1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
import base64
import contextlib
import json
import math
import textwrap
import threading
import warnings
from collections import defaultdict
from contextlib import nullcontext
import pytest
import hypothesis.internal.observability
from hypothesis import (
assume,
event,
example,
given,
note,
seed,
settings,
strategies as st,
target,
)
from hypothesis.database import InMemoryExampleDatabase
from hypothesis.internal.compat import PYPY
from hypothesis.internal.conjecture.choice import ChoiceNode, choices_key
from hypothesis.internal.conjecture.data import Span
from hypothesis.internal.coverage import IN_COVERAGE_TESTS
from hypothesis.internal.floats import SIGNALING_NAN, float_to_int, int_to_float
from hypothesis.internal.intervalsets import IntervalSet
from hypothesis.internal.observability import (
TESTCASE_CALLBACKS,
InfoObservation,
TestCaseObservation,
add_observability_callback,
choices_to_json,
nodes_to_json,
observability_enabled,
remove_observability_callback,
with_observability_callback,
)
from hypothesis.stateful import (
RuleBasedStateMachine,
invariant,
rule,
run_state_machine_as_test,
)
from hypothesis.strategies._internal.utils import to_jsonable
from tests.common.utils import (
Why,
capture_observations,
checks_deprecated_behaviour,
run_concurrently,
skipif_threading,
xfail_on_crosshair,
)
from tests.conjecture.common import choices, integer_constr, nodes
@seed("deterministic so we don't miss some combination of features")
@example(l=[1], a=0, x=4, data=None)
# explicitly set max_examples=100 to override our lower example limit for coverage tests.
@settings(database=InMemoryExampleDatabase(), deadline=None, max_examples=100)
@given(st.lists(st.integers()), st.integers(), st.integers(), st.data())
def do_it_all(l, a, x, data):
event(f"{x%2=}")
target(x % 5, label="x%5")
assume(a % 9)
assume(len(l) > 0)
if data:
data.draw(st.text("abcdef", min_size=a % 3), label="interactive")
1 / ((x or 1) % 7)
@xfail_on_crosshair(Why.other, strict=False) # flakey BackendCannotProceed ??
@skipif_threading # captures observations from other threads
def test_observability():
with capture_observations() as ls:
# NOTE: For compatibility with Python 3.9's LL(1)
# parser, this is written as a nested with-statement,
# instead of a compound one.
with pytest.raises(ZeroDivisionError):
do_it_all()
with pytest.raises(ZeroDivisionError):
do_it_all()
infos = [t for t in ls if t.type == "info"]
assert len(infos) == 2
assert {t.title for t in infos} == {"Hypothesis Statistics"}
testcases = [t for t in ls if t.type == "test_case"]
assert len(testcases) > 50
assert {t.property for t in testcases} == {do_it_all.__name__}
assert len({t.run_start for t in testcases}) == 2
assert {t.status for t in testcases} == {"gave_up", "passed", "failed"}
for t in testcases:
if t.status != "gave_up":
assert t.timing
assert ("interactive" in t.arguments) == (
"generate:interactive" in t.timing
)
@xfail_on_crosshair(Why.other)
def test_capture_unnamed_arguments():
@given(st.integers(), st.floats(), st.data())
def f(v1, v2, data):
data.draw(st.booleans())
with capture_observations() as observations:
f()
test_cases = [tc for tc in observations if tc.type == "test_case"]
for test_case in test_cases:
assert list(test_case.arguments.keys()) == [
"v1",
"v2",
"data",
"Draw 1",
], test_case
@pytest.mark.skipif(
PYPY or IN_COVERAGE_TESTS, reason="coverage requires sys.settrace pre-3.12"
)
def test_failure_includes_explain_phase_comments():
@given(st.integers(), st.integers())
@settings(database=None)
def test_fails(x, y):
if x:
raise AssertionError
with capture_observations() as observations:
# NOTE: For compatibility with Python 3.9's LL(1)
# parser, this is written as a nested with-statement,
# instead of a compound one.
with pytest.raises(AssertionError):
test_fails()
test_cases = [tc for tc in observations if tc.type == "test_case"]
