1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
|
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
import time
import pytest
from hypothesis import HealthCheck, assume, example, given, settings, strategies as st
from hypothesis.internal.conjecture.data import ChoiceNode, ConjectureData
from hypothesis.internal.conjecture.datatree import compute_max_children
from hypothesis.internal.conjecture.engine import ConjectureRunner
from hypothesis.internal.conjecture.shrinker import Shrinker, ShrinkPass, StopShrinking
from hypothesis.internal.conjecture.shrinking.common import Shrinker as ShrinkerPass
from hypothesis.internal.conjecture.utils import Sampler
from hypothesis.internal.floats import MAX_PRECISE_INTEGER
from tests.common.utils import skipif_time_unpatched
from tests.conjecture.common import (
SOME_LABEL,
float_constr,
interesting_origin,
nodes,
nodes_inline,
run_to_nodes,
shrinking_from,
)
@pytest.mark.parametrize("n", [1, 5, 8, 15])
def test_can_shrink_variable_draws_with_just_deletion(n):
@shrinking_from((n,) + (0,) * (n - 1) + (1,))
def shrinker(data: ConjectureData):
n = data.draw_integer(0, 2**4 - 1)
b = [data.draw_integer(0, 2**8 - 1) for _ in range(n)]
if any(b):
data.mark_interesting(interesting_origin())
shrinker.fixate_shrink_passes([ShrinkPass(shrinker.minimize_individual_choices)])
assert shrinker.choices == (1, 1)
def test_deletion_and_lowering_fails_to_shrink(monkeypatch):
monkeypatch.setattr(
Shrinker,
"shrink",
lambda self: self.fixate_shrink_passes(
[ShrinkPass(self.minimize_individual_choices)]
),
)
monkeypatch.setattr(
ConjectureRunner,
"generate_new_examples",
lambda runner: runner.cached_test_function((b"\0",) * 10),
)
@run_to_nodes
def nodes(data):
for _ in range(10):
data.draw_bytes(1, 1)
data.mark_interesting(interesting_origin())
assert tuple(n.value for n in nodes) == (b"\0",) * 10
def test_duplicate_nodes_that_go_away():
@shrinking_from((1234567, 1234567) + (b"\1",) * (1234567 & 255))
def shrinker(data: ConjectureData):
x = data.draw_integer(min_value=0)
y = data.draw_integer(min_value=0)
if x != y:
data.mark_invalid()
b = [data.draw_bytes(1, 1) for _ in range(x & 255)]
if len(set(b)) <= 1:
data.mark_interesting(interesting_origin())
shrinker.fixate_shrink_passes([ShrinkPass(shrinker.minimize_duplicated_choices)])
assert shrinker.shrink_target.choices == (0, 0)
def test_accidental_duplication():
@shrinking_from((12, 12) + (b"\2",) * 12)
def shrinker(data: ConjectureData):
x = data.draw_integer(0, 2**8 - 1)
y = data.draw_integer(0, 2**8 - 1)
if x != y:
data.mark_invalid()
if x < 5:
data.mark_invalid()
b = [data.draw_bytes(1, 1) for _ in range(x)]
if len(set(b)) == 1:
data.mark_interesting(interesting_origin())
shrinker.fixate_shrink_passes([ShrinkPass(shrinker.minimize_duplicated_choices)])
print(shrinker.choices)
assert shrinker.choices == (5, 5, *([b"\x00"] * 5))
def test_can_zero_subintervals():
@shrinking_from((3, 0, 0, 0, 1) * 10)
def shrinker(data: ConjectureData):
for _ in range(10):
data.start_span(SOME_LABEL)
n = data.draw_integer(0, 2**8 - 1)
for _ in range(n):
data.draw_integer(0, 2**8 - 1)
data.stop_span()
if data.draw_integer(0, 2**8 - 1) != 1:
return
data.mark_interesting(interesting_origin())
shrinker.shrink()
assert shrinker.choices == (0, 1) * 10
def test_can_pass_to_an_indirect_descendant():
def tree(data):
data.start_span(label=1)
n = data.draw_integer(0, 1)
