File: test_shrinker.py

package info (click to toggle)
python-hypothesis 6.138.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 15,272 kB
  • sloc: python: 62,853; ruby: 1,107; sh: 253; makefile: 41; javascript: 6
file content (661 lines) | stat: -rw-r--r-- 21,759 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.

import time

import pytest

from hypothesis import HealthCheck, assume, example, given, settings, strategies as st
from hypothesis.internal.conjecture.data import ChoiceNode, ConjectureData
from hypothesis.internal.conjecture.datatree import compute_max_children
from hypothesis.internal.conjecture.engine import ConjectureRunner
from hypothesis.internal.conjecture.shrinker import Shrinker, ShrinkPass, StopShrinking
from hypothesis.internal.conjecture.shrinking.common import Shrinker as ShrinkerPass
from hypothesis.internal.conjecture.utils import Sampler
from hypothesis.internal.floats import MAX_PRECISE_INTEGER

from tests.common.utils import skipif_time_unpatched
from tests.conjecture.common import (
    SOME_LABEL,
    float_constr,
    interesting_origin,
    nodes,
    nodes_inline,
    run_to_nodes,
    shrinking_from,
)


@pytest.mark.parametrize("n", [1, 5, 8, 15])
def test_can_shrink_variable_draws_with_just_deletion(n):
    @shrinking_from((n,) + (0,) * (n - 1) + (1,))
    def shrinker(data: ConjectureData):
        n = data.draw_integer(0, 2**4 - 1)
        b = [data.draw_integer(0, 2**8 - 1) for _ in range(n)]
        if any(b):
            data.mark_interesting(interesting_origin())

    shrinker.fixate_shrink_passes([ShrinkPass(shrinker.minimize_individual_choices)])
    assert shrinker.choices == (1, 1)


def test_deletion_and_lowering_fails_to_shrink(monkeypatch):
    monkeypatch.setattr(
        Shrinker,
        "shrink",
        lambda self: self.fixate_shrink_passes(
            [ShrinkPass(self.minimize_individual_choices)]
        ),
    )
    monkeypatch.setattr(
        ConjectureRunner,
        "generate_new_examples",
        lambda runner: runner.cached_test_function((b"\0",) * 10),
    )

    @run_to_nodes
    def nodes(data):
        for _ in range(10):
            data.draw_bytes(1, 1)
        data.mark_interesting(interesting_origin())

    assert tuple(n.value for n in nodes) == (b"\0",) * 10


def test_duplicate_nodes_that_go_away():
    @shrinking_from((1234567, 1234567) + (b"\1",) * (1234567 & 255))
    def shrinker(data: ConjectureData):
        x = data.draw_integer(min_value=0)
        y = data.draw_integer(min_value=0)
        if x != y:
            data.mark_invalid()
        b = [data.draw_bytes(1, 1) for _ in range(x & 255)]
        if len(set(b)) <= 1:
            data.mark_interesting(interesting_origin())

    shrinker.fixate_shrink_passes([ShrinkPass(shrinker.minimize_duplicated_choices)])
    assert shrinker.shrink_target.choices == (0, 0)


def test_accidental_duplication():
    @shrinking_from((12, 12) + (b"\2",) * 12)
    def shrinker(data: ConjectureData):
        x = data.draw_integer(0, 2**8 - 1)
        y = data.draw_integer(0, 2**8 - 1)
        if x != y:
            data.mark_invalid()
        if x < 5:
            data.mark_invalid()
        b = [data.draw_bytes(1, 1) for _ in range(x)]
        if len(set(b)) == 1:
            data.mark_interesting(interesting_origin())

    shrinker.fixate_shrink_passes([ShrinkPass(shrinker.minimize_duplicated_choices)])
    print(shrinker.choices)
    assert shrinker.choices == (5, 5, *([b"\x00"] * 5))


def test_can_zero_subintervals():
    @shrinking_from((3, 0, 0, 0, 1) * 10)
    def shrinker(data: ConjectureData):
        for _ in range(10):
            data.start_span(SOME_LABEL)
            n = data.draw_integer(0, 2**8 - 1)
            for _ in range(n):
                data.draw_integer(0, 2**8 - 1)
            data.stop_span()
            if data.draw_integer(0, 2**8 - 1) != 1:
                return
        data.mark_interesting(interesting_origin())

    shrinker.shrink()
    assert shrinker.choices == (0, 1) * 10


def test_can_pass_to_an_indirect_descendant():
    def tree(data):
        data.start_span(label=1)
        n = data.draw_integer(0, 1)
        data.draw_integer(0, 2**8 - 1)
        if n:
            tree(data)
            tree(data)
        data.stop_span(discard=True)

    initial = (1, 10, 0, 0, 1, 0, 0, 10, 0, 0)
    target = (0, 10)
    good = {initial, target}