# only the last test case observation, once we've finished shrinking it,
# will include explain phase comments.
#
# Note that the output does *not* include `Explanation:` comments. See
# https://github.com/HypothesisWorks/hypothesis/pull/4399#discussion_r2101559648
expected = textwrap.dedent(
r"""
test_fails(
x=1,
y=0, # or any other generated value
)
"""
).strip()
assert test_cases[-1].representation == expected
def test_failure_includes_notes():
@given(st.data())
@settings(database=None)
def test_fails_with_note(data):
note("not included 1")
data.draw(st.booleans())
note("not included 2")
raise AssertionError
with capture_observations() as observations:
# NOTE: For compatibility with Python 3.9's LL(1)
# parser, this is written as a nested with-statement,
# instead of a compound one.
with pytest.raises(AssertionError):
test_fails_with_note()
expected = textwrap.dedent(
"""
test_fails_with_note(
data=data(...),
)
Draw 1: False
"""
).strip()
test_cases = [tc for tc in observations if tc.type == "test_case"]
assert test_cases[-1].representation == expected
def test_normal_representation_includes_draws():
@given(st.data())
def f(data):
b1 = data.draw(st.booleans())
note("not included")
b2 = data.draw(st.booleans(), label="second")
assume(b1 and b2)
with capture_observations() as observations:
f()
crosshair = settings._current_profile == "crosshair"
expected = textwrap.dedent(
f"""
f(
data={'<symbolic>' if crosshair else 'data(...)'},
)
Draw 1: True
Draw 2 (second): True
"""
).strip()
test_cases = [
tc for tc in observations if tc.type == "test_case" and tc.status == "passed"
]
assert test_cases
# TODO crosshair has a soundness bug with assume. remove branch when fixed
# https://github.com/pschanely/hypothesis-crosshair/issues/34
if not crosshair:
assert {tc.representation for tc in test_cases} == {expected}
@xfail_on_crosshair(Why.other)
def test_capture_named_arguments():
@given(named1=st.integers(), named2=st.floats(), data=st.data())
def f(named1, named2, data):
data.draw(st.booleans())
with capture_observations() as observations:
f()
test_cases = [tc for tc in observations if tc.type == "test_case"]
for test_case in test_cases:
assert list(test_case.arguments.keys()) == [
"named1",
"named2",
"data",
"Draw 1",
], test_case
def test_assume_has_status_reason():
@given(st.booleans())
def f(b):
assume(b)
with capture_observations() as ls:
f()
gave_ups = [t for t in ls if t.type == "test_case" and t.status == "gave_up"]
for gave_up in gave_ups:
assert gave_up.status_reason.startswith("failed to satisfy assume() in f")
@pytest.mark.skipif(
PYPY or IN_COVERAGE_TESTS, reason="coverage requires sys.settrace pre-3.12"
)
def test_minimal_failing_observation():
@given(st.integers(), st.integers())
@settings(database=None)
def test_fails(x, y):
if x:
raise AssertionError
with capture_observations() as observations:
# NOTE: For compatibility with Python 3.9's LL(1)
# parser, this is written as a nested with-statement,
# instead of a compound one.
with pytest.raises(AssertionError):
test_fails()
observation = [tc for tc in observations if tc.type == "test_case"][-1]
expected_representation = textwrap.dedent(
r"""
test_fails(
x=1,
y=0, # or any other generated value
)
"""
).strip()
assert observation.type == "test_case"
assert observation.property == "test_fails"
assert observation.status == "failed"
assert "AssertionError" in observation.status_reason
assert set(observation.timing.keys()) == {
"execute:test",
"overall:gc",
"generate:x",
"generate:y",
}
assert observation.coverage is None
assert observation.features == {}
assert observation.how_generated == "minimal failing example"
assert "AssertionError" in observation.metadata.traceback
assert "test_fails" in observation.metadata.traceback
assert observation.metadata.reproduction_decorator.startswith("@reproduce_failure")
assert observation.representation == expected_representation
assert observation.arguments == {"x": 1, "y": 0}
@pytest.mark.skipif(
PYPY or IN_COVERAGE_TESTS, reason="coverage requires sys.settrace pre-3.12"
)
def test_all_failing_observations_have_reproduction_decorator():
@given(st.integers())
def test_fails(x):
raise AssertionError
with capture_observations() as observations:
