1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis/
#
# Copyright the Hypothesis Authors.
# Individual contributors are listed in AUTHORS.rst and the git log.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at https://mozilla.org/MPL/2.0/.
import inspect
import math
import sys
from copy import copy
import pytest
from hypothesis import HealthCheck, assume, given, settings, strategies as st
from hypothesis.internal.compat import ExceptionGroup
from hypothesis.strategies._internal.random import (
RANDOM_METHODS,
HypothesisRandom,
TrueRandom,
convert_kwargs,
normalize_zero,
)
from tests.common.debug import assert_all_examples, find_any
from tests.common.utils import Why, xfail_on_crosshair
def test_implements_all_random_methods():
for name in dir(HypothesisRandom):
if not name.startswith("_") or name == "_randbelow":
f = getattr(HypothesisRandom, name)
if inspect.isfunction(f):
assert f.__module__ == "hypothesis.strategies._internal.random", name
any_random = st.randoms(use_true_random=False) | st.randoms(use_true_random=True)
beta_param = st.floats(0.01, 1000)
seq_param = st.lists(st.integers(), min_size=1)
METHOD_STRATEGIES = {}
def define_method_strategy(name, **kwargs):
METHOD_STRATEGIES[name] = kwargs
define_method_strategy("betavariate", alpha=beta_param, beta=beta_param)
define_method_strategy("binomialvariate", n=st.integers(min_value=1), p=st.floats(0, 1))
define_method_strategy("gammavariate", alpha=beta_param, beta=beta_param)
define_method_strategy("weibullvariate", alpha=beta_param, beta=beta_param)
define_method_strategy("choice", seq=seq_param)
define_method_strategy("choices", population=seq_param, k=st.integers(1, 100))
define_method_strategy("expovariate", lambd=beta_param)
define_method_strategy("_randbelow", n=st.integers(1, 2**64))
define_method_strategy("random")
define_method_strategy("getrandbits", n=st.integers(1, 128))
define_method_strategy("gauss", mu=st.floats(-1000, 1000), sigma=beta_param)
define_method_strategy("normalvariate", mu=st.floats(-1000, 1000), sigma=beta_param)
# the standard library lognormalvariate is weirdly bad at handling large floats
define_method_strategy(
"lognormvariate", mu=st.floats(0.1, 10), sigma=st.floats(0.1, 10)
)
define_method_strategy(
"vonmisesvariate", mu=st.floats(0, math.pi * 2), kappa=beta_param
)
# Small alpha may raise ZeroDivisionError, see https://bugs.python.org/issue41421
define_method_strategy("paretovariate", alpha=st.floats(min_value=1.0))
define_method_strategy("shuffle", x=st.lists(st.integers()))
define_method_strategy("randbytes", n=st.integers(0, 100))
INT64 = st.integers(-(2**63), 2**63 - 1)
@st.composite
def any_call_of_method(draw, method):
if method == "sample":
population = draw(seq_param)
k = draw(st.integers(0, len(population)))
kwargs = {"population": population, "k": k}
elif method == "randint":
a = draw(INT64)
b = draw(INT64)
a, b = sorted((a, b))
kwargs = {"a": a, "b": b}
elif method == "randrange":
a = draw(INT64)
b = draw(INT64)
assume(a != b)
a, b = sorted((a, b))
if a == 0 and sys.version_info[:2] < (3, 10) and draw(st.booleans()):
start = b
stop = None
else:
start = a
stop = b
kwargs = {"start": start, "stop": stop, "step": draw(st.integers(1, 3))}
elif method == "triangular":
a = normalize_zero(draw(st.floats(allow_infinity=False, allow_nan=False)))
b = normalize_zero(draw(st.floats(allow_infinity=False, allow_nan=False)))
a, b = sorted((a, b))
if draw(st.booleans()):
draw(st.floats(a, b))
kwargs = {"low": a, "high": b, "mode": None}
elif method == "uniform":
a = normalize_zero(draw(st.floats(allow_infinity=False, allow_nan=False)))
b = normalize_zero(draw(st.floats(allow_infinity=False, allow_nan=False)))
a, b = sorted((a, b))
kwargs = {"a": a, "b": b}
else:
kwargs = draw(st.fixed_dictionaries(METHOD_STRATEGIES[method]))
args, kwargs = convert_kwargs(method, kwargs)
return (args, kwargs)
@st.composite
