1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
import math
import sys
import pytest
from hypothesis import HealthCheck, assume, example, given, settings, strategies as st
from hypothesis.internal.compat import ceil, extract_bits, floor
from hypothesis.internal.conjecture import floats as flt
from hypothesis.internal.conjecture.engine import ConjectureRunner
from hypothesis.internal.floats import SIGNALING_NAN, float_to_int
from tests.conjecture.common import interesting_origin
EXPONENTS = list(range(flt.MAX_EXPONENT + 1))
assert len(EXPONENTS) == 2**11
def assert_reordered_exponents(res):
res = list(res)
assert len(res) == len(EXPONENTS)
for x in res:
assert res.count(x) == 1
assert 0 <= x <= flt.MAX_EXPONENT
def test_encode_permutes_elements():
assert_reordered_exponents(map(flt.encode_exponent, EXPONENTS))
def test_decode_permutes_elements():
assert_reordered_exponents(map(flt.decode_exponent, EXPONENTS))
def test_decode_encode():
for e in EXPONENTS:
assert flt.decode_exponent(flt.encode_exponent(e)) == e
def test_encode_decode():
for e in EXPONENTS:
assert flt.decode_exponent(flt.encode_exponent(e)) == e
@given(st.data())
def test_double_reverse_bounded(data):
n = data.draw(st.integers(1, 64))
i = data.draw(st.integers(0, 2**n - 1))
j = flt.reverse_bits(i, n)
assert flt.reverse_bits(j, n) == i
@given(st.integers(0, 2**64 - 1))
def test_double_reverse(i):
j = flt.reverse64(i)
assert flt.reverse64(j) == i
@example(0.0)
@example(2.5)
@example(8.000000000000007)
@example(3.0)
@example(2.0)
@example(1.9999999999999998)
@example(1.0)
@given(st.floats(min_value=0.0))
def test_floats_round_trip(f):
i = flt.float_to_lex(f)
g = flt.lex_to_float(i)
assert float_to_int(f) == float_to_int(g)
@settings(suppress_health_check=[HealthCheck.too_slow, HealthCheck.filter_too_much])
@example(1, 0.5)
@given(st.integers(1, 2**53), st.floats(0, 1).filter(lambda x: x not in (0, 1)))
def test_floats_order_worse_than_their_integral_part(n, g):
f = n + g
assume(int(f) != f)
assume(int(f) != 0)
i = flt.float_to_lex(f)
if f < 0:
g = ceil(f)
else:
g = floor(f)
assert flt.float_to_lex(float(g)) < i
integral_floats = st.floats(allow_infinity=False, allow_nan=False, min_value=0.0).map(
lambda x: abs(float(int(x)))
)
@given(integral_floats, integral_floats)
def test_integral_floats_order_as_integers(x, y):
assume(x != y)
x, y = sorted((x, y))
assert flt.float_to_lex(x) < flt.float_to_lex(y)
@given(st.floats(0, 1))
def test_fractional_floats_are_worse_than_one(f):
assume(0 < f < 1)
assert flt.float_to_lex(f) > flt.float_to_lex(1)
def test_reverse_bits_table_reverses_bits():
for i, b in enumerate(flt.REVERSE_BITS_TABLE):
assert extract_bits(i, width=8) == list(reversed(extract_bits(b, width=8)))
def test_reverse_bits_table_has_right_elements():
assert sorted(flt.REVERSE_BITS_TABLE) == list(range(256))
def float_runner(start, condition, *, constraints=None):
constraints = {} if constraints is None else constraints
def test_function(data):
f = data.draw_float(**constraints)
if condition(f):
data.mark_interesting(interesting_origin())
runner = ConjectureRunner(test_function)
runner.cached_test_function((float(start),))
assert runner.interesting_examples
return runner
def minimal_from(start, condition, *, constraints=None):
runner = float_runner(start, condition, constraints=constraints)
runner.shrink_interesting_examples()
(v,) = runner.interesting_examples.values()
f = v.choices[0]
assert condition(f)
return f
INTERESTING_FLOATS = [0.0, 1.0, 2.0, sys.float_info.max, float("inf"), float("nan")]
@pytest.mark.parametrize(
("start", "end"),
[
(a, b)
for a in INTERESTING_FLOATS
for b in INTERESTING_FLOATS
if flt.float_to_lex(a) > flt.float_to_lex(b)
],
)
def test_can_shrink_downwards(start, end):
assert minimal_from(start, lambda x: not (x < end)) == end
@pytest.mark.parametrize(
"f", [1, 2, 4, 8, 10, 16, 32, 64, 100, 128, 256, 500, 512, 1000, 1024]
)
@pytest.mark.parametrize("mul", [1.1, 1.5, 9.99, 10])
def test_shrinks_downwards_to_integers(f, mul):
g = minimal_from(f * mul, lambda x: x >= f)
assert g == f
def test_shrink_to_integer_upper_bound():
assert minimal_from(1.1, lambda x: 1 < x <= 2) == 2
def test_shrink_up_to_one():
assert minimal_from(0.5, lambda x: 0.5 <= x <= 1.5) == 1
def test_shrink_down_to_half():
assert minimal_from(0.75, lambda x: 0 < x < 1) == 0.5
def test_shrink_fractional_part():
assert minimal_from(2.5, lambda x: divmod(x, 1)[1] == 0.5) == 1.5
def test_does_not_shrink_across_one():
# This is something of an odd special case. Because of our encoding we
# prefer all numbers >= 1 to all numbers in 0 < x < 1. For the most part
# this is the correct thing to do, but there are some low negative exponent
# cases where we get odd behaviour like this.
# This test primarily exists to validate that we don't try to subtract one
# from the starting point and trigger an internal exception.
assert minimal_from(1.1, lambda x: x == 1.1 or 0 < x < 1) == 1.1
def test_reject_out_of_bounds_floats_while_shrinking():
# coverage test for rejecting out of bounds floats while shrinking
constraints = {"min_value": 103.0}
g = minimal_from(103.1, lambda x: x >= 100, constraints=constraints)
assert g == 103.0
@pytest.mark.parametrize("nan", [-math.nan, SIGNALING_NAN, -SIGNALING_NAN])
def test_shrinks_to_canonical_nan(nan):
shrunk = minimal_from(nan, math.isnan)
assert float_to_int(shrunk) == float_to_int(math.nan)
|