# NOTE: For compatibility with Python 3.9's LL(1)
# parser, this is written as a nested with-statement,
# instead of a compound one.
with pytest.raises(AssertionError):
test_fails()
# all failed test case observations should have reprodution_decorator
for observation in [
tc for tc in observations if tc.type == "test_case" and tc.status == "failed"
]:
decorator = observation.metadata.reproduction_decorator
assert decorator is not None
assert decorator.startswith("@reproduce_failure")
@settings(max_examples=20, stateful_step_count=5)
class UltraSimpleMachine(RuleBasedStateMachine):
value = 0
@rule()
def inc(self):
self.value += 1
@rule()
def dec(self):
self.value -= 1
@invariant()
def limits(self):
assert abs(self.value) <= 100
@xfail_on_crosshair(Why.other, strict=False)
def test_observability_captures_stateful_reprs():
with capture_observations() as ls:
run_state_machine_as_test(UltraSimpleMachine)
for x in ls:
if x.type != "test_case" or x.status == "gave_up":
continue
r = x.representation
assert "state.limits()" in r
assert "state.inc()" in r or "state.dec()" in r # or both
t = x.timing
assert "execute:invariant:limits" in t
has_inc = "generate:rule:inc" in t and "execute:rule:inc" in t
has_dec = "generate:rule:dec" in t and "execute:rule:dec" in t
assert has_inc or has_dec
# BytestringProvider.draw_boolean divides [0, 127] as False and [128, 255]
# as True
@pytest.mark.parametrize(
"buffer, expected_status",
[
# Status.OVERRUN
(b"", "gave_up"),
# Status.INVALID
(b"\x00" + bytes([255]), "gave_up"),
# Status.VALID
(b"\x00\x00", "passed"),
# Status.INTERESTING
(bytes([255]) + b"\x00", "failed"),
],
)
def test_fuzz_one_input_status(buffer, expected_status):
@given(st.booleans(), st.booleans())
def test_fails(should_fail, should_fail_assume):
if should_fail:
raise AssertionError
if should_fail_assume:
assume(False)
with capture_observations() as ls:
# NOTE: For compatibility with Python 3.9's LL(1)
# parser, this is written as a nested with-statement,
# instead of a compound one.
with (
pytest.raises(AssertionError)
if expected_status == "failed"
else nullcontext()
):
test_fails.hypothesis.fuzz_one_input(buffer)
assert len(ls) == 1
assert ls[0].status == expected_status
assert ls[0].how_generated == "fuzz_one_input"
def _decode_choice(value):
if isinstance(value, list):
if value[0] == "integer":
# large integers get cast to string, stored as ["integer", str(value)]
assert isinstance(value[1], str)
return int(value[1])
elif value[0] == "bytes":
assert isinstance(value[1], str)
return base64.b64decode(value[1])
elif value[0] == "float":
assert isinstance(value[1], int)
choice = int_to_float(value[1])
assert math.isnan(choice)
return choice
else:
return value[1]
return value
def _decode_choices(data):
return [_decode_choice(value) for value in data]
def _decode_nodes(data):
return [
ChoiceNode(
type=node["type"],
value=_decode_choice(node["value"]),
constraints=_decode_constraints(node["type"], node["constraints"]),
was_forced=node["was_forced"],
)
for node in data
]
def _decode_constraints(choice_type, data):
if choice_type == "integer":
return {
"min_value": _decode_choice(data["min_value"]),
"max_value": _decode_choice(data["max_value"]),
"weights": (
None
if data["weights"] is None
else {_decode_choice(k): v for k, v in data["weights"]}
),
"shrink_towards": _decode_choice(data["shrink_towards"]),
}
elif choice_type == "float":
return {
"min_value": _decode_choice(data["min_value"]),
"max_value": _decode_choice(data["max_value"]),
"allow_nan": data["allow_nan"],
"smallest_nonzero_magnitude": data["smallest_nonzero_magnitude"],
}
elif choice_type == "string":
return {
"intervals": IntervalSet(tuple(data["intervals"])),
"min_size": _decode_choice(data["min_size"]),
"max_size": _decode_choice(data["max_size"]),
}
elif choice_type == "bytes":
return {
"min_size": _decode_choice(data["min_size"]),
"max_size": _decode_choice(data["max_size"]),
}
elif choice_type == "boolean":
return {"p": data["p"]}
else:
raise ValueError(f"unknown choice type {choice_type}")
def _has_surrogate(choice):
return isinstance(choice, str) and any(0xD800 <= ord(c) <= 0xDFFF for c in choice)
@example([0.0])
@example([-0.0])
@example([SIGNALING_NAN])
@example([math.nan])
@example([math.inf])
@example([-math.inf])