def any_call(draw):
method = draw(st.sampled_from(RANDOM_METHODS))
return (method, *draw(any_call_of_method(method)))
@pytest.mark.parametrize("method", RANDOM_METHODS)
@given(any_random, st.data())
def test_call_all_methods(method, rnd, data):
args, kwargs = data.draw(any_call_of_method(method))
getattr(rnd, method)(*args, **kwargs)
@given(any_random, st.integers(1, 100))
def test_rand_below(rnd, n):
assert rnd._randbelow(n) < n
@given(any_random, beta_param, beta_param)
def test_beta_in_range(rnd, a, b):
assert 0 <= rnd.betavariate(a, b) <= 1
def test_multiple_randoms_are_unrelated():
@given(st.randoms(use_true_random=False), st.randoms(use_true_random=False))
def test(r1, r2):
assert r1.random() == r2.random()
with pytest.raises(AssertionError):
test()
@pytest.mark.parametrize("use_true_random", [False, True])
@given(data=st.data())
def test_randoms_can_be_synced(use_true_random, data):
r1 = data.draw(st.randoms(use_true_random=use_true_random))
r2 = data.draw(st.randoms(use_true_random=use_true_random))
r2.setstate(r1.getstate())
assert r1.random() == r2.random()
@pytest.mark.parametrize("use_true_random", [False, True])
@given(data=st.data(), method_call=any_call())
def test_seeding_to_same_value_synchronizes(use_true_random, data, method_call):
r1 = data.draw(st.randoms(use_true_random=use_true_random))
r2 = data.draw(st.randoms(use_true_random=use_true_random))
method, args, kwargs = method_call
r1.seed(0)
r2.seed(0)
assert getattr(r1, method)(*args, **kwargs) == getattr(r2, method)(*args, **kwargs)
@given(any_random, any_call())
def test_copying_synchronizes(r1, method_call):
method, args, kwargs = method_call
r2 = copy(r1)
assert getattr(r1, method)(*args, **kwargs) == getattr(r2, method)(*args, **kwargs)
@xfail_on_crosshair(Why.symbolic_outside_context, strict=False)
@pytest.mark.parametrize("use_true_random", [True, False])
def test_seeding_to_different_values_does_not_synchronize(use_true_random):
@given(
st.randoms(use_true_random=use_true_random),
st.randoms(use_true_random=use_true_random),
)
def test(r1, r2):
r1.seed(0)
r2.seed(1)
assert r1.random() == r2.random()
with pytest.raises(AssertionError):
test()
@xfail_on_crosshair(Why.symbolic_outside_context, strict=False)
@pytest.mark.parametrize("use_true_random", [True, False])
def test_unrelated_calls_desynchronizes(use_true_random):
@given(
st.randoms(use_true_random=use_true_random),
st.randoms(use_true_random=use_true_random),
)
def test(r1, r2):
r1.seed(0)
r2.seed(0)
r1.randrange(1, 10)
r2.getrandbits(128)
assert r1.random() == r2.random()
with pytest.raises(AssertionError):
test()
@given(st.randoms(use_true_random=False), st.randoms(use_true_random=False))
def test_state_is_consistent(r1, r2):
r2.setstate(r1.getstate())
assert r1.getstate() == r2.getstate()
@given(st.randoms())
def test_does_not_use_true_random_by_default(rnd):
assert not isinstance(rnd, TrueRandom)
@given(st.randoms(use_true_random=False))
def test_handles_singleton_uniforms_correctly(rnd):
assert rnd.uniform(1.0, 1.0) == 1.0
assert rnd.uniform(0.0, 0.0) == 0.0
assert rnd.uniform(-0.0, -0.0) == 0.0
assert rnd.uniform(0.0, -0.0) == 0.0
@given(st.randoms(use_true_random=False))
def test_handles_singleton_regions_of_triangular_correctly(rnd):
assert rnd.triangular(1.0, 1.0) == 1.0
assert rnd.triangular(0.0, 0.0) == 0.0
assert rnd.triangular(-0.0, -0.0) == 0.0
assert rnd.triangular(0.0, -0.0) == 0.0
@pytest.mark.parametrize("use_true_random", [False, True])
def test_outputs_random_calls(use_true_random):
@given(st.randoms(use_true_random=use_true_random, note_method_calls=True))
def test(rnd):
rnd.uniform(0.1, 0.5)
raise AssertionError
with pytest.raises(AssertionError) as err:
test()
assert ".uniform(0.1, 0.5)" in "\n".join(err.value.__notes__)
@pytest.mark.skipif(
"choices" not in RANDOM_METHODS,
reason="choices not supported on this Python version",
)