data.draw_integer(0, 2**8 - 1)
if n:
tree(data)
tree(data)
data.stop_span(discard=True)
initial = (1, 10, 0, 0, 1, 0, 0, 10, 0, 0)
target = (0, 10)
good = {initial, target}
@shrinking_from(initial)
def shrinker(data: ConjectureData):
tree(data)
if data.choices in good:
data.mark_interesting(interesting_origin())
shrinker.fixate_shrink_passes([ShrinkPass(shrinker.pass_to_descendant)])
assert shrinker.choices == target
def test_shrinking_blocks_from_common_offset():
@shrinking_from((11, 10))
def shrinker(data: ConjectureData):
m = data.draw_integer(0, 2**8 - 1)
n = data.draw_integer(0, 2**8 - 1)
if abs(m - n) <= 1 and max(m, n) > 0:
data.mark_interesting(interesting_origin())
shrinker.mark_changed(0)
shrinker.mark_changed(1)
shrinker.lower_common_node_offset()
assert shrinker.choices in {(0, 1), (1, 0)}
def test_handle_empty_draws():
@run_to_nodes
def nodes(data):
while True:
data.start_span(SOME_LABEL)
n = data.draw_integer(0, 1)
data.start_span(SOME_LABEL)
data.stop_span()
data.stop_span(discard=n > 0)
if not n:
break
data.mark_interesting(interesting_origin())
assert tuple(n.value for n in nodes) == (0,)
def test_can_reorder_spans():
# grouped by iteration: (1, 1) (1, 1) (0) (0) (0)
@shrinking_from((1, 1, 1, 1, 0, 0, 0))
def shrinker(data: ConjectureData):
total = 0
for _ in range(5):
data.start_span(label=0)
if data.draw_integer(0, 2**8 - 1):
total += data.draw_integer(0, 2**9 - 1)
data.stop_span()
if total == 2:
data.mark_interesting(interesting_origin())
shrinker.fixate_shrink_passes([ShrinkPass(shrinker.reorder_spans)])
assert shrinker.choices == (0, 0, 0, 1, 1, 1, 1)
def test_permits_but_ignores_raising_order(monkeypatch):
monkeypatch.setattr(
ConjectureRunner,
"generate_new_examples",
lambda runner: runner.cached_test_function((1,)),
)
monkeypatch.setattr(
Shrinker, "shrink", lambda self: self.consider_new_nodes(nodes_inline(2))
)
@run_to_nodes
def nodes(data):
data.draw_integer(0, 3)
data.mark_interesting(interesting_origin())
assert tuple(n.value for n in nodes) == (1,)
def test_node_deletion_can_delete_short_ranges():
@shrinking_from([v for i in range(5) for _ in range(i + 1) for v in [i]])
def shrinker(data: ConjectureData):
while True:
n = data.draw_integer(0, 2**16 - 1)
for _ in range(n):
if data.draw_integer(0, 2**16 - 1) != n:
data.mark_invalid()
if n == 4:
data.mark_interesting(interesting_origin())
passes = [shrinker.node_program("X" * i) for i in range(1, 5)]
shrinker.fixate_shrink_passes(passes)
assert shrinker.choices == (4,) * 5
def test_dependent_block_pairs_is_up_to_shrinking_integers():
# Unit test extracted from a failure in tests/nocover/test_integers.py
distribution = Sampler([4.0, 8.0, 1.0, 1.0, 0.5])
sizes = [8, 16, 32, 64, 128]
@shrinking_from((3, True, 65538, 1))
def shrinker(data: ConjectureData):
size = sizes[distribution.sample(data)]
result = data.draw_integer(0, 2**size - 1)
sign = (-1) ** (result & 1)
result = (result >> 1) * sign
cap = data.draw_integer(0, 2**8 - 1)
if result >= 32768 and cap == 1:
data.mark_interesting(interesting_origin())
shrinker.fixate_shrink_passes([ShrinkPass(shrinker.minimize_individual_choices)])
assert shrinker.choices == (1, True, 65536, 1)
def test_finding_a_minimal_balanced_binary_tree():
# Tests iteration while the shape of the thing being iterated over can
# change. In particular the current example can go from trivial to non
# trivial.
def tree(data):