    @shrinking_from(initial)
    def shrinker(data: ConjectureData):
        tree(data)
        if data.choices in good:
            data.mark_interesting(interesting_origin())

    shrinker.fixate_shrink_passes([ShrinkPass(shrinker.pass_to_descendant)])
    assert shrinker.choices == target


def test_shrinking_blocks_from_common_offset():
    @shrinking_from((11, 10))
    def shrinker(data: ConjectureData):
        m = data.draw_integer(0, 2**8 - 1)
        n = data.draw_integer(0, 2**8 - 1)
        if abs(m - n) <= 1 and max(m, n) > 0:
            data.mark_interesting(interesting_origin())

    shrinker.mark_changed(0)
    shrinker.mark_changed(1)
    shrinker.lower_common_node_offset()
    assert shrinker.choices in {(0, 1), (1, 0)}


def test_handle_empty_draws():
    @run_to_nodes
    def nodes(data):
        while True:
            data.start_span(SOME_LABEL)
            n = data.draw_integer(0, 1)
            data.start_span(SOME_LABEL)
            data.stop_span()
            data.stop_span(discard=n > 0)
            if not n:
                break
        data.mark_interesting(interesting_origin())

    assert tuple(n.value for n in nodes) == (0,)


def test_can_reorder_spans():
    # grouped by iteration: (1, 1) (1, 1) (0) (0) (0)
    @shrinking_from((1, 1, 1, 1, 0, 0, 0))
    def shrinker(data: ConjectureData):
        total = 0
        for _ in range(5):
            data.start_span(label=0)
            if data.draw_integer(0, 2**8 - 1):
                total += data.draw_integer(0, 2**9 - 1)
            data.stop_span()
        if total == 2:
            data.mark_interesting(interesting_origin())

    shrinker.fixate_shrink_passes([ShrinkPass(shrinker.reorder_spans)])
    assert shrinker.choices == (0, 0, 0, 1, 1, 1, 1)


def test_permits_but_ignores_raising_order(monkeypatch):
    monkeypatch.setattr(
        ConjectureRunner,
        "generate_new_examples",
        lambda runner: runner.cached_test_function((1,)),
    )

    monkeypatch.setattr(
        Shrinker, "shrink", lambda self: self.consider_new_nodes(nodes_inline(2))
    )

    @run_to_nodes
    def nodes(data):
        data.draw_integer(0, 3)
        data.mark_interesting(interesting_origin())

    assert tuple(n.value for n in nodes) == (1,)


def test_node_deletion_can_delete_short_ranges():
    @shrinking_from([v for i in range(5) for _ in range(i + 1) for v in [i]])
    def shrinker(data: ConjectureData):
        while True:
            n = data.draw_integer(0, 2**16 - 1)
            for _ in range(n):
                if data.draw_integer(0, 2**16 - 1) != n:
                    data.mark_invalid()
            if n == 4:
                data.mark_interesting(interesting_origin())

    passes = [shrinker.node_program("X" * i) for i in range(1, 5)]
    shrinker.fixate_shrink_passes(passes)
    assert shrinker.choices == (4,) * 5


def test_dependent_block_pairs_is_up_to_shrinking_integers():
    # Unit test extracted from a failure in tests/nocover/test_integers.py
    distribution = Sampler([4.0, 8.0, 1.0, 1.0, 0.5])
    sizes = [8, 16, 32, 64, 128]

    @shrinking_from((3, True, 65538, 1))
    def shrinker(data: ConjectureData):
        size = sizes[distribution.sample(data)]
        result = data.draw_integer(0, 2**size - 1)
        sign = (-1) ** (result & 1)
        result = (result >> 1) * sign
        cap = data.draw_integer(0, 2**8 - 1)

        if result >= 32768 and cap == 1:
            data.mark_interesting(interesting_origin())

    shrinker.fixate_shrink_passes([ShrinkPass(shrinker.minimize_individual_choices)])
    assert shrinker.choices == (1, True, 65536, 1)


def test_finding_a_minimal_balanced_binary_tree():
    # Tests iteration while the shape of the thing being iterated over can
    # change. In particular the current example can go from trivial to non
    # trivial.

    def tree(data):
        # Returns height of a binary tree and whether it is height balanced.
        data.start_span(label=0)
        if not data.draw_boolean():
            result = (1, True)
        else:
            h1, b1 = tree(data)
            h2, b2 = tree(data)
            result = (1 + max(h1, h2), b1 and b2 and abs(h1 - h2) <= 1)
        data.stop_span()
        return result