@pytest.mark.parametrize("use_true_random", [False, True])
def test_converts_kwargs_correctly_in_output(use_true_random):
@given(st.randoms(use_true_random=use_true_random, note_method_calls=True))
def test(rnd):
rnd.choices([1, 2, 3, 4], k=2)
raise AssertionError
with pytest.raises(AssertionError) as err:
test()
assert ".choices([1, 2, 3, 4], k=2)" in "\n".join(err.value.__notes__)
@given(st.randoms(use_true_random=False))
def test_some_ranges_are_in_range(rnd):
assert 0 <= rnd.randrange(10) < 10
assert 11 <= rnd.randrange(11, 20) < 20
assert rnd.randrange(1, 100, 3) in range(1, 100, 3)
assert rnd.randrange(100, step=3) in range(0, 100, 3)
def test_invalid_range():
@given(st.randoms(use_true_random=False))
def test(rnd):
rnd.randrange(1, 1)
with pytest.raises(ValueError):
test()
def test_invalid_sample():
@given(st.randoms(use_true_random=False))
def test(rnd):
rnd.sample([1, 2], 3)
with pytest.raises(ValueError):
test()
def test_triangular_modes():
@settings(report_multiple_bugs=True)
@given(st.randoms(use_true_random=False))
def test(rnd):
x = rnd.triangular(0.0, 1.0, mode=0.5)
assert x < 0.5
assert x > 0.5
with pytest.raises(ExceptionGroup):
test()
@given(st.randoms(use_true_random=False), any_call_of_method("sample"))
def test_samples_have_right_length(rnd, sample):
(seq, k), _ = sample
assert len(rnd.sample(seq, k)) == k
@given(st.randoms(use_true_random=False), any_call_of_method("choices"))
def test_choices_have_right_length(rnd, choices):
args, kwargs = choices
seq = args[0]
k = kwargs.get("k", 1)
assert len(rnd.choices(seq, k=k)) == k
@given(any_random, st.integers(0, 100))
def test_randbytes_have_right_length(rnd, n):
assert len(rnd.randbytes(n)) == n
@pytest.mark.skipif(
settings._current_profile == "crosshair",
reason="takes hours; may get faster after https://github.com/pschanely/CrossHair/issues/332",
)
@given(any_random)
def test_can_manage_very_long_ranges_with_step(rnd):
i = rnd.randrange(0, 2**256, 3)
assert i % 3 == 0
assert 0 <= i < 2**256
assert i in range(0, 2**256, 3)
@settings(suppress_health_check=[HealthCheck.too_slow])
@given(any_random, st.data())
def test_range_with_arbitrary_step_is_in_range(rnd, data):
endpoints = st.integers(-100, 100)
step = data.draw(st.integers(1, 3))
start, stop = sorted((data.draw(endpoints), data.draw(endpoints)))
assume(start < stop)
i = rnd.randrange(start, stop, step)
assert i in range(start, stop, step)
@given(any_random, st.integers(min_value=1))
def test_range_with_only_stop(rnd, n):
assert 0 <= rnd.randrange(n) < n
def test_can_find_end_of_range():
find_any(
st.randoms(use_true_random=False).map(lambda r: r.randrange(0, 11, 2)),
lambda n: n == 10,
)
find_any(
st.randoms(use_true_random=False).map(lambda r: r.randrange(0, 10, 2)),
lambda n: n == 8,
)
@given(st.randoms(use_true_random=False))
def test_can_sample_from_whole_range(rnd):
xs = list(map(str, range(10)))
ys = rnd.sample(xs, len(xs))
assert sorted(ys) == sorted(xs)
@given(st.randoms(use_true_random=False))
def test_can_sample_from_large_subset(rnd):
xs = list(map(str, range(10)))
n = len(xs) // 3
ys = rnd.sample(xs, n)
assert set(ys).issubset(set(xs))
assert len(ys) == len(set(ys)) == n
@given(st.randoms(use_true_random=False))
def test_can_draw_empty_from_empty_sequence(rnd):
assert rnd.sample([], 0) == []
def test_random_includes_zero_excludes_one():
strat = st.randoms(use_true_random=False).map(lambda r: r.random())
assert_all_examples(strat, lambda x: 0 <= x < 1)
find_any(strat, lambda x: x == 0)
def test_betavariate_includes_zero_and_one():
# https://github.com/HypothesisWorks/hypothesis/issues/4297#issuecomment-2720144709
strat = st.randoms(use_true_random=False).flatmap(
lambda r: st.builds(
r.betavariate, alpha=st.just(1.0) | beta_param, beta=beta_param
)
)
assert_all_examples(strat, lambda x: 0 <= x <= 1)
find_any(strat, lambda x: x == 0)
find_any(strat, lambda x: x == 1)
|