# Returns height of a binary tree and whether it is height balanced.
data.start_span(label=0)
if not data.draw_boolean():
result = (1, True)
else:
h1, b1 = tree(data)
h2, b2 = tree(data)
result = (1 + max(h1, h2), b1 and b2 and abs(h1 - h2) <= 1)
data.stop_span()
return result
# Starting from an unbalanced tree of depth six
@shrinking_from((True,) * 5 + (False,) * 6)
def shrinker(data: ConjectureData):
_, b = tree(data)
if not b:
data.mark_interesting(interesting_origin())
shrinker.shrink()
assert shrinker.choices == (True, False, True, False, True, False, False)
def test_node_programs_are_adaptive():
@shrinking_from((False,) * 1000 + (True,))
def shrinker(data: ConjectureData):
while not data.draw_boolean():
pass
data.mark_interesting(interesting_origin())
shrinker.fixate_shrink_passes([shrinker.node_program("X")])
assert len(shrinker.choices) == 1
assert shrinker.calls <= 60
def test_zero_examples_with_variable_min_size():
@shrinking_from((255,) * 100)
def shrinker(data: ConjectureData):
any_nonzero = False
for i in range(1, 10):
any_nonzero |= data.draw_integer(0, 2**i - 1) > 0
if not any_nonzero:
data.mark_invalid()
data.mark_interesting(interesting_origin())
shrinker.shrink()
assert shrinker.choices == (0,) * 8 + (1,)
def test_zero_contained_examples():
@shrinking_from((1,) * 8)
def shrinker(data: ConjectureData):
for _ in range(4):
data.start_span(1)
if data.draw_integer(0, 2**8 - 1) == 0:
data.mark_invalid()
data.start_span(1)
data.draw_integer(0, 2**8 - 1)
data.stop_span()
data.stop_span()
data.mark_interesting(interesting_origin())
shrinker.shrink()
assert shrinker.choices == (1, 0) * 4
def test_zig_zags_quickly():
@shrinking_from((255,) * 4)
def shrinker(data: ConjectureData):
m = data.draw_integer(0, 2**16 - 1)
n = data.draw_integer(0, 2**16 - 1)
if m == 0 or n == 0:
data.mark_invalid()
if abs(m - n) <= 1:
data.mark_interesting(interesting_origin(0))
# Two different interesting origins for avoiding slipping in the
# shrinker.
if abs(m - n) <= 10:
data.mark_interesting(interesting_origin(1))
shrinker.fixate_shrink_passes([ShrinkPass(shrinker.minimize_individual_choices)])
assert shrinker.engine.valid_examples <= 100
assert shrinker.choices == (1, 1)
@pytest.mark.parametrize(
"min_value, max_value, forced, shrink_towards, expected",
[
# this test disallows interesting values in radius 10 interval around shrink_towards
# to avoid trivial shrinks messing with things, which is why the expected
# values are ±10 from shrink_towards.
(-100, 0, -100, 0, (-10, -10)),
(-100, 0, -100, -35, (-25, -25)),
(0, 100, 100, 0, (10, 10)),
(0, 100, 100, 65, (75, 75)),
],
)
def test_zig_zags_quickly_with_shrink_towards(
min_value, max_value, forced, shrink_towards, expected
):
# we should be able to efficiently incorporate shrink_towards when dealing
# with zig zags.
@shrinking_from((forced,) * 2)
def shrinker(data: ConjectureData):
m = data.draw_integer(min_value, max_value, shrink_towards=shrink_towards)
n = data.draw_integer(min_value, max_value, shrink_towards=shrink_towards)
# avoid trivial counterexamples
if abs(m - shrink_towards) < 10 or abs(n - shrink_towards) < 10:
data.mark_invalid()
if abs(m - n) <= 1:
data.mark_interesting(interesting_origin())
shrinker.fixate_shrink_passes([ShrinkPass(shrinker.minimize_individual_choices)])
assert shrinker.engine.valid_examples <= 40
assert shrinker.choices == expected
def test_zero_irregular_examples():
@shrinking_from((255,) * 6)
def shrinker(data: ConjectureData):