# json.{loads, dumps} does not roundtrip for surrogate pairs; they are combined
# into the single code point by json.loads:
# json.loads(json.dumps("\udbf4\udc00")) == '\U0010d000'
#
# Ignore this case with an `assume`, and add an explicit example to ensure we
# continue to do so.
@example(["\udbf4\udc00"])
@given(st.lists(choices()))
def test_choices_json_roundtrips(choices):
assume(not any(_has_surrogate(choice) for choice in choices))
choices2 = _decode_choices(json.loads(json.dumps(choices_to_json(choices))))
assert choices_key(choices) == choices_key(choices2)
@given(st.lists(nodes()))
def test_nodes_json_roundtrips(nodes):
assume(
not any(
_has_surrogate(node.value)
or any(_has_surrogate(value) for value in node.constraints.values())
for node in nodes
)
)
nodes2 = _decode_nodes(json.loads(json.dumps(nodes_to_json(nodes))))
assert nodes == nodes2
@pytest.mark.parametrize(
"choice, expected",
[
(math.nan, ["float", float_to_int(math.nan)]),
(SIGNALING_NAN, ["float", float_to_int(SIGNALING_NAN)]),
(1, 1),
(-1, -1),
(2**63 + 1, ["integer", str(2**63 + 1)]),
(-(2**63 + 1), ["integer", str(-(2**63 + 1))]),
(1.0, 1.0),
(-0.0, -0.0),
(0.0, 0.0),
(True, True),
(False, False),
(b"a", ["bytes", "YQ=="]),
],
)
def test_choices_to_json_explicit(choice, expected):
assert choices_to_json([choice]) == [expected]
@pytest.mark.parametrize(
"choice_node, expected",
[
(
ChoiceNode(
type="integer",
value=2**63 + 1,
constraints=integer_constr(),
was_forced=False,
),
{
"type": "integer",
"value": ["integer", str(2**63 + 1)],
"constraints": integer_constr(),
"was_forced": False,
},
),
],
)
def test_choice_nodes_to_json_explicit(choice_node, expected):
assert nodes_to_json([choice_node]) == [expected]
def test_metadata_to_json():
# this is mostly a covering test than testing anything particular about
# ObservationMetadata.
@given(st.integers())
def f(n):
pass
with capture_observations(choices=True) as observations:
f()
observations = [obs for obs in observations if obs.type == "test_case"]
for observation in observations:
assert set(
to_jsonable(observation.metadata, avoid_realization=False).keys()
) == {
"traceback",
"reproduction_decorator",
"predicates",
"backend",
"sys.argv",
"os.getpid()",
"imported_at",
"data_status",
"interesting_origin",
"choice_nodes",
"choice_spans",
}
assert observation.metadata.choice_nodes is not None
for span in observation.metadata.choice_spans:
assert isinstance(span, Span)
assert 0 <= span.start <= len(observation.metadata.choice_nodes)
assert 0 <= span.end <= len(observation.metadata.choice_nodes)
@contextlib.contextmanager
def restore_callbacks():
callbacks = hypothesis.internal.observability._callbacks.copy()
callbacks_all = hypothesis.internal.observability._callbacks_all_threads.copy()
try:
yield
finally:
hypothesis.internal.observability._callbacks = callbacks
hypothesis.internal.observability._callbacks_all_threads = callbacks_all
@contextlib.contextmanager
def with_collect_coverage(*, value: bool):
original_value = hypothesis.internal.observability.OBSERVABILITY_COLLECT_COVERAGE
hypothesis.internal.observability.OBSERVABILITY_COLLECT_COVERAGE = value
try:
yield
finally:
hypothesis.internal.observability.OBSERVABILITY_COLLECT_COVERAGE = (
original_value
)
def _callbacks():
# respect changes from the restore_callbacks context manager by re-accessing
# its namespace, instead of keeping
# `from hypothesis.internal.observability import _callbacks` around
return hypothesis.internal.observability._callbacks
@skipif_threading
def test_observability_callbacks():
def f(observation):
pass
def g(observation):
pass
thread_id = threading.get_ident()
with restore_callbacks():
assert not observability_enabled()
add_observability_callback(f)
assert _callbacks() == {thread_id: [f]}
assert observability_enabled()
add_observability_callback(g)
assert _callbacks() == {thread_id: [f, g]}
assert observability_enabled()
