File: test_lstar.py

package info (click to toggle)
python-hypothesis 6.138.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,272 kB
  • sloc: python: 62,853; ruby: 1,107; sh: 253; makefile: 41; javascript: 6
file content (245 lines) | stat: -rw-r--r-- 6,230 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.

import itertools

import pytest

from hypothesis import assume, example, given, strategies as st
from hypothesis.errors import InvalidState
from hypothesis.internal.conjecture.dfa.lstar import IntegerNormalizer, LStar


def test_can_learn_simple_predicate():
    learner = LStar(lambda s: len(s) >= 3)

    learner.learn(bytes(3))

    dfa = learner.dfa
    assert dfa.start == 0
    assert dfa.transition(0, 0) == 1
    assert dfa.transition(1, 0) == 2
    assert dfa.transition(2, 0) == 3
    assert dfa.transition(3, 0) == 3

    assert not dfa.is_accepting(0)
    assert not dfa.is_accepting(1)
    assert not dfa.is_accepting(2)
    assert dfa.is_accepting(3)


def test_relearning_does_not_change_generation():
    learner = LStar(lambda s: len(s) >= 3)

    prev = learner.generation
    learner.learn(bytes(3))
    assert prev != learner.generation

    prev = learner.generation
    learner.learn(bytes(3))
    assert prev == learner.generation


def test_can_learn_dead_nodes():
    learner = LStar(lambda s: len(s) == 4 and max(s) <= 1)

    learner.learn(bytes(4))

    assert learner.dfa.matches(bytes(4))
    assert learner.dfa.matches(bytes([1] * 4))
    assert learner.dfa.matches(bytes([1] * 4))

    learner.learn([2, 0, 0, 0])

    # Need a length 5 string to distinguish this from
    # something that just loops back to zero.
    learner.learn([2, 0, 0, 0, 0])

    dfa = learner.dfa

    assert dfa.is_dead(dfa.transition(dfa.start, 2))
    assert dfa.is_dead(dfa.transition(dfa.start, 3))


def test_iterates_over_learned_strings():
    upper_bound = bytes([1, 2])
    learner = LStar(lambda s: len(s) == 2 and max(s) <= 5 and s <= upper_bound)

    learner.learn(upper_bound)

    prev = -1
    while learner.generation != prev:
        prev = learner.generation
        learner.learn([1, 2, 0])
        learner.learn([6, 1, 2])
        learner.learn([1, 3])
        for i in range(7):
            learner.learn([0, i])
            learner.learn([1, i])
        learner.learn([2, 0])

        learner.learn([2, 0, 0, 0])
        learner.learn([2, 0, 0])
        learner.learn([0, 6, 0, 0])
        learner.learn([1, 3, 0, 0])
        learner.learn([1, 6, 0, 0])
        learner.learn([0, 0, 0, 0, 0])

    dfa = learner.dfa

    n = 9
    matches = list(itertools.islice(dfa.all_matching_strings(), n + 1))
    for m in matches:
        assert learner.member(m), list(m)
    assert len(matches) == n


def test_iteration_with_dead_nodes():
    learner = LStar(lambda s: len(s) == 3 and max(s) <= 1 and s[1] == 0)
    learner.learn([1, 0, 1])
    learner.learn([1, 1, 1])
    learner.learn([0, 1, 1])
    learner.learn([1, 1, 0])
    learner.learn([1, 1, 1, 0, 1])
    learner.learn([0, 0, 4])

    dfa = learner.dfa
    i = dfa.transition(dfa.start, 1)
    assert not dfa.is_dead(i)
    assert dfa.is_dead(dfa.transition(i, 2))

    assert list(learner.dfa.all_matching_strings()) == [
        bytes([0, 0, 0]),
        bytes([0, 0, 1]),
        bytes([1, 0, 0]),
        bytes([1, 0, 1]),
    ]


def test_learning_is_just_checking_when_fully_explored():
    count = 0

    def accept(s):
        nonlocal count
        count += 1
        return len(s) <= 5 and all(c == 0 for c in s)

    learner = LStar(accept)

    for c in [0, 1]:
        for n in range(10):
            learner.learn(bytes([c]) * n)

    assert list(learner.dfa.all_matching_strings()) == [bytes(n) for n in range(6)]

    prev = count

    learner.learn([2] * 11)

    calls = count - prev

    assert calls == 1


def test_canonicalises_values_to_zero_where_appropriate():
    calls = 0

    def member(s):
        nonlocal calls
        calls += 1
        return len(s) == 10

    learner = LStar(member)

    learner.learn(bytes(10))
    learner.learn(bytes(11))

    prev = calls

    assert learner.dfa.matches(bytes([1] * 10))

    assert calls == prev


def test_normalizing_defaults_to_zero():
    normalizer = IntegerNormalizer()

    assert normalizer.normalize(10) == 0

    assert not normalizer.distinguish(10, lambda n: True)

    assert normalizer.normalize(10) == 0


def test_normalizing_can_be_made_to_distinguish_values():
    normalizer = IntegerNormalizer()

    assert normalizer.distinguish(10, lambda n: n >= 5)
    assert normalizer.normalize(10) == 5
    assert normalizer.normalize(4) == 0


def test_learning_large_dfa():
    """Mostly the thing this is testing is actually that this runs in reasonable
    time. A naive breadth first search will run ~forever when trying to find this
    because it will have to explore all strings of length 19 before it finds one
    of length 20."""

    learner = LStar(lambda s: len(s) == 20)

    learner.learn(bytes(20))

    for i, s in enumerate(itertools.islice(learner.dfa.all_matching_strings(), 500)):
        assert len(s) == 20
        assert i == int.from_bytes(s, "big")


def varint_predicate(b):
    if not b:
        return False
    n = b[0] & 15
    if len(b) != n + 1:
        return False
    value = int.from_bytes(b[1:], "big")
    return value >= 10


@st.composite
def varint(draw):
    result = bytearray()
    result.append(draw(st.integers(1, 255)))
    n = result[0] & 15
    assume(n > 0)
    value = draw(st.integers(10, 256**n - 1))
    result.extend(value.to_bytes(n, "big"))
    return bytes(result)


@example([b"\x02\x01\n"])
@given(st.lists(varint(), min_size=1))
def test_can_learn_varint_predicate(varints):
    learner = LStar(varint_predicate)
    prev = -1
    while learner.generation != prev:
        prev = learner.generation

        for s in varints:
            learner.learn(s)

    for s in varints:
        assert learner.dfa.matches(s)


def test_cannot_reuse_dfa():
    x = LStar(lambda x: len(x) == 3)
    dfa = x.dfa
    x.learn(bytes(3))
    with pytest.raises(InvalidState):
        dfa.start