data.start_span(1)
data.draw_integer(0, 2**8 - 1)
data.draw_integer(0, 2**16 - 1)
data.stop_span()
data.start_span(1)
interesting = (
data.draw_integer(0, 2**8 - 1) > 0 and data.draw_integer(0, 2**16 - 1) > 0
)
data.stop_span()
if interesting:
data.mark_interesting(interesting_origin())
shrinker.shrink()
assert shrinker.choices == (0,) * 2 + (1, 1)
def test_retain_end_of_buffer():
@shrinking_from((1, 2, 3, 4, 5, 6, 0))
def shrinker(data: ConjectureData):
interesting = False
while True:
n = data.draw_integer(0, 2**8 - 1)
if n == 6:
interesting = True
if n == 0:
break
if interesting:
data.mark_interesting(interesting_origin())
shrinker.shrink()
assert shrinker.choices == (6, 0)
def test_can_expand_zeroed_region():
@shrinking_from((255,) * 5)
def shrinker(data: ConjectureData):
seen_non_zero = False
for _ in range(5):
if data.draw_integer(0, 2**8 - 1) == 0:
if seen_non_zero:
data.mark_invalid()
else:
seen_non_zero = True
data.mark_interesting(interesting_origin())
shrinker.shrink()
assert shrinker.choices == (0,) * 5
def test_can_expand_deleted_region():
@shrinking_from((1, 2, 3, 4, 0, 0))
def shrinker(data: ConjectureData):
def t():
data.start_span(1)
data.start_span(1)
m = data.draw_integer(0, 2**8 - 1)
data.stop_span()
data.start_span(1)
n = data.draw_integer(0, 2**8 - 1)
data.stop_span()
data.stop_span()
return (m, n)
v1 = t()
if v1 == (1, 2):
if t() != (3, 4):
data.mark_invalid()
if v1 == (0, 0) or t() == (0, 0):
data.mark_interesting(interesting_origin())
shrinker.shrink()
assert shrinker.choices == (0, 0)
@skipif_time_unpatched
def test_will_terminate_stalled_shrinks():
# Suppress the time based slow shrinking check - we only want
# the one that checks if we're in a stall where we've shrunk
# as far as we're going to get.
time.freeze()
@shrinking_from((255,) * 100)
def shrinker(data: ConjectureData):
count = 0
for _ in range(100):
if data.draw_integer(0, 2**8 - 1) != 255:
count += 1
if count >= 10:
return
data.mark_interesting(interesting_origin())
shrinker.shrink()
assert shrinker.calls <= 1 + 2 * shrinker.max_stall
def test_will_let_fixate_shrink_passes_do_a_full_run_through():
@shrinking_from(list(range(50)))
def shrinker(data: ConjectureData):
for i in range(50):
if data.draw_integer(0, 2**8 - 1) != i:
data.mark_invalid()
data.mark_interesting(interesting_origin())
shrinker.max_stall = 5
passes = [shrinker.node_program("X" * i) for i in range(1, 11)]
with pytest.raises(StopShrinking):
shrinker.fixate_shrink_passes(passes)
assert passes[-1].calls > 0
@pytest.mark.parametrize("n_gap", [0, 1, 2])
def test_can_simultaneously_lower_non_duplicated_nearby_integers(n_gap):
@shrinking_from((1, 1) + (0,) * n_gap + (2,))
def shrinker(data: ConjectureData):
# Block off lowering the whole buffer
if data.draw_integer(0, 2**1 - 1) == 0:
data.mark_invalid()
m = data.draw_integer(0, 2**8 - 1)
for _ in range(n_gap):
data.draw_integer(0, 2**8 - 1)
n = data.draw_integer(0, 2**16 - 1)
if n == m + 1:
data.mark_interesting(interesting_origin())
shrinker.fixate_shrink_passes([ShrinkPass(shrinker.lower_integers_together)])
assert shrinker.choices == (1, 0) + (0,) * n_gap + (1,)
def test_redistribute_with_forced_node_integer():
@shrinking_from((15, 10))
def shrinker(data: ConjectureData):
n1 = data.draw_integer(0, 100)
n2 = data.draw_integer(0, 100, forced=10)
if n1 + n2 > 20:
data.mark_interesting(interesting_origin())
shrinker.fixate_shrink_passes([ShrinkPass(shrinker.redistribute_numeric_pairs)])