remove_observability_callback(g)
assert _callbacks() == {thread_id: [f]}
assert observability_enabled()
remove_observability_callback(g)
assert _callbacks() == {thread_id: [f]}
assert observability_enabled()
remove_observability_callback(f)
assert _callbacks() == {}
assert not observability_enabled()
@skipif_threading
def test_observability_callbacks_all_threads():
thread_id = threading.get_ident()
def f(observation, thread_id):
pass
with restore_callbacks():
assert not observability_enabled()
add_observability_callback(f, all_threads=True)
assert hypothesis.internal.observability._callbacks_all_threads == [f]
assert _callbacks() == {}
assert observability_enabled()
add_observability_callback(f)
assert hypothesis.internal.observability._callbacks_all_threads == [f]
assert _callbacks() == {thread_id: [f]}
assert observability_enabled()
# remove_observability_callback removes it both from per-thread and
# all_threads. The semantics of duplicated callbacks is weird enough
# that I don't want to commit to anything here, so I'm leaving this as
# somewhat undefined behavior, and recommending that users simply not
# register a callback both normally and for all threads.
remove_observability_callback(f)
assert hypothesis.internal.observability._callbacks_all_threads == []
assert _callbacks() == {}
assert not observability_enabled()
@checks_deprecated_behaviour
def test_testcase_callbacks_deprecation_bool():
bool(TESTCASE_CALLBACKS)
@checks_deprecated_behaviour
def test_testcase_callbacks_deprecation_append():
with restore_callbacks():
TESTCASE_CALLBACKS.append(lambda x: None)
@checks_deprecated_behaviour
def test_testcase_callbacks_deprecation_remove():
with restore_callbacks():
TESTCASE_CALLBACKS.remove(lambda x: None)
def test_testcase_callbacks():
def f(observation):
pass
def g(observation):
pass
thread_id = threading.get_ident()
with restore_callbacks():
with warnings.catch_warnings():
# ignore TESTCASE_CALLBACKS deprecation warnings
warnings.simplefilter("ignore")
assert not bool(TESTCASE_CALLBACKS)
add_observability_callback(f)
assert _callbacks() == {thread_id: [f]}
assert bool(TESTCASE_CALLBACKS)
add_observability_callback(g)
assert _callbacks() == {thread_id: [f, g]}
assert bool(TESTCASE_CALLBACKS)
remove_observability_callback(g)
assert _callbacks() == {thread_id: [f]}
assert bool(TESTCASE_CALLBACKS)
remove_observability_callback(f)
assert _callbacks() == {}
assert not bool(TESTCASE_CALLBACKS)
def test_only_receives_callbacks_from_this_thread():
@given(st.integers())
def g(n):
pass
def test():
count_observations = 0
def callback(observation):
nonlocal count_observations
count_observations += 1
add_observability_callback(callback)
with warnings.catch_warnings():
g()
# one per example, plus one for the overall run
assert count_observations == settings().max_examples + 1
with restore_callbacks():
# Observability tries to record coverage, but we don't currently
# support concurrent coverage collection, and issue a warning instead.
#
# I tried to fix this with:
#
# warnings.filterwarnings(
# "ignore", message=r".*tool id \d+ is already taken by tool scrutineer.*"
# )
#
# but that had a race condition somehow and sometimes still didn't work?? The
# warnings module is not thread-safe until 3.14, I think.
with with_collect_coverage(value=False):
run_concurrently(test, 5)
def test_all_threads_callback():
n_threads = 5
# thread_id: count
calls = defaultdict(int)
def global_callback(observation, thread_id):
assert isinstance(observation, (TestCaseObservation, InfoObservation))
assert isinstance(thread_id, int)
calls[thread_id] += 1
@given(st.integers())
def f(n):
pass
with with_collect_coverage(value=False):
with with_observability_callback(global_callback, all_threads=True):
run_concurrently(f, n_threads)
assert len(calls) == n_threads
assert all(count == (settings().max_examples + 1) for count in calls.values())
|