1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
from fractions import Fraction
import pytest
from hypothesis import (
HealthCheck,
Phase,
assume,
example,
given,
settings,
strategies as st,
)
from hypothesis.errors import InvalidArgument
from hypothesis.internal.conjecture import utils as cu
from hypothesis.internal.conjecture.data import ConjectureData, Status, StopTest
from hypothesis.internal.coverage import IN_COVERAGE_TESTS
try:
import numpy as np
except ImportError:
np = None
def test_drawing_certain_coin_still_writes():
data = ConjectureData.for_choices([True])
assert data.draw_boolean(1)
assert data.choices == (True,)
def test_drawing_impossible_coin_still_writes():
data = ConjectureData.for_choices([False])
assert not data.draw_boolean(0)
assert data.choices == (False,)
def test_draws_extremely_small_p():
data = ConjectureData.for_choices((True,))
assert data.draw_boolean(0.5**65)
@example([Fraction(1, 3), Fraction(1, 3), Fraction(1, 3)])
@example([Fraction(1, 1), Fraction(1, 2)])
@example([Fraction(1, 2), Fraction(4, 10)])
@example([Fraction(1, 1), Fraction(3, 5), Fraction(1, 1)])
@example([Fraction(2, 257), Fraction(2, 5), Fraction(1, 11)])
@example([0, 2, 47])
@settings(
deadline=None,
suppress_health_check=list(HealthCheck),
phases=[Phase.explicit] if IN_COVERAGE_TESTS else settings.default.phases,
)
@given(st.lists(st.fractions(min_value=0, max_value=1), min_size=1))
def test_sampler_distribution(weights):
total = sum(weights)
n = len(weights)
assume(total > 0)
probabilities = [w / total for w in weights]
sampler = cu.Sampler(weights)
calculated = [Fraction(0)] * n
for base, alternate, p_alternate in sampler.table:
calculated[base] += (1 - p_alternate) / n
calculated[alternate] += p_alternate / n
for expected, actual in zip(probabilities, calculated):
if isinstance(actual, Fraction):
assert expected == actual
else:
assert abs(expected - actual) < 0.001
def test_sampler_does_not_draw_minimum_if_zero():
sampler = cu.Sampler([0, 2, 47])
assert sampler.sample(ConjectureData.for_choices([0, 0])) != 0
def test_sampler_shrinks():
sampler = cu.Sampler([4.0, 8.0, 1.0, 1.0, 0.5])
assert sampler.sample(ConjectureData.for_choices([0] * 3)) == 0
def test_can_force_sampler():
sampler = cu.Sampler([0.5, 0.5])
cd = ConjectureData.for_choices([0] * 100)
assert sampler.sample(cd, forced=0) == 0
assert sampler.sample(cd, forced=1) == 1
def test_combine_labels_is_distinct():
x = 10
y = 100
assert cu.combine_labels(x, y) not in (x, y)
@given(st.integers())
def test_combine_labels_is_identity_for_single_argument(n):
assert cu.combine_labels(n) == n
@pytest.mark.skipif(np is None, reason="requires Numpy")
def test_invalid_numpy_sample():
with pytest.raises(InvalidArgument):
cu.check_sample(np.array([[1, 1], [1, 1]]), "array")
@pytest.mark.skipif(np is None, reason="requires Numpy")
def test_valid_numpy_sample():
cu.check_sample(np.array([1, 2, 3]), "array")
def test_invalid_set_sample():
with pytest.raises(InvalidArgument):
cu.check_sample({1, 2, 3}, "array")
def test_valid_list_sample():
cu.check_sample([1, 2, 3], "array")
def test_choice():
assert ConjectureData.for_choices([1]).choice([1, 2, 3]) == 2
def test_fixed_size_draw_many():
many = cu.many(
ConjectureData.for_choices([]), min_size=3, max_size=3, average_size=3
)
assert many.more()
assert many.more()
assert many.more()
assert not many.more()
def test_astronomically_unlikely_draw_many():
# Our internal helper doesn't underflow to zero or negative, but nor
# will we ever generate an element for such a low average size.
data = ConjectureData.for_choices((True,) * 1000)
many = cu.many(data, min_size=0, max_size=10, average_size=1e-5)
assert many.more()
def test_rejection_eventually_terminates_many():
many = cu.many(
ConjectureData.for_choices((True,) * 1000),
min_size=0,
max_size=1000,
average_size=100,
)
count = 0
while many.more():
count += 1
many.reject()
assert count <= 100
def test_rejection_eventually_terminates_many_invalid_for_min_size():
data = ConjectureData.for_choices((True,) * 1000)
many = cu.many(data, min_size=1, max_size=1000, average_size=100)
with pytest.raises(StopTest):
while many.more():
many.reject()
assert data.status == Status.INVALID
def test_many_with_min_size():
many = cu.many(
ConjectureData.for_choices((False,) * 5),
min_size=2,
average_size=10,
max_size=1000,
)
assert many.more()
assert many.more()
assert not many.more()
def test_many_with_max_size():
many = cu.many(
ConjectureData.for_choices((True,) * 5), min_size=0, average_size=1, max_size=2
)
assert many.more()
assert many.more()
assert not many.more()
def test_samples_from_a_range_directly():
s = cu.check_sample(range(10**1000), "")
assert isinstance(s, range)
def test_p_continue_to_average_saturates():
assert cu._p_continue_to_avg(1.1, 100) == 100
|