# redistribute_numeric_pairs shouldn't try modifying forced nodes while
# shrinking. Since the second draw is forced, this isn't possible to shrink
# with just this pass.
assert shrinker.choices == (15, 10)
@pytest.mark.parametrize("n", [10, 50, 100, 200])
def test_can_quickly_shrink_to_trivial_collection(n):
@shrinking_from([b"\x01" * n])
def shrinker(data: ConjectureData):
b = data.draw_bytes()
if len(b) >= n:
data.mark_interesting(interesting_origin())
shrinker.fixate_shrink_passes([ShrinkPass(shrinker.minimize_individual_choices)])
assert shrinker.choices == (b"\x00" * n,)
assert shrinker.calls < 10
def test_alternative_shrinking_will_lower_to_alternate_value():
# We want to reject the first integer value we see when shrinking
# this alternative, because it will be the result of transmuting the
# bytes value, and we want to ensure that we can find other values
# there when we detect the shape change.
seen_int = None
@shrinking_from((1, b"hello world"))
def shrinker(data: ConjectureData):
nonlocal seen_int
i = data.draw_integer(min_value=0, max_value=1)
if i == 1:
if data.draw_bytes():
data.mark_interesting(interesting_origin())
else:
n = data.draw_integer(0, 100)
if n == 0:
return
if seen_int is None:
seen_int = n
elif n != seen_int:
data.mark_interesting(interesting_origin())
shrinker.initial_coarse_reduction()
assert shrinker.choices[0] == 0
class BadShrinker(ShrinkerPass):
"""
A shrinker that really doesn't do anything at all. This is mostly a covering
test for the shrinker interface methods.
"""
def run_step(self):
return
def test_silly_shrinker_subclass():
assert BadShrinker.shrink(10, lambda _: True) == 10
numeric_nodes = nodes(choice_types=["integer", "float"])
@given(numeric_nodes, numeric_nodes, st.integers() | st.floats(allow_nan=False))
@example(
ChoiceNode(
type="float",
value=float(MAX_PRECISE_INTEGER - 1),
constraints=float_constr(),
was_forced=False,
),
ChoiceNode(
type="float",
value=float(MAX_PRECISE_INTEGER - 1),
constraints=float_constr(),
was_forced=False,
),
0,
)
@settings(suppress_health_check=[HealthCheck.filter_too_much])
def test_redistribute_numeric_pairs(node1, node2, stop):
assume(node1.value + node2.value > stop)
# avoid exhausting the tree while generating, which causes @shrinking_from's
# runner to raise
assume(
compute_max_children(node1.type, node1.constraints)
+ compute_max_children(node2.type, node2.constraints)
> 2
)
@shrinking_from([node1.value, node2.value])
def shrinker(data: ConjectureData):
v1 = getattr(data, f"draw_{node1.type}")(**node1.constraints)
v2 = getattr(data, f"draw_{node2.type}")(**node2.constraints)
if v1 + v2 > stop:
data.mark_interesting(interesting_origin())
shrinker.fixate_shrink_passes([ShrinkPass(shrinker.redistribute_numeric_pairs)])
assert len(shrinker.choices) == 2
# we should always have lowered the first choice and raised the second choice
# - or left the choices the same.
assert shrinker.choices[0] <= node1.value
assert shrinker.choices[1] >= node2.value
@pytest.mark.parametrize(
"start, expected",
[
(("1" * 5, "1" * 5), ("0" * 5, "0" * 5)),
(("1222344", "1222344"), ("0" * 7, "0" * 7)),
],
)
@pytest.mark.parametrize("gap", [0, 1, 2, 3])
def test_lower_duplicated_characters_across_choices(start, expected, gap):
# the draws from `gap` are irrelevant and only test that we can still shrink
# duplicated characters from nearby choices even when the choices are not
# consecutive.
@shrinking_from([start[0], *([0] * gap), start[1]])
def shrinker(data: ConjectureData):
s1 = data.draw(st.text())
for _ in range(gap):
data.draw(st.integers())
s2 = data.draw(st.text())
if s1 == s2:
data.mark_interesting(interesting_origin())
shrinker.fixate_shrink_passes([ShrinkPass(shrinker.lower_duplicated_characters)])
assert shrinker.choices == (expected[0],) + (0,) * gap + (expected[1],)
def test_shrinking_one_of_with_same_shape():
# This is a covering test for our one_of shrinking logic for the case when
# the choice sequence *doesn't* change shape in the newly chosen one_of branch.
@shrinking_from([1, 0])
def shrinker(data: ConjectureData):
n = data.draw_integer(0, 1)
data.draw_integer()
if n == 1:
data.mark_interesting(interesting_origin())
shrinker.initial_coarse_reduction()
assert shrinker.choices == (1, 0)
|