_in_tree(choice_type)
def test_can_generate_hard_values():
tree = DataTree()
min_value = 0
max_value = 1000
# set up `tree` such that [0, 999] have been drawn and only n=1000 remains.
for i in range(max_value):
data = ConjectureData.for_choices([i], observer=tree.new_observer())
data.draw_integer(min_value, max_value)
data.freeze()
# this test doubles as conjecture coverage for using our child cache, so
# ensure we don't miss that logic by getting lucky and drawing the correct
# value once or twice.
for _ in range(20):
prefix = tree.generate_novel_prefix(Random())
data = ConjectureData.for_choices(prefix)
assert data.draw_integer(min_value, max_value) == 1000
def test_can_generate_hard_floats():
# similar to test_can_generate_hard_values, but exercises float-specific
# logic for handling e.g. 0.0 vs -0.0 as different keys.
tree = DataTree()
def next_up_n(f, n):
for _ in range(n):
f = next_up(f)
return f
min_value = -0.0
max_value = next_up_n(min_value, 100)
for n in range(100):
@run_to_nodes
def nodes(data):
f = next_up_n(min_value, n)
data.draw_float(min_value, max_value, forced=f, allow_nan=False)
data.mark_interesting(interesting_origin())
data = ConjectureData.for_choices(
[n.value for n in nodes], observer=tree.new_observer()
)
data.draw_float(min_value, max_value, allow_nan=False)
data.freeze()
# we have left out a single value, so we can assert that generate_novel_prefix
# is equal to that value.
#
# this test doubles as conjecture coverage for drawing floats from the
# children cache. Draw a few times to ensure we hit that logic (as opposed
# to getting lucky and drawing the correct value the first time).
for _ in range(20):
expected_value = next_up_n(min_value, 100)
prefix = tree.generate_novel_prefix(Random())
data = ConjectureData.for_choices(prefix)
assert data.draw_float(min_value, max_value, allow_nan=False) == expected_value
@given(boolean_constraints(), integer_constraints())
def test_datatree_repr(bool_constraints, int_constraints):
tree = DataTree()
origin = interesting_origin()
observer = tree.new_observer()
observer.draw_boolean(True, was_forced=False, constraints=bool_constraints)
observer.conclude_test(Status.INVALID, interesting_origin=None)
observer = tree.new_observer()
observer.draw_boolean(False, was_forced=False, constraints=bool_constraints)
observer.draw_integer(42, was_forced=False, constraints=int_constraints)
observer.conclude_test(Status.VALID, interesting_origin=None)
observer = tree.new_observer()
observer.draw_boolean(False, was_forced=False, constraints=bool_constraints)
observer.draw_integer(0, was_forced=False, constraints=int_constraints)
observer.draw_boolean(False, was_forced=True, constraints=bool_constraints)
observer.conclude_test(Status.INTERESTING, interesting_origin=origin)
observer = tree.new_observer()
observer.draw_boolean(False, was_forced=False, constraints=bool_constraints)
observer.draw_integer(5, was_forced=False, constraints=int_constraints)
assert (
pretty.pretty(tree)
== textwrap.dedent(
f"""
boolean True {bool_constraints}
Conclusion (Status.INVALID)
boolean False {bool_constraints}
integer 42 {int_constraints}
Conclusion (Status.VALID)
integer 0 {int_constraints}
boolean False [forced] {bool_constraints}
Conclusion (Status.INTERESTING, {origin})
integer 5 {int_constraints}
unknown
"""
).strip()
)
def _draw(data, node, *, forced=None):
return getattr(data, f"draw_{node.type}")(**node.constraints, forced=forced)
@given(nodes(was_forced=True, choice_types=["float"]))
def test_simulate_forced_floats(node):
tree = DataTree()
data = ConjectureData.for_choices([node.value], observer=tree.new_observer())
data.draw_float(**node.constraints, forced=node.value)
with pytest.raises(StopTest):
data.conclude_test(Status.VALID)
data = ConjectureData.for_choices([node.value], observer=tree.new_observer())
tree.simulate_test_function(data)
data.freeze()
assert data.nodes == (node,)
|