    # Starting from an unbalanced tree of depth six
    @shrinking_from((True,) * 5 + (False,) * 6)
    def shrinker(data: ConjectureData):
        _, b = tree(data)
        if not b:
            data.mark_interesting(interesting_origin())

    shrinker.shrink()
    assert shrinker.choices == (True, False, True, False, True, False, False)


def test_node_programs_are_adaptive():
    @shrinking_from((False,) * 1000 + (True,))
    def shrinker(data: ConjectureData):
        while not data.draw_boolean():
            pass
        data.mark_interesting(interesting_origin())

    shrinker.fixate_shrink_passes([shrinker.node_program("X")])

    assert len(shrinker.choices) == 1
    assert shrinker.calls <= 60


def test_zero_examples_with_variable_min_size():
    @shrinking_from((255,) * 100)
    def shrinker(data: ConjectureData):
        any_nonzero = False
        for i in range(1, 10):
            any_nonzero |= data.draw_integer(0, 2**i - 1) > 0
        if not any_nonzero:
            data.mark_invalid()
        data.mark_interesting(interesting_origin())

    shrinker.shrink()
    assert shrinker.choices == (0,) * 8 + (1,)


def test_zero_contained_examples():
    @shrinking_from((1,) * 8)
    def shrinker(data: ConjectureData):
        for _ in range(4):
            data.start_span(1)
            if data.draw_integer(0, 2**8 - 1) == 0:
                data.mark_invalid()
            data.start_span(1)
            data.draw_integer(0, 2**8 - 1)
            data.stop_span()
            data.stop_span()
        data.mark_interesting(interesting_origin())

    shrinker.shrink()
    assert shrinker.choices == (1, 0) * 4


def test_zig_zags_quickly():
    @shrinking_from((255,) * 4)
    def shrinker(data: ConjectureData):
        m = data.draw_integer(0, 2**16 - 1)
        n = data.draw_integer(0, 2**16 - 1)
        if m == 0 or n == 0:
            data.mark_invalid()
        if abs(m - n) <= 1:
            data.mark_interesting(interesting_origin(0))
        # Two different interesting origins for avoiding slipping in the
        # shrinker.
        if abs(m - n) <= 10:
            data.mark_interesting(interesting_origin(1))

    shrinker.fixate_shrink_passes([ShrinkPass(shrinker.minimize_individual_choices)])
    assert shrinker.engine.valid_examples <= 100
    assert shrinker.choices == (1, 1)


@pytest.mark.parametrize(
    "min_value, max_value, forced, shrink_towards, expected",
    [
        # this test disallows interesting values in radius 10 interval around shrink_towards
        # to avoid trivial shrinks messing with things, which is why the expected
        # values are ±10 from shrink_towards.
        (-100, 0, -100, 0, (-10, -10)),
        (-100, 0, -100, -35, (-25, -25)),
        (0, 100, 100, 0, (10, 10)),
        (0, 100, 100, 65, (75, 75)),
    ],
)
def test_zig_zags_quickly_with_shrink_towards(
    min_value, max_value, forced, shrink_towards, expected
):
    # we should be able to efficiently incorporate shrink_towards when dealing
    # with zig zags.

    @shrinking_from((forced,) * 2)
    def shrinker(data: ConjectureData):
        m = data.draw_integer(min_value, max_value, shrink_towards=shrink_towards)
        n = data.draw_integer(min_value, max_value, shrink_towards=shrink_towards)
        # avoid trivial counterexamples
        if abs(m - shrink_towards) < 10 or abs(n - shrink_towards) < 10:
            data.mark_invalid()
        if abs(m - n) <= 1:
            data.mark_interesting(interesting_origin())

    shrinker.fixate_shrink_passes([ShrinkPass(shrinker.minimize_individual_choices)])
    assert shrinker.engine.valid_examples <= 40
    assert shrinker.choices == expected


def test_zero_irregular_examples():
    @shrinking_from((255,) * 6)
    def shrinker(data: ConjectureData):
        data.start_span(1)
        data.draw_integer(0, 2**8 - 1)
        data.draw_integer(0, 2**16 - 1)
        data.stop_span()
        data.start_span(1)
        interesting = (
            data.draw_integer(0, 2**8 - 1) > 0 and data.draw_integer(0, 2**16 - 1) > 0
        )
        data.stop_span()
        if interesting:
            data.mark_interesting(interesting_origin())

    shrinker.shrink()
    assert shrinker.choices == (0,) * 2 + (1, 1)


def test_retain_end_of_buffer():
    @shrinking_from((1, 2, 3, 4, 5, 6, 0))
    def shrinker(data: ConjectureData):
        interesting = False
        while True:
            n = data.draw_integer(0, 2**8 - 1)
            if n == 6:
                interesting = True
            if n == 0:
                break
        if interesting:
            data.mark_interesting(interesting_origin())

    shrinker.shrink()
    assert shrinker.choices == (6, 0)


def test_can_expand_zeroed_region():
    @shrinking_from((255,) * 5)
    def shrinker(data: ConjectureData):
        seen_non_zero = False
        for _ in range(5):
            if data.draw_integer(0, 2**8 - 1) == 0:
                if seen_non_zero:
                    data.mark_invalid()
            else:
                seen_non_zero = True
        data.mark_interesting(interesting_origin())

    shrinker.shrink()
    assert shrinker.choices == (0,) * 5


def test_can_expand_deleted_region():
    @shrinking_from((1, 2, 3, 4, 0, 0))
    def shrinker(data: ConjectureData):
        def t():
            data.start_span(1)

            data.start_span(1)
            m = data.draw_integer(0, 2**8 - 1)
            data.stop_span()

            data.start_span(1)
            n = data.draw_integer(0, 2**8 - 1)
            data.stop_span()

            data.stop_span()
            return (m, n)

        v1 = t()
        if v1 == (1, 2):
            if t() != (3, 4):
                data.mark_invalid()
        if v1 == (0, 0) or t() == (0, 0):
            data.mark_interesting(interesting_origin())

    shrinker.shrink()
    assert shrinker.choices == (0, 0)


@skipif_time_unpatched
def test_will_terminate_stalled_shrinks():
    # Suppress the time based slow shrinking check - we only want
    # the one that checks if we're in a stall where we've shrunk
    # as far as we're going to get.
    time.freeze()

    @shrinking_from((255,) * 100)
    def shrinker(data: ConjectureData):
        count = 0

        for _ in range(100):
            if data.draw_integer(0, 2**8 - 1) != 255:
                count += 1
                if count >= 10:
                    return
        data.mark_interesting(interesting_origin())

    shrinker.shrink()
    assert shrinker.calls <= 1 + 2 * shrinker.max_stall


def test_will_let_fixate_shrink_passes_do_a_full_run_through():
    @shrinking_from(list(range(50)))
    def shrinker(data: ConjectureData):
        for i in range(50):
            if data.draw_integer(0, 2**8 - 1) != i:
                data.mark_invalid()
        data.mark_interesting(interesting_origin())

    shrinker.max_stall = 5
    passes = [shrinker.node_program("X" * i) for i in range(1, 11)]
    with pytest.raises(StopShrinking):
        shrinker.fixate_shrink_passes(passes)

    assert passes[-1].calls > 0


@pytest.mark.parametrize("n_gap", [0, 1, 2])
def test_can_simultaneously_lower_non_duplicated_nearby_integers(n_gap):
    @shrinking_from((1, 1) + (0,) * n_gap + (2,))
    def shrinker(data: ConjectureData):
        # Block off lowering the whole buffer
        if data.draw_integer(0, 2**1 - 1) == 0:
            data.mark_invalid()
        m = data.draw_integer(0, 2**8 - 1)
        for _ in range(n_gap):
            data.draw_integer(0, 2**8 - 1)
        n = data.draw_integer(0, 2**16 - 1)

        if n == m + 1:
            data.mark_interesting(interesting_origin())

    shrinker.fixate_shrink_passes([ShrinkPass(shrinker.lower_integers_together)])
    assert shrinker.choices == (1, 0) + (0,) * n_gap + (1,)


def test_redistribute_with_forced_node_integer():
    @shrinking_from((15, 10))
    def shrinker(data: ConjectureData):
        n1 = data.draw_integer(0, 100)
        n2 = data.draw_integer(0, 100, forced=10)
        if n1 + n2 > 20:
            data.mark_interesting(interesting_origin())

    shrinker.fixate_shrink_passes([ShrinkPass(shrinker.redistribute_numeric_pairs)])
    # redistribute_numeric_pairs shouldn't try modifying forced nodes while
    # shrinking. Since the second draw is forced, this isn't possible to shrink
    # with just this pass.
    assert shrinker.choices == (15, 10)


@pytest.mark.parametrize("n", [10, 50, 100, 200])
def test_can_quickly_shrink_to_trivial_collection(n):
    @shrinking_from([b"\x01" * n])
    def shrinker(data: ConjectureData):
        b = data.draw_bytes()
        if len(b) >= n:
            data.mark_interesting(interesting_origin())

    shrinker.fixate_shrink_passes([ShrinkPass(shrinker.minimize_individual_choices)])
    assert shrinker.choices == (b"\x00" * n,)
    assert shrinker.calls < 10


def test_alternative_shrinking_will_lower_to_alternate_value():
    # We want to reject the first integer value we see when shrinking
    # this alternative, because it will be the result of transmuting the
    # bytes value, and we want to ensure that we can find other values
    # there when we detect the shape change.
    seen_int = None

    @shrinking_from((1, b"hello world"))
    def shrinker(data: ConjectureData):
        nonlocal seen_int
        i = data.draw_integer(min_value=0, max_value=1)
        if i == 1:
            if data.draw_bytes():
                data.mark_interesting(interesting_origin())
        else:
            n = data.draw_integer(0, 100)
            if n == 0:
                return
            if seen_int is None:
                seen_int = n
            elif n != seen_int:
                data.mark_interesting(interesting_origin())

    shrinker.initial_coarse_reduction()
    assert shrinker.choices[0] == 0


class BadShrinker(ShrinkerPass):
    """
    A shrinker that really doesn't do anything at all. This is mostly a covering
    test for the shrinker interface methods.
    """

    def run_step(self):
        return


def test_silly_shrinker_subclass():
    assert BadShrinker.shrink(10, lambda _: True) == 10


numeric_nodes = nodes(choice_types=["integer", "float"])


@given(numeric_nodes, numeric_nodes, st.integers() | st.floats(allow_nan=False))
@example(
    ChoiceNode(
        type="float",
        value=float(MAX_PRECISE_INTEGER - 1),
        constraints=float_constr(),
        was_forced=False,
    ),
    ChoiceNode(
        type="float",
        value=float(MAX_PRECISE_INTEGER - 1),
        constraints=float_constr(),
        was_forced=False,
    ),
    0,
)
@settings(suppress_health_check=[HealthCheck.filter_too_much])
def test_redistribute_numeric_pairs(node1, node2, stop):
    assume(node1.value + node2.value > stop)
    # avoid exhausting the tree while generating, which causes @shrinking_from's
    # runner to raise
    assume(
        compute_max_children(node1.type, node1.constraints)
        + compute_max_children(node2.type, node2.constraints)
        > 2
    )

    @shrinking_from([node1.value, node2.value])
    def shrinker(data: ConjectureData):
        v1 = getattr(data, f"draw_{node1.type}")(**node1.constraints)
        v2 = getattr(data, f"draw_{node2.type}")(**node2.constraints)
        if v1 + v2 > stop:
            data.mark_interesting(interesting_origin())

    shrinker.fixate_shrink_passes([ShrinkPass(shrinker.redistribute_numeric_pairs)])
    assert len(shrinker.choices) == 2
    # we should always have lowered the first choice and raised the second choice
    # - or left the choices the same.
    assert shrinker.choices[0] <= node1.value
    assert shrinker.choices[1] >= node2.value


@pytest.mark.parametrize(
    "start, expected",
    [
        (("1" * 5, "1" * 5), ("0" * 5, "0" * 5)),
        (("1222344", "1222344"), ("0" * 7, "0" * 7)),
    ],
)
@pytest.mark.parametrize("gap", [0, 1, 2, 3])
def test_lower_duplicated_characters_across_choices(start, expected, gap):
    # the draws from `gap` are irrelevant and only test that we can still shrink
    # duplicated characters from nearby choices even when the choices are not
    # consecutive.
    @shrinking_from([start[0], *([0] * gap), start[1]])
    def shrinker(data: ConjectureData):
        s1 = data.draw(st.text())

        for _ in range(gap):
            data.draw(st.integers())

        s2 = data.draw(st.text())
        if s1 == s2:
            data.mark_interesting(interesting_origin())

    shrinker.fixate_shrink_passes([ShrinkPass(shrinker.lower_duplicated_characters)])
    assert shrinker.choices == (expected[0],) + (0,) * gap + (expected[1],)


def test_shrinking_one_of_with_same_shape():
    # This is a covering test for our one_of shrinking logic for the case when
    # the choice sequence *doesn't* change shape in the newly chosen one_of branch.
    @shrinking_from([1, 0])
    def shrinker(data: ConjectureData):
        n = data.draw_integer(0, 1)
        data.draw_integer()
        if n == 1:
            data.mark_interesting(interesting_origin())

    shrinker.initial_coarse_reduction()
    assert shrinker.choices == (1, 0)